International Journal of Network Security & Its Agations (IINSA), Vol.3, No.5, Sep 2011

J.S.Bhatid”, R.K.Sehgaf, Sanjeev Kumé&r

#*Cyber Security Technology Division,
CDAC Mohali, INDIA 160071

#“lisb@cdacmohali.in
rks@cdacmohali.in
#Bror.sanjeev@gmail.com

*2

Abstract. Internet attacks are growing with time, threats arereasing to disable
infrastructure to those that also target peoplesl amganization, these increasing large
attacks, and the new class of attacks directlyatsdhe large businesses and governments
around the world. At the centre of many of thesacss is a large pool of compromised
computers which are called zombies commonly cdettddy the attackers by using some
common channels? Attackers use these zombies agraoos proxies to hide their real
identities and amplify their attacks. A botnet imetwork of compromised machines that
can be remotely controlled by an attacker. Withifew of affect made by the botnet, we
propose an approach using Virtual Honeynet datdeotion mechanisms to detect IRC
and HTTP based botnet Command signatures. We haeaged our approach using real
world network traces.

Keywords: Network security, honeynet, honeypot, malware, ébtn

1 Introduction

'‘Bot' is a shortened derivative of ‘robot’, a pragr that operates as an agent that enables a user
or another program to simulate a human activitis fiossible for an attacker to control a lot of
bots over botnet using one command. Using a singlamand, a Botmaster can take the
control of many infected computers. With these abtaristics, an attacker can initiate a mass
attack on Internet users easily. Botnets(or, ndtevaf zombies) are recognised as one of the
most serious security threats today. Botnets(dwarks of zombies) are recognised as one of
the most serious security threats today.

Botnet [1] is a collection of many infected maclineeferred to agombies[2], under a
common Command-and-Control infrastructure (C&C). Attacker can compromise many
computers using a wide variety of techniques aridgusariety of protocols such as IRC,
HTTP, and P2P etc. Once compromised, the bot granomed to connect to a central location
(typically an IRC] server), where the Botmasterlddogin and issue commands to the logged
in bots. This mechanism essentially means thatdh@amunication is free, as broadcast is taken
care of by the IRC channel. With the help of batadbotmaster can control hundreds or even
millions of bots at the same time. Fig 1 depices¢bmmunication flow in a botnet.

DOI : 10.5121/ijnsa.2011.3514 177

International Journal of Network Security & Its Ajgations (IINSA), Vol.3, No.5, Sep 2011

Victim
command C & C server At
S—
Instructions =—>"
victim Fig. 1 Communication Flow in Botnet

Quantification of the botnet problem is very ditficas the highly dynamic nature of bots and
botnets makes them difficult to locate and everdd&ato measure. If we are able to detect to
command & control server, next time attacker caange the C & C server to defend the
botnet. To detect only the botnet C & C serverasthe permanent solution to overcome the
botnet problem until we have to reach the actuambster but it can be initiative step to

overcome some kind of severity of botnet.

Our research makes several contributions. First,pwose behaviour based approach to
identify both IRC and HTTP C & C in port indepentlenanner by extracting commands

sequences from network traffic. Second we develogystem, which is based upon our

behaviour based algorithm. The rest of the papeardsnised as follows. In section 2, we

provide a background on botnet C & C and motivatdérour botnet detection approach. In

section 3, we describe the usefulness of honeypaisir detection approach. In section 4, we
present the architecture of our system and desaridetail its detection algorithm. In section

5, we present experiments and results and conthedeesults in section 6.

1.1 Background and Motivation

Bot

A bot is a malware which installs itself on a weaklrotected computer by exploiting the
vulnerabilities available in the machine. By corivey the victim to a zombie computer, a bot
adds the machine to a network of zombies calleddtathich is remotely controlled by a set of
master named as botnet controller

Botnet

A botnet is a network of infected computers mamgdi and controlled by a set of bot masters.
These masters utilize bots to increase and contm®l number of the zombies (infected
computer) in the network. Bot masters control tlenbt through a command-and-control
(C&C) mechanism which is often called as C&C sesv@he formation of botnet is like C & C
servers often like with other C & C servers to awkithe redundancy. The topology of a Botnet
evolved over time from simple star to complex randcombination of different topologies.
Botnets are often classified according to the maitthrough which it sends out command to
the zombie computers. A typical classi cation istegows [2]:

* |RC Botnet: Bot masters acts as IRC serversumed IRC channels to send commands to
the botnet. All of the members of the botnet aranested to the channel. Commands are
passed as a broadcast to the participants usingptheon IRC protocol.

178

International Journal of Network Security & Its Ajgations (IINSA), Vol.3, No.5, Sep 2011

« HTTP Botnet: Bot master acts as a web seamér bots are connected to the web server.
Commands are encapsulated in HTTP messages.

* P2P Botnet : Newer breed of botnet that useisting P2P protocols to distribute
commands. This kind of botnet is harder to detentared to the other botnets.

The bots are connected to the botnet through a C éannel as aforementioned. A C & C
channel can operate on different network topologies communication mechanisms. The most
common protocol used for this is the IRC prototnd, main reason why IRC is so popular is:
- It is interactive —the full two-way communicatioretiveen the server and client is

possible.

It is easy to install-setting up private serversige existing ones are easy

It is easy to control-using credentials such asn#sae, passwords and channels; all the

needed functionalities already exist in the IRCtpeol.

It has redundancy possibilities- by linking sevesatvers together, one server can go

down while the botnet is still functioning by comtiag to other IRC servers.

There are also a botnets that uses the HTTP pilotoc®€ & C. HTTP based C & C is still
centralised, but the botmaster does not directigract with the bots using chat like
mechanisms. Instead, the bots periodically conthet C & C server(s) to obtain their
commands. Because of its proven effectiveness flicteacies, we expect that centralised C &
C (e.g. Using IRC and HTTP) will still be widelged by botnets in their near future.

Botnet Life Cycle:

A typical botnet can be created and maintainedvie phases including [25]: initial infection,
secondary injection, connection, malicious command control, update and maintenance.
During the initial infection phase, the attackerarss a target subnet for known vulnerabilities,
and infects victim machines through different eialiion method. After initial infection, in
secondary injection phase, the infected hosts éeegiscript known as shell-code. The shell-
code fetches the image of the actual bot binamnftiee specific location via FTP, HTTP, and
P2P. The bot binary installs itself on the targecmne. Once the bot program is installed, the
victim computer turns to a “Zombie” and runs theliniaus code. The bot application starts
automatically each time the zombie is rebooted.

Botmaster

=)

4 Malicious Command & Control

5. Maintenance & Update
1. Initial Infection 2. secondary Infection

3.Connection
A _ I
l:l 4 Malicious Command. —=F =——
— 1 & Control
a N —
e

Vulnerable Host 5.Maintenance & U|::d?t>

C & C servers

Fig 2 Botnet Life Cycle

179

International Journal of Network Security & Its Ajgations (IINSA), Vol.3, No.5, Sep 2011

In connection phase, the bot program establistwmsrenand and control (C & C) channel, and
connect the zombie to the command and control(C&a2yer. Upon the establishment of C &

C channel, the zombie becomes part of attacketiseb@rmy. After connection phase, the

actual botnet command and control activities wél siarted. The Botmaster uses the C & C
channel to disseminate commands sent by botm&sterC & C channel enables the botmaster
to remotely control the action of large number ofstto conduct various illicit activities.

Last phase is to maintain bots lively and updatedthis phase, bots are commanded to
download an updated binary. Bot controllers maydnt®e update their botnets for several
reasons. For instance, they may need to updateocthiginary to evade detection techniques, or
they may intend to add new functionality to theat Brmy

Honeypots:

A honeypot is a closely monitored computing reseutat we want to be probed, attacked, or
compromised. More precisely, a honeypot is "anrinfition system resource whose value lies
in unauthorized or illicit use of that resource"ri¢ypots can run any operating system and any
number of services. The configured services deteritie vectors available to an adversary for
compromising or probing the system. A high-inte@cthoneypot provides a real system the
attacker can interact with. In contrast, a low4iattion honeypots simulates only some parts —
for example, the network stack. A high-interactlmmeypot can be compromised completely,
allowing an adversary to gain full access to thstesy and use it to launch further network
attacks. In contrast, low-interaction honeypotsutate only services that cannot be exploited
to get complete access to the honeypot.

In the last few years, the botnet phenomenon gogtneral attention of the security research
community. One of the first systematic studies waBlished in March 2005 by the Honeynet
Project that studied about 100 botnets during égef four months [3]. A more methodical
approach was introduced by Freiling et al., whaduse same amount of botnet data for their
study [4]. Cooke et al. outlined the origins andugiure of botnets and present some results
based on a distributed network sensor system andypots [5]. They do not give detailed
results that characterize the extent of the bgbneblem. Compared to all these studies, our
solution is automated analysis of binary samplebdneynet environment. We are proposing
complete automate prototype to detect C & C senvdRC, HTTP botnet. We can observe
trends and long-term effects of the botnet phenamdike the average lifetime of a botnet not
possible with previous studies. A transport layasddl botnet detection approach was
introduced by Karasaridis et al. [7]. They use pa&ssanalysis based on flow data to
characterize botnets and were able to detect dewandred controllers over a period of seven
months. However, such a flow-based approach cgmuvide insight into the botnet and the
control structure itself. In our study, we can atdiserve the commands issued by botherders,
the malware binary executables used, and simikidéneffects of a botnet. Canavan [8] and
Barford and Yegneswaran [9] presented an alteragtérspective on IRC-based botnets based
on in-depth analysis of bot source code. We alsalyaad the source code of several bot
families such as SdBot and Agobot, which can belyrdownloaded from the Internet, to get a
better understanding of some of the effects we taped during our observations. In our study,
we focus only C & C server and command exchangaddas bot and botnet.

2. Usefulness of Honeypots/Honeynet in Botnet @etion

Detecting botnets is clearly a multistep operatiinst one need to gather some data about an
existing botnet. This can, for instance, be obtiwéh the help of honeynets or via an analysis
of captured malware. The most successful way igs® nepenthes to automatically capture
autonomous spreading malware. Via automated asabfjthe captured binary, we can extract
all information related to the botnet from the fil&or the malware collection, we have used
honeynet/honeypot architecture. As honeypots hagroductions values, all the incoming

180

International Journal of Network Security & Its Ajgations (IINSA), Vol.3, No.5, Sep 2011

packets towards honeypots are malicious. As ortbefirst in the botnet arena,the Honeynet
Project provided a starting point for future explion of the problem.

3 Bot Behavior Classification through Bot Command

Table | shows a variety of bot commands which Haaen identi ed in actual botnets. A bot command
corresponds to a specic, programmed action to dleenn by a bot program. Based on [3], we have
classi ed bot commands into several groups. Oneigrare general commands, invoked by the attacker
to manage the botnet. Examples are obtainingpoanickname (e.qg.
‘nick’ in Table 1), or making a bot terminate opoa (e.g. ‘disconnect’, ‘quit’ in Table 1). A send
group are host control commands. These are usembtwin host information and/or cause some
(malicious) actions on the host. Examples are agfitin execution (e.g. ‘execute’), and information
extortion (e.g. ‘sysinfo’). A third group are netskocontrol commands. These are used to obtain
information about the host network (e.g. ‘netinféscan’), and/or to control network behaviour.
Examples of the latter include changing the C & e&@ver (e.g. ‘server’), or redirecting traffic (e.g.
‘redirect’). A last group of attack commands waluhch attacks on intended victims. Examples include
denial of service, or spam.

General Commands Host Control commands

login/logout, reconnect, id, alia remove/die,clone,open,delete,sysinfo,sht
action, join, part, privmsg, mode, wn,listprocess,passwords,killthread,killproce
cmdlist, about/version, disconnect, ss,execute,sendkey/getcdkey,keylogger,threa

nick, rndnick, status, quit ds, opencmd

Network Control commands Attack commands
server, netinfo, downloas syr ood,upd ood
update,dnsredirect,httpd/httpserver http ood, ping ood
scan, visit email

3 Our Proposed Approach

In recent years, Botnet detection and tracking besn a major research topic. Different
solutions have been proposed in academia. Theremaialy two approaches for botnet

detection and tracking. One approach is basedttingep honeynets [25]. The other approach
for botnet detection is based on passive netwaakidr monitoring and analysis. Botnet

detection techniques based on passive networkctrafbnitoring have been useful to identify

the existence of botnet. We are following the corabion of both approaches.

We have developed a algorithm which is based o bon-time network behaviour and
corresponding command sequence used in bot andOCsérver conversation. We propose an
approach that uses network-based anomaly detettiadentify C & C command sequences.
Fig 4 shows our malware collection prototype. Tlalgf malware collection is to collect as
many binaries as possible. However, developingatabte and robust infrastructure to achieve
this goal is a challenging problem in its own rigahd has been the subject of numerous
research initiatives (e.g., [10, 11]). In particulany malware collection infrastructure must
support a wide array of data collection endpoinis$ should be highly scalable. The goal of our
collection prototype is to collect as many binaréss possible by changing the services and
configurations of the honeypots. We have estaldishe Distributed Honeynet Prototype using
three different internet service providers. Befere can discover what the risks are in the
network, we need to discover how attack code reaitts the system. To realise this goal, a
collection system is proposed which collects madsao be dynamically analyzed. Also, this
system provides protection against significant imement in attacks after the bot has been run
on the system. It uses firewall and intrusion pnéiom techniques, such as limiting or dropping

181

International Journal of Network Security & Its Ajgations (IINSA), Vol.3, No.5, Sep 2011

packets leaving the protected network. Our propasetiitecture systematically collects the

malwares over internet.
Remote Node Architecture

F | —

P Intemet

:\. Cloud i'T
i 53

Honeywall

Honeypot ==
=

Central Database
Server

Production [~] Honeypot
Machine E!
Production i Dynamic Configurable Honeypot System
Machine =7
| Firewall I
—p Base Operating System

-«
Fig 3. Malware Collection Framework

2.1 Architecture and Algorithm

In this section we discuss the components of thersthm without any specific tools in mind.
Any tool that can perform the tasks described lcarebe used as a part of the solution. Fig 5
illustrates the logical structure of the proposellitson. The input to our system is bot binaries
which are collected via honeynet system, a malwabection platform. There are three main
components: Honeynet Based Execution, Payload PanseCorrelation System Component.
We have collected the malware by distributed daplkenyt of malware collection framework,
which are later passed to Symantec Anti-Virus emgim classify them as bot and non-bot
samples. Then these bot binaries are automatipalbsed to honeynet based open analysis
environment.

2.2 Honeynet Based Execution Environment

Command Token Based Payload Parser

\Q:

C & C Server
&
Infection Source
_Bot Activity Response
Binaries Detection
\L Correlation
System Component
Honeynet Based 2;::” \
Execution Enviornment 3 i ;
Binary Download idous Activity T

Network Monitoring

Payload Extractor

Packet Filter

Protoceol Matcher

HTTP

v

Central Server

=

Message Response
Detection

P

Central
| Database
“M‘
o
MR Records

Fig 4. System Architecture

182

International Journal of Network Security & Its Ajgations (IINSA), Vol.3, No.5, Sep 2011

We have developed a honeynet based open analys@itedn environment in which bot
binaries are executed for 30 minutes times usiffgrdnt timestamps. We set up a Vmware
environment on a server with Intel processor rugranfull patched instance of Window XP,
assigned a static, public IP address and infectiéd @ne bot for a period of 30 minutes
Basically our code reads the bot binaries fromeadne by one and executes it on open analysis
environment and results generated are sent todheat server as a file including complete
payload.

Our open analysis system provides connection terriet. The Honeynet based execution
environment allows us to inject a malicious botsigke into a system and connect back to its
original destination. This enable us to isolatelibefrom the network and monitor its traffic in
a more controlled way instead of waiting to beeatéd and then monitoring the traffic
passively. Then its traffic segregated based orlicgtipn content for the observations of
network behavior in terms of source IP addresgjrag®n IP address, source ports, destination
port, and its command sequences for each flow.

Network Monitoring

In this section, we discuss how we record the letivark traffic that our system requires for
analyse it for the presence of response activityceSthere are no other applications that run
and generate traffic, the bot accounts for all oekwtraffic under its host VM's IP address.
Once the response activity is located, we can etxaasnippet from the network traffic that
precedes the start of the response and thus, ligehains the corresponding command.
Moreover, we can collect behaviour profiles, whitdscribe the properties of the bot response
behaviour. Note that we have made the delibertésin to observe the behaviour of the bots
when they are connected to the actual botnet. dlkisvs us to detect command and control
traffic without any prior knowledge of the protocahd commands that are used between the
bot and botmaster.

However, at the same time we do not wish the baswe are analysing to engage in serious
and destructive malicious activity such as denfaesvice attacks. Thus, we have firewall that
rate limit all outbound network traffic. After eyeB0 minutes data capturing period, Virtual
machine is recreated in a clean state, beforedkiesample of bot is executed.

Payload Extractor

After the execution of the bot binary, the comple&yload has been extracted and sent to the
central server so that we can parse it with paylparser to extract the commands token
signatures with respect to IRC, HTTP botnet. Totwapall network traffic generated by the
virtual environment, we use a Honeywall. The Honalwg able to capture all network packets
that are sent and received by the image. Theseefsaake merged into PCAP file and send to
central server.

Packet Filter

We identify that there is a need of stepwise reédnabdf the data set to the meaningful subset of
flows. The selection of the cut-off for the quicitdring for data reduction requires both
guantitative statistical information and human jechgnt. The first filter is to select TCP-based
packets only. The second filter is to remove thekpt containing SYN and RST flags Flows
containing only TCP packets with SYN and RST flagdicate that communication was never
established,, and so provide no information abatihdt C & C flows . No application-level
data was transferred by these flows. Unfortunatetytoday's Internet, probes of the system

183

International Journal of Network Security & Its Ajgations (IINSA), Vol.3, No.5, Sep 2011

vulnerabilities are commonplace. While SYN-RST exmlfes indicate suspicious activity that
may be worth investigations, they do not assighwitaracterising botnet C & C flows.

Command Token Based Payload Parser

We feed the composite payload corresponding totabbrary to our Payload parser which
extracts the activity response (e.g., scanningnspag, binary update) and message response
(e.g., IRC PRIVMSG) commands sequence from payld@ayload parser detects port-
independent protocol matcher to find suspicious 8@ HTTP traffic. This port Independent
property is important because many botnet C& C ntyuse the regular ports. IRC and HTTP
connections are relatively simple to recognise. Example, an IRC session begins with
connection registration (de ned in RFC1459) thatally has three messages, i.e., PASS,
NICK, and USER. We can easily recognise an IRC eofion using light-weight payload
inspection, e.g., only inspecting the rst few bytef the payload at the beginning of a
connection. HTTP protocol is even easier to retsmhecause the rst few bytes of a HTTP
request have to be “GET”, “POST", or “HEAD".

Correlation System Component

Our next stage, correlation, looks for relationshietween two or more bots binaries that
suggest that they are part of same botnet. Thstigneabout whether one bot is correlated to
another only makes sense if the two are connectesdiine C & C server. There are several
temporal correlation algorithm for this purpose hiltare equally computational expensive.
However we have decided to apply our algorithm thatwere designing that described the
flow into same cluster. We use payload commandsasiges and network fingerprint of bot
binaries flows. If they are connected to the sam& C server and getting the same type of
commands sequence, then it is clustered into angogr

2.3 Experiment and Analysis results

In our experiment set-up, VMware workstation isdide create the default inspection of
Window XP. Capturing and analysis of the netwodffic and system traces is observed in live
execution environment. To capture all the data gead by the virtual environment, we use
Honeywall. The Honeywall is able to capture allwmk packets that are sent and received by
the image. These packers are merged into PCARuffitesent to central server after every 1
hour. Currently we have found it useful to sepathige PCAP files into 1 hour segment. By
segmenting the file, it allows us to allocate thepicious data more easily. We feed the PCAP
data to our payload parser that filter the unussd dnd extract the command sequences in bot
and C & C conversation. Our algorithm is able ttedelRC and HTTP based C & C server.
With the help of our malware collection frame wavke have collected 650 unique malware
samples during the period of Nov, 2009 to July, ®OBEorm them 59 malware samples is
classified as bot by AV engine. Most of the botat tive have actively examined use some type
of systematic scan, presumable for propagation.t dbshese ICMP ping scans were used.
Approximately 37.5% of samples were doing ICMP psiegns on different subnet. Fig. 5 is the
shapshots captured using wireshark[17].

Applying to IRC:

Most of the IRC communication is with specific IRldaesses, one of the samples is
downloading abc.exe from using port number 5758.7Fis the snapshots showing the TCP
follow stream which includes the USER, NICK, MODEDIN, and USERHOST. It is also
observed with the help of sebek traces, most ofsmmples has run Cmd.exe, ping.exe,
svchost.exe, HelpSvc.exe, explorer.exe,cndrive@nesvmiode.exe

184

International Journal of Network Security & Its Ajgations (IINSA), Vol.3, No.5, Sep 20

Fig. 5 ICMP Ping scans

Most of the propadg®n scan activity performed basc commandThe command for th
propagation scan used is .asc <port#><threads>gediane><switches>. For example .¢
exp_all 255 0 -b -re which corresponds to a randomis-r switch),

Fig.€ TCP stream of IRC bot communication.

Class B (b switch) subnet scan using 25 threads withseconds delay for an infinite amot
of time. Rerely does a piece of malware designdime for the scan to finish so the 0 is u:
to express an infinite amount of tin
Some moreanalysis results of botncommunication:
USERHOST kcrbhf8wlzo
MODE kcrbhf8wlzo +i
MODE #100+ +nts
-ftpelite.mine.nu 302 kcrbhf8wlzo :kcrbhf8wlzo=+XBB60590@203.129.220.2
185

International Journal of Network Security & Its Ajgations (IINSA), Vol.3, No.5, Sep 2011

:kcrbhf8wlzo MODE kcrbhf8wlzo :+i

‘ftpelite.mine.nu 482 kcrbhf8wlzo #100+ :You're mbannel operator
‘ftpelite.mine.nu 302 kcrbhf8wlzo :kcrbhf8wlzo=+XBA60590@203.129.220.214
‘ftpelite.mine.nu 482 kcrbhf8wlzo #100+ :You're mbinnel operator

PRIVMSG #100+ :4[SC]: Random Port Scan started @6.2x.x:445 with a delay of 5
seconds for 9999 minutes using threads.

PRIVMSG #100+ :BotKill Started: windows-krb.exe

PRIVMSG #100+ :BotKill Started: crscs.exe

PRIVMSG #100+ :BotKill Started: msdrive32.exe

PRIVMSG #100+ :BotKill Started: woot.exe

PRIVMSG #100+ :BotKill Started: dn.exe

PRIVMSG #100+ :BotKill Started: Zsnkstm.exe

‘ftpelite.mine.nu 302 kcrbhf8wlzo :kcrbhf8wlzo=+XBB60590@203.129.220.214
‘ftpelite.mine.nu 482 kcrbhf8wlzo #100+ :You're mbinnel operator
‘ftpelite.mine.nu 302 kcrbhf8wlzo :kcrbhf8wlzo=+XBB60590@203.129.220.214
‘ftpelite.mine.nu 482 kcrbhf8wlzo #100+ :You're mbinnel operator

.ftpelite.mine.nu 404 kcrbhf8wlzo #100+ :You mustvh a registered nick (+r) to talk on this
channel (#100+)

.ftpelite.mine.nu 404 kcrbhf8wlzo #100+ :You mustvh a registered nick (+r) to talk on this
channel (#100+)

‘ftpelite.mine.nu 404 kcrbhf8wlzo #100+ :You musivh a registered nick (+r) to talk on this
channel (#100+)

‘ftpelite.mine.nu 404 kcrbhf8wlzo #100+ :You musivh a registered nick (+r) to talk on this
channel (#100+)

.ftpelite.mine.nu 404 kcrbhf8wlzo #100+ :You mustvh a registered nick (+r) to talk on this
channel (#100+)

‘ftpelite.mine.nu 404 kcrbhf8wlzo #100+ :You musivh a registered nick (+r) to talk on this
channel (#100+)

186

International Journal of Network Security & Its Ajgations (IINSA), Vol.3, No.5, Sep 20
Applying to HTTP:
In case of HTTP botnet we have observed, the conuation of bots with web based C &
server by identifying the GET, HEAD, POST param&tdn most of our results shows 1

HTTP based C & C communication and download somecw@able. Followig shapshot
shows the HTTP communicatic.

Fellomw TEP Stram

|5F2 |05 193
e o ET T
BOS USA|XP|SF2 | 055293
06 LS-II P 1572|055 193

us.'.l wrerz ST ESESS0NNI. LX- 22 u 0L rm-u..

332 USA|XP|SF2| 055390 tna—u | daasstop - 5|, st S| PATCHEr RETR: /M. 200, 104, 17:5TS1/a0c. exr 240 -] sTep 218,26, 132
R i e N i B[83C awWrEec JOO0 LW T BEES L R -e -r -3 edn #adb -n
333 USA|XP|5F2 109593 m.s,; rre
W3 USA |2 SF2 |uv=—s Pm,.ﬂ us.\| 52 cﬁw—u
o ISFZ [0%SIAD snaged Ewd af AES

u 2| 35203 SP2- SAM00. 129, 2214 JOIN :#sal
Jn USA|XP | 552 |095T93 @ #541 uu.| >‘¢=? 5193
LA | 3P |60 | 055393 #ed : G, e Liet

[| CFsavess || (RBwn | Entrs combrs amon (SIS bytes| 2 |0 ASCE O IBCDRC) Hax Do O Aeming

[r-prere] Firer et Trin Srveam o L

L ¥ [Bob.. ¥ [oete... | ¥ pinug i [root ey - Botrw... | & Cole.. & anary... janai.. |] Foso... ||]]
..wb(x)_n's Paces Sy 0 W 278

Fig. 7 IRC Bot Communication

Below are the snapshot captured using wireshatk
Below is the result of one of sample showing th& downloading executable from 2x.Xx.x
203.129.220.214.01044-2@3.x.00080: GET /Ocalc.exe HTTP/1.1

203.129.220.214.0104338.x.X.>.00080: GET /mjsn.exe HTTP/1.1
208.x.x.x.0008(203.129.220.214.01044: HTTP/1.1 2
OK

Figure 8 shows the snapshot of secondary infecisimg HTTP communicatiol

As per as our Exgrimental Results and Analysis, we are concluded mhost of the C&C
SERVER of Type IRC are usin ICMP SCAN, IRC TOKENS found in payload &
PING,PONG,JOIN,USER,MODE,PRIVMSG,NICK. T attack specific commands found
payload areDDOS, VSCAN. And rost ofthe C&C SERVER of Type HTTP is usirlCMP
SCAN, HTTPTOKENS found in payload aHTTP, GET, POST, Downloadingpme exe file:
like /rbf.exe, /Ocalc.exe and sending spam r.

187

International Journal of Network Security & Its Ajgations (IINSA), Vol.3, No.5, Sep 2C

L0, 6 SpeniSLE, @, Se. TIPS el sl ssUh (s STH rewghy 2 | mid_lel 1ma 1oy 1, &

® DATA ¢ B ... WL . v imsts. .6

[Wyl [

SUTaRgE. @

AT IAg L L L L 1 L L L W W W W L
L &, i L. by i, P TP el T 8, &, B P mil P L 1, i P sl FT T

Gl ena | [save aa | @i | Enoee comemnanon (311155 bytes) 8|01 ERCE O EBCDIC () baen Duemp O 2 diray

Bt [nter Ou Tran Steam 3 o
& 0 [Beb i |dein i [el Piotre Code iy [o M) =]
W ppcaons Pace Spvten A R B Teee

Fig. 8 HTTP snapshot

2.5 Conclusion

With the view of internet security, tte are large threats due to Botnets and tiaxe becom
the most serious threats to the Intersecurityas they provide a platform for many cyl
crimes such as Denial of Service (DDoS) attackdnagaritical targets,phishing, and cli
frauds. Despitehe long presence of malicious Botnets,only fewnfalr studies have examin
the botnet problem and botnet is still in its irf@ Botnetdetecion is a relatively new anc
very challenging research area. In this paour results show that the botnebplem is ol
global scale. We presented a system and archiggctunetwork based botnet detec of
Botnet. We are further trying to correlate the f-level traces with network lev-traces. At
present we are focusing only IRC and HTTP botnge aremoving towards the P2P botn
We also in the studying phase of others protocsdsl by Botnet:

Acknowledgments. We would like to thank Malware collection team ofb@r Security
Technology Division at CDAC, Mohali to provide thseful help in collecng the malwares t
make them available for further analysis. We alsoywvthankful to Executive Director
CDAC, Mohali to provide us full suppc.

References

1. http://en.wikipedia.org/wiki/Botni S. Stakovic and D. Simic. Defense Strategies against Mo
Botnets. ArXiv eprints, June 200

. The Honeynet Project. Know Your Enemy: TrackBwinets, March 2005. Intern

. http://www.honeynet.org/paperots/.

. E. Cooke, F. Jahanian, and D. McPherson. The zomthiadup: Understanding, detecting, ¢

disrupting botnets. In Proceedings of SRUTI'05, @844, 2005.

5. F. Freiling, T. Holz, and G. Wicherski. Botnet Tkatg: Exploring a Ro-Cause Methodolo¢ to
Prevent Distributed Denial-ddervice Attacks. In Proceedings of 10th Europeamg®sium or
Research In Computer Security (ESORICSO05). Sprjnlygy 200E

6. A. Karasaridis, B. Rexroad, and D. Fin. Wide-scale botnet detection and characterizatior
Proceedings of the Workshop on Hot Topics in Urntdeding Botnets, April 200

A OWN

188

International Journal of Network Security & Its Ajgations (IINSA), Vol.3, No.5, Sep 2011

7. J. Canavan. The evolution of malicious IRC botsPhoceedings of the Virus Bulletin Conference,
2005.

8. P. Barford and V. Yegneswaran. An Inside Look atnBts, volume 27 of Advances in Information
Security, pages 171-191. Springer US, 2007.

9. Niels Provos. A virtual honeypot framework. In Reedings of the USENIX Security in Special
Workshop on Malware Detection, Advances in Symposipages 1-14, August ,2004

10. M. A. Rajab, J. Zarfoss, F. Monrose, and A. Ter&isnultifaceted approach to understanding
the botnet phenomenon. In Proceedings of the 6titMASRIGCOMM Conference on Internet
Measurement, pages 41-52, New York, NY, USA, 2@@M Press.

11. Michael Vrable, Justin Ma, Jay Chen, David MooreikEVandekieft, Alex C. Snoeren,
Geoffrey M. Voelker, and Stefan Savage ,Scalabiliidelity, and Containment in the Potemkin
Virtual Honeyfarm

12. Paul Baecher, Markus Koetter, Thorsten Holz, Maliani Dornseif, and Felix Freiling. The
Nepenthes Platform: An Ef cient Approach to CalleMalware. In Proceedings of the 9th
International Symposium on Recent Advances in Irgion Detection (RAID), Sept. 2006.

13. Honeyd Virtual Honeypot Frameworkitp://www. honeyd.org/.

14, Honeynet Project and Research Alliance. Know ymensy: Tracking Botnets, March 2005.
Seehttp://www.honeynet.org/papers/bots/

15. Niels Provos. A virtual honeypot framework. In Peedings of the USENIX Security in Special
Workshop on Malware Detection, Advances in Symposipages 1-14, August ,2004

16. Wireshark, Available atvww.wireshark.org

17. G. Gu, J. Zhang, andW. Lee. BotSniffer: Detectirmgnbt command and control channels in
network traffic. In Proceedings of the 15th Annhgitwork and Distributed System Sec

18. J. R. Binkley and S. Singh. An algorithm for anoyabhsed botnet detection. In Proceedings of
the 2nd conference on Steps to Reducing Unwantaffid on the Internet, Berkeley, CA, USA, 2006.
USENIX Association.

19. J. Goebel and T. Holz. Rishi: Identify bot contaated hosts by irc nickname evaluation. In
HotBots'07: Proceedings of the first conferenceRinst Workshop on Hot Topics in Understanding
Botnets, Berkeley, CA, USA, 2007. USENIX Associatio

20. C. Livadas, R. Walsh, D. Lapsley, and W. Strayesing machine learning technliques to
identify botnet traffic. In Proceedings of the 2BdEE LCN Workshop, Nov, 2006.

21. W. T. Strayer, R.Walsh, C. Livadas, and D. LapsIegtecting botnets with tight command and
control. In Proceedings of the 31st IEEE LCN, Nobem 2006.

22. E. Kirda, C. Kruegel, G. Banks, G. Vigna, and Reniknerer. Behavior-based spyware
detection. In Proceedings of the 15th USENIX Seg8ymposium, 2006.

23. G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMi@ustering analysis of network traffic for
protocol- and structure independent botnet detectio Proceedings of the 17th USENIX Security
Symposium, 2008.

24, Honeynet Project and Research Alliance. Know yememy:Tracking Botnets ,March 2005.
Seehttp://www.honeynet.org/papers/bots/
25. A Survey of Botnet and Botnet Detection, 2009 @Hinternational Conference on Emerging

Security Information, Systems and Technologies

189

