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ABSTRACT

Analysis on the high dimensional data is the main problem in several applications like content based
retrieval, speech signals, fMRI scans, electrocardiogram signal analysis, multimedia retrieval, market
based applications etc., to improve the performance of the system, the dimensions should be reduced into
lower dimension. There are many techniques for both linear and non linear dimensionality reduction. Some
of the techniques are suitable linear sample data and not suitable for non linear data and sample size is
another criteria in dimensionality reduction. Each technique has its own features and limitations. This
paper presents the various techniques used to reduce the dimensions of the data.
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1. INTRODUCTION

Dimensionality reduction is a process of extracting the essential information from the dataset. The
high-dimensional data can be represented in a more condensed form with much lower
dimensionality to improve the classification accuracy and to reduce computational complexity.
Dimensionality reduction becomes a viable process to provide robust data representation in
relatively low-dimensional space in such many applications like electrocardiogram signal analysis
and content base retrieval [1].

The mathematical representation of the problem is defined as follows: Let us consider the high
dimensional dataset X with D-dimensional data. Feature extraction involves to find the low
dimensional dataset Y with d-dimensional data which are meaningful low dimensional data,
where d≪D. Initially, the high dimensional data D is mapped on to the low dimensional subspace
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d. In this paper, the points xi and xj represents the ith, jth record of the high dimensional data D and
yi, and yj represents the ith, and jth record in the low dimensional data d.

2. DIMENSIONALITY REDUCTION TECHNIQUES

Dimensionality reduction reduces the number of variables which improves the performance of the
classification. Processing of the high dimensional data leads the increase of complexity both in
execution time and memory usage. There are number of techniques available to reduce the
dimensions of the dataset. Each and every technique reduces the dimensions of the data based on
particular criteria. In recent years, Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) are regarded as the most fundamental and powerful tools of dimensionality
reduction for extracting effective features of high-dimensional vectors in input data. Depending
on the data, the reduction techniques are classified as linear techniques and non linear techniques.
In following sections we deal with these different techniques. Generally, there are two types of
data like linear data and non linear data.

3. LINEAR DIMENSIONALITY REDUCTION TECHNIQUES

Data which has linear relationship is called as linear data and others are called as non linear data.
There are number of techniques available to handle this type of linear data. This section deals
with Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA).

3.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised dimensionality reduction technique. The
feature selection in traditional LDA is obtained by maximizing the difference between classes and
minimizing the distance within classes. For better separation, the high dimensional space is
reduced into low dimensional subspace [1]. Let X= [x1. . .xn ] ∈ Rm×n be the training samples,
where m and b the member of data samples and Ci denotes the class of data i. Generally, the
conventional LDA finds the Projection matrix W = [w1. . . wn] ∈Rm×n(n < m) whose columns
{wk } (k = 1, . . . , n) constitute the bases of the n-dimension linear subspace. The data samples xj

is projected onto W which gives the projected n-dimension vector yj that denotes the features of
xj. The optimal Projection matrix is obtained by using equation (1),

(1)

Where tr( . ) denotes the trace of matrix, Sb and Sw represents the between class and within class
scatter matrix in the feature space and J is the Fisher scalar used for measuring the class
seperability. Between class and within class matrixes are calculated as (2) and (3).

(2)

(3)
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Where, , denotes the global mean and mean vector of the ith class and superscript T indicates

the transposition operation in the feature space. The between class and within class scatter matrix
for the data X can be identified by substituting (4) on equations (2) and (3).

(4)

(5)

(6)

Where and represents the global mean and mean vector of ith class vector. Using (5) and (6)
the equation (1) can be written as,

(7)

The optimal objective function is obtained using (7).

The LDA [2] usually uses the global structure information of the total training samples to
determine the linear discriminant vectors and these vectors are all global. For a test sample, the
use of global linear discriminant vectors to extract features from the samples may lead to
erroneous classification, whereas the use of local linear discriminant vectors might produce
correct classification. When the global data structure is not completely consistent with the local
data structure, Local Linear Discriminant Analysis (LLDA) is more powerful than the traditional
LDA algorithms and LLDA can effectively capture the local structure of samples.

To preserve the local intrinsic structure, Joint Global and Local structure Discriminant Analysis
(JGLDA) is a novel approach for linear dimensionality reduction [3]. Rotational LDA algorithm
is an iterative algorithm, rotates the original feature vectors with respect to the centered of their
own class separately, until overlapping error is minimized [4]. The generalization performance is
improved in Fisher Linear Discriminant Analysis (FLD) [5].

The major issues of LDA are Small Sample Size (SSS) problem and Common Mean (CM)
problem. Small Sample Size problem occurs when the dimensions of the data exceeds the number
of samples.  There are number of techniques to overcome this SSS problem. Null space based
LDA(NLDA)[6], Shrunken centroids regularized discriminant analysis [7], LDA with generalized
singular value decomposition [8], null space LDA [9], discriminative common vector (DCV)
[10], kernel discriminative common vector (kDCV) [11], orthogonal Centroid Method (OCM)
[12], weighted piecewise LDA [13], and LDA over PCA [14] is used to solve the Small Sample
Size problem.

Since the objective function of the conventional LDA is based on the distance criteria using L2-
norm,it is sensitive to outliers. It comes to know that, the robustness of the LDA with L1-norm is
better than the L2-norm [15].
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3.2 Principal Component Analysis

Principal Component Analysis (PCA) is one most popular unsupervised technique to handle the
curse of dimensionality and it plays important role in pattern recognition and machine learning.
The projection on PCA is done by maximizing the correlation between the data. The projection
provides the low dimensional subspace which can represent all the data without losing the any
information [16]. The main idea of PCA is to transform the high dimensional input space onto the
feature space where the maximal variance is displayed. The mathematical formulation for PCA is
given below.

Let X=[x1…xm]T be the input vector that denotes X as the m-dimensional data input data. The
sample mean of the given input is calculated as in (8),

(8)

Where, denotes the Mean of the sample data X and n denotes the number of samples. The
covariance of the matrix is identified by using equations (4) and (5).

(9)

(10)

PCA is performed by finding the Eigen values and Eigen vectors of the covariance matrix and
rearranged in descending order according to the corresponding Eigen values using a
transformation matrix T, which can produce the new form of input vector X.

(11)

In equation (11), T represents the transformation function and PC is the new form of vector which
is minimally correlated. To reduce the dimensionality we can select top k number of components
where (k<m). This is the general process involves on the Principal Component Analysis (PCA).

Though the conventional PCA is performed in many applications, it has some problems. The
main problem of PCA is that the Mean Square Error (MSE) is dominated with the large number
of errors. PCA based on L2-norm becomes sensitive to outliers. To overcome this problem PCA
based on L1-norm is proposed to improves the robustness [17][18]. In [15],[20],[21], the
projection follows Laplacian distribution and L1-PCA is formulated by applying Maximum
likelihood estimation to the original given data. The problem of L1-PCA is solved by using
weighted median method [20] and convex programming method [21] and it becomes
computationally expensive.

In [23], Rotational PCA (R1-PCA) is proposed to combine the advantages of both L1-PCA and
L2-PCA. It is rotational invariant and successfully reduces the effect of outliers. PCA based on
Maximum Currentropy Criterion (MCC)[24], Robust Two dimensional PCA (RTDPCA) solves
the problems of outliers and robustness[19].
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Conventional PCA is not probabilistic. Moghaddam[25] extended the conventional PCA into a
Probabilistic framework and Probabilistic PCA (PPCA) is derived from the linear latent variable
model which can be used to handle the One dimensional(1 -D) data vector. Probabilistic second
order PCA (PSOPCA) is a model to follow the classical latent variable model and used different
learning [26]. 2D-PCA is used to extend the PCA to handle the 2-Dimensional data (such as
image) vectors [27]. Parameter estimation in PPCA requires latent variables which lead to get
slower convergence [28]-[30]. To overcome these problems Bilinear Probabilistic Principal
Component Analysis (BPPCA) was proposed in the curse of dimensionality on the two
dimensional data is solved by using [31].

4. NON LINEAR TECHNIQUES

In real world, most of the data are in the form of non linear. Handling these types of data for
further analysis is difficult. There are many techniques, which can handle this type of non linear
data.

4.1 Support Vector Machine

Support Vector Machine is a supervised technique for classification which classifies the data into
different classes based on the hyper plane and it considers only the support vectors for the
problem of classification. Each set of input record or instance has own class labels. The major
work of this SVM is to find the relationship among the input dataset and its output labels.
Generally, SVM is used for two class classification and its class may be 0 or 1 otherwise -1 or 1.
Let us consider X=(x1…xD) be a high dimensional data and each xi has its own class labels Y= [-
1, 1].

In the case of linear data, SVM tries to find the hyper plane with minimum distance from the data
points from the boundary. If the data is non-linearly distributed, the data is transformed by using
non-linear transformation functions. The training set and the corresponding output is defined as,
T= {(x1,y1), (x2,y2) ,….,(xn,yn)}   xi Rn Where, yi denotes the corresponding output.
The optimal hyper plane is identified by Eq. (1),

Here, w Rn and b R. The empirical risk is measured with the soft margin loss function by
introducing the regularization terms and the slack variables Ψ = (Ψ1…Ψn). The soft margin
function is expressed in Eq. (2).

The Support Vector Machine Problem is defined using the regularization term is expressed in (3)
and (4) and (5) represents the supporting hyper planes which are parallel to the decision plane.

(13)
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(14)

Where, C>0 is the constant parameter. Minimization of the regularization term

maximizes the margin between the parallel hyper planes.

The general framework of LDA is based on the most intuitive LDA with zero within class
variance. It is found that SVM and LDA are almost similar. Commonly, the projection on these
techniques is done by maximizing the variance between classes and minimizing the variance
within classes [32]. The problems of LDA do not affect the performance of SVM and it reduces
the empirical error by maximizing distance between the margin and the hyper plane. Maximizing
the width of the margin leads to trade-off between the empirical error and complexity and it is
robust under noisy environment. In SVM, Small Sample Size Problem (SSS), and Common Mean
(CM) problem does not affect the performance of the classification as in LDA. Compared with
other techniques, SVM reduces the Structural risk and empirical error [33]. Recursive SVM
(RSVM), Large Scale maximum Margin Discriminant Analysis (large scale (MMDA) and
Maximum Margin Projection(MMP)  are some other techniques used to reduce the dimensions of
the data[34]-[37].

Complexity of SVM will be increased when the number of Support Vectors are increased and it
makes difficult to find the hyper plane among the wide range of data [38][39]. To minimize the
complexity issues of SVM, Separable Case Approximation (SCA) reduce the number of support
vectors by minimizing the distance between the original weight vectors [40]. [41] Eliminates the
support vectors which are linearly dependent on other support vectors. [42] Keerthi et.al.
Proposed greedy method SVM which is directly related with the training cost.

SVM takes long time for training and large amount of memory while using large datasets. The
execution speed of SVM is improved by Sequential Minimal Optimization (SMO), decomposed
Support Vector Machine (DSVM) and Core Vector Machine (CVM) [43]-[50]. In [51], SVM
handles the online classification problems.

4.2 Independent Component Analysis

Independent Component Analysis (ICA) is an essential unsupervised method to extract the
independent features from the high dimensional data. The main goal of ICA is to recover the
independent data given from the observation that are linearly dependent on another data. ICA
finds the correlation among the data, and decorrelates the data by maximizing or minimizing the
contrast information. It has been applied in many applications in Image Processing, Signal
Processing, etc,. ICA is mostly related to the Blind Source Separation (BSS) method. In this
method, the source represents the independent components; blind represents the little assumption
on the mixed high dimensional data. ICA focuses on to find the independency among the data.

Let consider the X=[x1….xm] be the m-dimensional input vector with Non-Gaussian distribution.
ICA mainly focus onto maximize the non linearity by using non-linear transformation function.



Machine Learning and Applications: An International Journal (MLAIJ) Vol.1, No.1, September 2014

71

(x1,….,xm)T = f (s1….,sk)
T (16 )

Where, f is a real valued m-dimensional vector function. ICA involves to minimize the linearity
among the data points and finds the covariance with the new independent data vectors. So that
maximum independency is achieved.

In [53], A. Hyvarinen uses tanh non-linearity function to maximize the non-linearity among the
data points. It involves finding the orthogonal matrix of the original data matrix and used Batch
Covariance Algorithm to find the variance among the data points. Minimizing the dependency
among the data provides the stronger optimization than the uncorrelated methods like PCA [33].
The main problem of ICA is to find the independent components that lead to high computational
complexity. ICA features are identified by using several approaches like Infomax [52],
Negentropy maximization [53], etc. [52] Maximizes the entropy of the data of the ICA
framework, which are non linearly transformed. Negentropy maximization [53] extracts feature
which has minimum dependence. Fast ICA is proposed in [54] to speed up the process of finding
the independent components.

Generally, Independent Component Analysis (ICA) is extended into supervised technique for
feature extraction by Conditional Independent Component Analysis (CICA)[55]. The Kullback-
Leibler divergence between the joint and the product of marginal conditional distribution of the
output is minimized and the CICA uses dual objective function which shows the information
bottleneck method [56], which extracts the redundant data that preserve the class information
maximally. Independent discriminant Component Analysis (IDCA)[57] and bilinear Discriminant
Component Analysis(BDCA) [58] are some other approaches related to CICA. Discriminative
ICA (dICA)[59] is a semi supervised approach proposed to improve the performance with other
techniques such as PCA,LDA, ICA.

4.3 Multi Dimensional Scaling (MDS)

Multi Dimensional Scaling (MDS) is the collection of non-linear techniques to transform the high
dimensional data into low dimensional data. The error between the pair wise distance between the
low dimensional data and high dimensional data is expressed in stress function [60]. The
examples of stress functions are raw stress function and Sommon cost function.

Let (xi, xj) and (yi, yj) be the high dimensional data points and low dimensional data points
respectively. The raw stress function is defined by,

And the Sommon Cost function is defined by,

Where, ||xi-xj|| denotes the Euclidean distance between the high dimensional data points and ||yi-
yj|| denotes the Euclidean distance between the low dimensional data points.
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Minimizing the stress function reduces the error which leads to improve the performance of the
system. Eigen decomposition of a pair wise distance similarity matrix, Conjugate gradient
method, Pseudo- Newton method are some of the methods to reduce the stress function[61].MDS
is used in many applications like fMRI Analysis[62], molecular modeling[63],etc.,

5. EXPERIMENTAL RESULTS

Generally, most of the real world data are in the form of non linear. For this Analysis, we choose
three high dimensional data like Insurance Benchmark, Spam and cancer datasets from UCI
repository. Here Insurance dataset contains 85 attributes and 750 records, Spam contains 57
attributes and 4600 records and cancer dataset contains 57 attributes and 26 instances for the
analysis. Analyzing and computing all these high dimensional data is very difficult and not all
these variables affect the result of the classification. So, we tried to reduce the dimensionality by
removing the irrelevant data for this analysis.

Though removing of attributes from the data takes less execution time, there may be a loss of data
which may affect the accuracy of the classification. In this project, the dimensionality of the data
has been reduced and the performance is measured in terms of both Accuracy and Elapsed time
and the code was implemented by using Matlab.

5.1 Result of SVM Classification

For this paper we use these high dimensional data on SVM Classification and the classification
Accuracy and Elapsed time are measured and the results are shown in the table 5.1

DATASET ACCURACY ELAPSED
TIME (in sec)

Insurance
Benchmark

39.4667 1.6659

Spam 35.5217 0.2643

Cancer 76.9231 1.2634

Table 5.1 Result of SVM Classification

To show the effectiveness of the dimensionality reduction, the high dimensional data is processed
by the Linear Discriminant Analysis. From this analysis 85, 58, and 57 variables are transformed
into 31, 30 and 38 on insurance, spam and cancer datasets respectively. Next these high
dimensional data is process with the Principal Component Analysis that produce the better
Results than the LDA method by giving 24, 11 and 7 respectively. ICA is performed on the high
dimensional data which gives the results as 15, 2, and 7 for Insurance, spam and cancer datasets
respectively which is better compared to other techniques and the dimensions of low dimensional
data are shown in table 5.2
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DATASET

No. of

variables

in HDD

Linear

components

Principal

Components

Independent

Components

Insurance
Benchmark

85 31 15 15

Spam 58 30 2 2

Cancer 57 38 15 7

Table 5.2 Dimensions of low dimensional data

The low dimensional data from the above techniques are again processed on the SVM
classification and the Performance of the SVM classification calculated which proves the
performance of SVM with low dimensional data is better than that of the SVM with high
dimensional data and the result is shown in table 5.3.

DATASETS

LDA PCA ICA

Dimension Accuracy Time Dimension Accuracy Time Dimension Accuracy Time

Insurance
(85)

24 52 1.54s 15 49.86 1.21s 15 58.93 1.65

Spam (57) 11 72.82 5.05s 2 70.08 1.14s 2 74.43 1.21

Cancer (58) 7 38.46 0.01s 15 61.53 0.09s 7 69.23 0.009

Table 5.3 Performance Analysis

CONCLUSION

In this paper, we present the various techniques to reduce the dimensions of the original data.
From the survey, it comes to know that, Linear Discriminant Analysis (LDA) and Principal
Component Analysis (PCA) are the powerful techniques to handle the linear types of data and
Independent Component Analysis (ICA), Support Vector Machine (SVM) and Multi Dimensional
Scaling (MDS) are effectively worked on non linear data. But most of the real world data are in
non linear form. So, the survey is concluded with the non linear techniques are efficient compared
with the linear techniques.
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