
International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

DOI : 10.5121/ijwsc.2011.2305 57

PXpathV: Preventing XPath Injection
Vulnerabilities in Web Applications

V.Shanmughaneethi

Computer Centre, National Institute of Technical Teachers Training and Research

(NITTTR), Govt. of India Taramani, Chennai, India

shanneethi@gmail.com

R.Ravichandran

Resource Centre, National Institute of Technical Teachers Training and Research

(NITTTR), Govt. of India Taramani, Chennai, India

keelairavi@hotmail.com

S.Swamynathan

Dept. IST, CEG, Anna University Chennai, India

swamyns@annauniv.edu

Abstract

Generally, most Web applications use relational databases to store and retrieve information. But, the
growing acceptance of XML technologies for documents it is logical that security should be integrated with
XML solutions. In a web application, an improper user inputs is a main cause for a wide variety of attacks.
XML Path or XPath language is used for querying information from the nodes of an XML document. XPath
Injection is an attack technique, much like SQL injection, exists when a malicious user can insert arbitrary
XPath code into form fields and URL query parameters in order to inject this code directly into the XPath
query evaluation engine. Through the crafted input a malicious user would bypass authentication or to
access restricted data from the XML data source.Hence, we proposed an approach to detect XPath
injection attack in XML databases at runtime. Our approach intercept XPath expression and parse the
XQuery expression to find the inputs to be placed in the expression. The identified inputs are used to design
an XML file and it would be validated through a schema.

Keywords:

XPath Injection, SQL Injection, XQuery, Web Application Security, XSLT, XML Schema, XML Security,
Command Injection

1. Introduction

Web applications have become one of the most important communication channels between
various kinds of service providers and clients. This applications are dynamic extension of a Web
server as presentation-oriented and service-oriented. In a presentation oriented web application
generates dynamic Web pages containing various types of markup language (HTML, XML, and

mailto:shanneethi@gmail.com
mailto:keelairavi@hotmail.com
mailto:swamyns@annauniv.edu

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

58

so on) in response to requests. A service-oriented Web application implements the endpoint of a
fine-grained Web service. Service-oriented Web applications are often invoked by presentation-
oriented applications. This service-oriented applications offering wide range of services, such as
on-line stores, e-commerce, and social network services, etc. To meet seamless communication
environment, security has always been vitally important in the information world to ensure the
integrity of content and transactions, to maintain privacy and confidentiality, and to make sure
information is used appropriately. So the the increased importance of Web applications, the
negative impact of security flaws in such applications has grown as well. The applications may
be designed with the hypothesis that the users in the web applications are legitimate and the
inputs provided by them are valid for the application. Moreover, the backend database in the
database server is designed to handle the query as a trusted query and act on it. But, the malicious
users take the advantage on the assumptions and hypothesis and try to steal information or make
vulnerable attacks on the data. So, increased deployment of such web applications there has been
an in equal number of attacks targeting those applications. Although application-level firewalls
offer immediate assurance of Web application security, but they have drawbacks like requires
careful configuration, and they only for a Web application security assessment framework that
offers black-boxed testing for identifying Web application vulnerabilities. Among many types of
vulnerabilities, command injection vulnerability is quite common and it has become one of the
most serious security threats in web applications. A command injection is an exploit of a system
weakness to gain access to the system for the purpose of executing malicious code, harvesting
user data, and engaging in other activities [1]. In the category of command injection, an XPath
Injection attacks may occur when a web site requires user-supplied information to construct an
XQuery for XML data. XQuery is a powerful language designed for processing XML data.

2.0 Related Work:

Researchers have started to contribute in the area of XPath injection and its possible liabilities.
Amit Kelvin [2] illustrates the nature of XPath injection attacks and its consequences. The paper
presents the possible mechanisms of attacking an XPath query with different samples for each
type. Jaime Blasco [3] provides a brief introduction to Xpath Injection Techniques and also
compares it with another similar attack namely, SQL injection. The paper also portrays various
scenarios where possible attacks can completely retrieve the XML document for a given attack
query. It also highlights the un-availability of access rights for these XML databases which can be
major reason for attack unlike normal RDBMS. Jinghua and Sven [7] describe the satisfiablility
test for a XPath query. This defines the structure of the query and the possible optimization of the
query for obtaining a desired result set. Dimitris et al, [4] described a novel way for detecting
XPath injections. In this paper the location specific identifiers where used to validate the
executable XPath code. These identifiers reflect the call sites within the application. The major
disadvantage was any source code change required a training mode for re-assigning the
identifiers. Nuno Antunes et al, [5] describe the detection of XPath injection in web services
using AOP. They initially, instrumented the web service to intercept all XPath commands
executed, and then they generate legitimate workload based on the web service operations
through that learn XPath queries and then generated an attack load and finally detect vulnerability
by comparison of both set. Gabriel et al [6] presents a framework named AProSec, which is a
security aspect for detecting SQL injections and Cross Scripting Site (XSS).The authors define
clearly the need for AOP for providing security to web applications.

3.0 XPath Injection

XPath is a standard language used to refer to parts of an XML document. It can be used directly
by an application to query an XML document. Today, many organizations have adopted XML as
a data format for everything from configuration files to remote procedure calls. So, like any other
application or technology that allows outside user submission data, XML applications can be

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

59

susceptible to code injection attacks, specifically XPath injection attacks. XPath Injection is an
attack technique used to exploit applications that construct XPath (XML Path Language) queries
from user-supplied input to query or navigate XML documents. It can be used directly by an
application to query an XML document, as part of a larger operation such as applying an XSLT
transformation to an XML document, or applying an XQuery to an XML document. The syntax
of XPath bears some resemblance to an SQL query, and indeed, it is possible to form SQL-like
queries on an XML document using XPath.

3.1 XPath Injection Consequences

In XPath injection, when a malicious user can insert arbitrary XPath code into the form fields and
URL query parameters in order to inject this code directly into the XPath query parser engine.
Doing so would allow a malicious user to bypass authentication (if an XML-based authentication
system is used) or to access restricted data from the XML data source. Consider an application
that uses XML database to authenticate its users. The application retrieves the user id and
password from a request and forms an XPath expression to query the database. An attacker can
successfully bypass authentication and login without valid credentials through XPath injection.
Improper validation of user-controlled input and use of a non-parameterized XPath expression
enable the attacker to injection an XPath expression that causes authentication bypass. For
example, consider the xml document

The above XML document stores information about the registered user for the particular web
application. To perform authentication for the user, a web application receives username and
password from the user.

The user supplied username and password placed into the appropriate place of the XQuery to

perform user validation. The following XQuery is generated in server and it would be sent to xml

document for user validation.

If the user name and password presented in the XML data then this will return true to the web
page otherwise it will return false. This is a simple authentication procedure in web application
which uses XML data as back-end service. If the attacker can craft the input, such way that,

XPathExpression ex = xpath.compile("//Login/user[username/ text() = '"+loginID+"'and
passwd/text()='"+password+"']");

("//Login/user[username/text()=’tamil' and passwd/text()=’chennai']"

<?xml version="1.0"?>
<Login xmlns:xsi=http://www.w3.org/2001/XMLSchema-
instance
xsi: noNamespaceSchemaLocation = "authenticate.xsd">

<user>
<uname>computer</username>
<passwd>centre</passwd>

</user>
<user>

<uname>asia</username>
<passwd>india</passwd>

</user>
<user>

<uname>tamil</username>
<passwd>chenai</passwd>

</user>
</Login>

http://www.w3.org/2001/XMLSchema-

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

60

always the user becomes an authenticated user for a web site by XPath injection. For example the
above XQuery can be crafted as the following Xquery

Here, the password data is always true in this XQuery. So that, whenever such password is given
to the password filed, the user authentication would be treated as a purely authenticated user for
the web application. Although this attack grants the attacker access to the application, it does not
necessarily grant them access as the most privileged account. In some cases, an attacker can
further manipulate the XPath query to force the server to return various parts of the document.
Hence, this XPath injection also leads to extracting document structure and modify the document
information in addition to escalate privileges.

3.1 Preventive Measures for XPath injection

XPath injection can be prevented in the same way as SQL injection since XPath injection attacks
are much like SQL injection attacks. The common ways to prevent XPath Injections are Strong
input validation, Use of parameterized XPath queries and Use of custom error. So, the developer
has to ensure that the application does accept only legitimate input and another way is use
parameterized queries to prevent XPATH injection. Even then, these methods are not consistent
to prevent XPath injection in web applications[11]. Hence, we proposed a new approach for
effective detection of XPath injection vulnerabilities by schema based validation of the user input
that are provided to the web applications.

4.0 Proposed system approach

The proposed system involves a new approach for detecting XPath injection vulnerabilities in
web applications shown in figure.1. This approach integrates with Xpath expression scanner, that
plays a major role in the detection of XPath injection vulnerabilities by intercepting XQuery
which framed by the input parameters.

Figure 1: Proposed System Architecture for XPath Detection

let $str := doc("login.xml")/Login/user
return if ($str/username='asia' and $str/passwd=''or'1'='1') then

true else false

Client Internet
Web

Server

Application

Server Xml

Data

store

Xpath

Expression

Scanner

Xpath

Expression

Analyse

module

Xpath

Expression

Validation

XML

Doc

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

61

The above architecture describes the XPath injection detection technique implemented in a tool
named XPath Injection Vulnerability Detector (PXpathV). When the user provides the required
inputs into the web forms, they are then placed into the XQuery in an appropriate place of the
application. Finally, the complete XQuery string is generated for processing data transaction on
XML databases. The generated (or framed) XQuery string may cause XPath injection in a web
application. This attack is possible, only when the user inputs are passed directly to the web

application. Sometime, illegitimate inputs may leads to bypass authentication or retrieve
privileged XML data. The inputs that lead to XPath injection have to be prevented to run on the
XML data. Moreover, the XPath injection is not restricted only by the web form input. It is also
possible by HTTP header or by Cookie. But at end, all the inputs would be placed into the
XQuery for run on XML data. Hence, our approach analyzes the XQuery for identifying the
vulnerabilities and preventing XPath injection.

4.1 Xpath Expression scanner

Query interception involves intercepting the Xpath expression that is generated at run time. This
expression that is generated is executed on the XML data store and results are obtained. In order
to detect injection vulnerabilities, this dynamically generated expression has to be intercepted.
Also intercepting the run time query can be used to detect any type of injection, since the sink
points for causing the injections are these queries that are generated at run time. Expression
scanner is the best technique in the case of intercepting functions without affecting the business
logic. Using expression scanner, these run time generated queries can be intercepted before they
are executed in the database server.

4.2 Xpath Expression Analyze module

In this module the intercepted XQuery is analyzed and the input parameters are obtained in order
to detect possible injections. The analyzer basically tokenizes the query and retrieves the input
parameter. Different types of queries can also be tokenized in order user inputs. After obtaining
the input parameters the detection of possible vulnerability should be done. This process needs to
be generic and effective in order to detect any type of possible injection. Though several methods
are available, a powerful technique is to use a XML (eXtensible Mark-up Language) file which
would be validated by our proposed schema. This file is a well-formed document, platform
indepented and provides lesser over head for validation. This module standardizes the detection
process by using a simpler and effective way of generating a XML file for user provided inputs.
This approach would help in decreasing the false positive rate because the identifying the
vulnerabilities becomes more effective. This module is also a part of the AOP layer since this
XML file is to be generated for whatever user input that is provided to the web service that
connects to a XML database. For example consider the following query

After intercepting the query, the analyzer obtains the inputs from the query and stores them in a
XML document. This document is then further used for validation in order to detect
vulnerabilities.

Figure 2: Sample XML file for the above expression

("//Login/user[username/text()=’asia' and passwd/text()=’any’ or ‘1’=’1']")

<? xml version=”1.0” encoding= “utf-a”?>

<xper>

<in>asia</in>

<in> any' or '1' ='1</in>

<xper>

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

62

Figure 2 illustrates a sample XML file that would be generated after the Xquery expression is
intercepted. This XML file consists of only the input parameters that were given as user inputs
from the client application. Further this can be used for validation in order to find if any injection
is present.
4.3 XQuery Validation

The validation process is to identify the injected parameters with the help of our schema[13] and
the generated XML file. Though several validation methods are possible, a XML schema is the
most powerful and effective technique. The XML schema can be used to define the structure of
the XML document and even provide various constraints for it. The schema is a generalized meta
data which define structure and type of user input . Hence in our approach, a well defined XML
schema is defined for detecting possible injection characters in the input values provided by the
user.

The validation process identifies any possible injections in the input values. In case if the
validation fails, the execution of the intended operation is stopped and a log file is generated
indicating that an injection has occurred. If the validation process is passed, then the operation is
allowed to execute and the desired results are obtained. The schema is vital in detecting
injections in the inputs. Inputs can be of any type and hence the schema restricts values for each
data type thereby providing an effective validation process.

The XML file generated from the previous module that consists of the user inputs is now
validated with a well defined XML schema. If the validation passes then injection is not present
in the input parameters, in case of failure the injection is logged in a log file. The log file clearly
indicates the attack input mismatch with the schema thereby avoiding the injection to take place.

5.0 Results & Discussions
To evaluate our proposed approach, we have analyzed the performance of the developed tool
based on the response time with our PXpathV based approach as well as without our approach.
The response time in real web environment is collected and tabulated is shown in table1.

TABLE -1 RESPONSE TIME ASSESSMENT

No. of
Test

Response Time
Without PXpathV

module (ms)

Response Time With
PXpathV module (ms)

Response Time
Difference (ms)

1 96.4 127.65 31.25

2 104.3 149.85 45.55

3 152.45 193.8 41.35

4 97.5 115.8 18.3

5 128.7 179.9 51.2

6 158.3 204.05 45.75

7 87.4 138.95 51.55

8 97.2 161.7 64.5

9 113.7 160.1 46.4

10 102.8 139.9 37.1

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

63

The response time difference with our proposed approach is very minimal compared to the
consequences of Xpath injection. The time delay could be compromised when to compare the
threat. The following graph represents pictorial representation of response time assessment.
The following graph in figure 3 shows the comparison of the response time, between the
proposed PXpathV tool and without it. As shown in the graph, the PXpathV does not bring a
huge difference in the response time. In the following graph X – Axis represents Number of Test
and Y – Axis represents Response Time

Figure 3: Sample log file generated for different attack inputs

Since the PXpathV is a modular approach, it can be very widely used in the case of security,
logging, etc. When compared to other approach the over head was found to better.

6.0 Conclusion and Future Work

In this paper we have proposed a new approach for detecting XPath injection vulnerabilities. This
based approach is a very effective method for detecting vulnerabilities. Comparing with previous
approaches, there can be a significant reduction in overhead and also less number of false
positives can be achieved. The main advantage of this approach is that our scanning module
provides modularity as well as avoids the need for changes in the source code of the application
and it wont affect the business login of the application. We have analyzed the approach using our
tool PXpathV, with different web applications and found that the response time is limited. In
future, we intend to analyze other forms of web attacks like SQL injection, Cross-site scripting
and LDAP injection.

References

[1]. Zhendong Su, Gary Wassermann, “The Essence of Command Injection Attacks in Web Applications”,
Proceedings of the thirty third ACM symposium on Principles of Programming Languages,South
Carolina,2006,pp. 372-382.
[2].Amit Kelvin, “Blind XPath Injection”, a whitepaper from Watchfire, Director of Security and Research,
Sanctum, 2005.
[3]. Jaime Blasco, “Introduction to XPath Injection Techniques”, Hakin9, Conference on IT Underground,

Czech Republic, 2007, pp.no 23-31.

[4]. Dimitris Mitropoulos, Vassilios Karakoidas, and Diomidis Spinellis, “Fortifying Applications against

XPath Injection Attacks”, MCIS 2009: 4th Mediterranean Conference on Information Systems, 2009,

Athens, pp.no 1169–1179.

[5]. Nuno Antunes, Nuno Laranjeiro, Marco Vieira, Henrique Madeira, “ Effective Detection

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

Response Time Without
PXpathV module (ms)
Response Time With PXpathV
module (ms)

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

64

of SQL/XPath Injection Vulnerabilities in Web Services”, IEEE International Conference on

Services Computing,Portugal, 2009, pp. 260-267.

[6].Gabriel Hermosillo, Roberto Gomez, Lionel Seinturier, Laurence Duchien , “Using Aspect

Programming to Secure Web Applications”, Journal of Software,Vol. 6, No. 2,Vienna,2008,pp. 53-63.

[7].Jinghua Groppe,Sven Groppe, “ Filtering unsatisfiable XPath queries”, Journal Data & Knowledge

Engineering , Vol.64 No. 1,Amsterdam, 2008,pp.no 134-169.

[8] XML Path Language (XPath) version 2.0, http://www.w3.org/TR/XPath

[9].OWASP Guide, http://www.owasp.org/index.php/Blind_XPath_Injection

[10] Vieira, M., Antunes, N., Madeira, H., “Using Web Security Scanners to Detect Vulnerabilities in Web

Services”, Intl.Conf. on Dependable Systems and Networks, Lisbon, 2009.

[11] Laranjeiro, N., Vieira, M., Madeira, H., “Protecting Database Centric Web Services against

SQL/XPath Injection Attacks”, DEXA 2009, Linz, Austria, September 2009.

[12] Wu, R., Hisada, H. and Ranaweera, R., ‘‘Static analysis of web security in generic syntax format’’,

The 2009 International Conference on Internet Computing (ICOMP 2009), Las Vegas, NV, pp. 58-63.

[13] Velu Shanmughaneethi, Ra. Yagna Pravin and S. Swamynathan “XIVD: Runtime Detection of XPath

Injection Vulnerabilities in XML Databases through Aspect Oriented Programming” Communications in

Computer and Information Science, 1, Volume 198, Advances in Computing and Information Technology

(ACITY 2011), Part 1, Pages 192-201

http://www.w3.org/TR/XPath
http://www.owasp.org/index.php/

