
������������	
������	

�
�������
������
��	���
�����
����	
����

10.5121/iju.2010.1201 1

���������	�
������
��
���������� ����
��
�

������������������������

Lei Zhang1, Alvin S. Lim2, Hui Song1, and Xinliang Zheng1

1Dept. of Computer Science, Frostburg State University, Maryland, USA
lzhang@frostburg.edu, hsong@frostburg.edu, xzheng@frostburg.edu

2Dept. of Computer Science, Auburn University, Alabama, USA
lim@eng.auburn.edu

ABSTRACT
Advances in hardware technology and wireless communication have enabled the deployment of large-
scale sensor networks, where thousands to millions of self-powered, small and low-cost sensor nodes are
distributed over a vast field to obtain sensing data. These sensor nodes are equipped with sensing,
communicating, and data processing units, which allow sensor nodes to collect, exchange, and process
data of the environment. The processing units used in the current generation of sensor nodes are already
powerful enough to perform some complicated algorithms to process sensing data, and they are expected
to be more powerful in the future. Due to these attractive characteristics, wireless sensor networks are
ideal candidates for a wide range of civil applications and military operations. This paper provides an in-
depth study of applying wireless sensor networks to real-world mad-cow disease monitoring and beef
distribution safety system. An extensive survey of the state of the art to design a distributed system for
pervasive computing is conducted. A set of techniques and mechanisms are compared and ranked in the
paper. Then the characteristics for designing this kind of pervasive system are listed; the system
architecture is presented; and an instance of the key mechanisms for monitoring the mad-cow disease and
tracking beef distribution system is presented. This system supports real-time communication and
multitasking scheduling as well.

KEYWORDS
Sensor Networks, Distributed System, Mad-Cow Disease (MCD)

1. INTRODUCTION
Since Mark Weiser described the vision of pervasive computing in his seminal paper [1], a lot
of progress has been achieved in this area. With the advance in MEMS devices and embedded
processors and radio, it will soon be feasible to deploy large-scale sensor networks to perform
distributed microsensing and control of physical environment [2]. For example, Civil engineers
are using motes to monitor building integrity during earthquakes [3]; biologists are planning
mote deployments for habitat monitoring [4], [5]; administrators of large computer clusters are
using motes to monitor the temperature and power usage in their data centers.

Recently, people are considering using sensors to monitor and track the mad-cow disease. The
fast spread of mad-cow disease has caused severe results in the past. People got contaminated
and economics was also affected by this event. To avoid disease spread out and track the
distribution of beef, recording sensors have been put in different processing procedures [6]. The
smart sensors and actuators are equipped with low-power processors and short-range radio

������������	
������	

�
�������
������
��	���
�����
����	
����

 2

transceivers. They will automatically form multi-hop ad hoc networks to communicate with
other sensors and remote base stations as well.

Radio Frequency Identification (RFID) (Figure 1) has been used by PM Beef on cow/calf farms,
feedlots and PM’s harvest and fabrication facility in Windam, MN [7]. However, those RFIDs
act only as identification: They do not group into sensor networks.

Figure 1. RFID tags

This paper presents a specific case of distributed systems that can be used in a mad cow disease
monitoring and tracking system (MCDMS). Different from the RFID used by PM Beef, we
assume that we have sensors capable of detecting mad cow disease and other sensors that can be
used to track the cattle’s body parameters, such as temperature, heart beating rate, blood
pressure, etc. These sensors can be attached to wireless devices that are clipped on the ears of
cows. Furthermore, we also study general solutions to develop effective sensor network
architecture in the meadow domain.

This paper presents a specific case of distributed systems that can be used in a mad cow disease
monitoring and tracking system (MCDMS). Different from the RFID used by PM Beef, we
assume that we have sensors capable of detecting mad cow disease and other sensors that can be
used to track the cattle’s body parameters, such as temperature, heart beating rate, blood
pressure, etc. These sensors can be attached to wireless devices that are clipped on the ears of
cows. Furthermore, we also study general solutions to develop effective sensor network
architecture in the meadow domain.

The rest of the paper is organized as follows. The related work is discussed in Section 2. Section
3 presents an extensive survey on the existing techniques and mechanisms of pervasive
computing architecture. In Section 4, we first analyze the characteristics of the disease
monitoring and tracking system and then provide the key mechanisms in design of the system.
Conclusion remarks are discussed in Section 5.

2. RELATED WORK
Sensor networks are ideal candidates for a wide range of applications and will be ubiquitous in
the near future, serving as the bridge between humans and the physical world. They are
expected to contribute significantly to pervasive computing and make our daily life more
comfortable and enjoyable.

Sensor network was first proposed for military applications such as battlefield surveillance [8]
and military situation awareness [9]. In another paper [10], Srisathapornphat et al. propose to
use sensor networks to sense intruders on bases, to detect enemy units movements on land or
sea, to detect chemical (or biological) threats, and to offer logistics in urban warfare. Recently,

������������	
������	

�
�������
������
��	���
�����
����	
����

 3

researchers propose to use sensor network to form a smart-landmine network which can destroy
the intruding targets using the minimum-cost pre-deployed mines [11].

The research on sensor network then quickly expands to civil applications, in which sensors are
deployed to sense and collect data. Under this category, the existing applications can be
classified into habitat monitoring, environment observation and forecasting, health, structure
monitoring, and other commercial applications [12].

Cerpa et al. [13] describe habitat monitoring as a motivating application for wireless sensor
network and introduce initial system building blocks designed to support such a system. They
propose a tiered architecture and use a frisbee model to optimize energy-efficiency so as to
prolong the lifetime of the network. In August 2002, researchers from UCB/Intel Research
Laboratory deployed a tiered sensor network (using Mica motes) on Great Duck Island, Maine,
to monitor the behavior of storm petrel [14]. Other research issues of using sensor network for
habitat monitoring discussed in several other papers [15], [16], [17].

CORIE [18] is a pilot environmental observation and forecasting system (EOFS) for the
Columbia River, Oregon. Its observation network, a real-time sensor network, includes an
extensive array of 13 stationary sensor nodes in the Columbia River estuary and one mobile
sensor station cruising the river several times over the years. Sensor data are collected and then
transmitted via wireless link toward onshore master stations, where they are further forwarded
to a data management system and finally fed into advanced numerical models. The acquired
knowledge is transformed into data products to provide objective insights on spatial and
temporal variability of the river, to understand the river-dominated estuaries and plumes, and to
provide powerful planning and analysis tools for policy making for the region’s natural resource
management and regulation authorities.

In the area of health care, sensor network can be used for monitoring human physiciological
data remotely, tracking and monitoring of doctors, patients, and drug administrator inside a
hospital [19]. Milenkovic et al. [20] present a prototype sensor network for personal health
monitoring that utilizes the off-the-shelf 802.15.4 compliant sensor nodes and custom-built
motion and heart activity sensors. In such application, sensor network is promising in
revolutionizing health care by allowing inexpensive, non-invasive, continuous, ambulatory
health monitoring with almost real-time updates of medical records via the Internet.

Sensor network has significant commercial potential in structure monitoring, to collect and
analyze the structural response to ambient or forced excitation. A first generation of sensor
networks for structural monitoring is presented by Xu et al. [21], called Wisden, which is a data
acquisition system that collect data and a single node for centralized processing. It mimics wired
data acquisition systems and incorporates reliable data transport, time synchronization, and
compression algorithms.

In his master thesis, Kim [22] design, implement, and test a wireless sensor network (targeting a
deployment on the Golden Gate Bridge) to monitor the ambient vibration of a structure to
analyze the collected data to determine the health status of the structure. Deployment at a
footbridge showed the system is operating successfully, and the collected data matched
theoretical expectation.

Li and Liu [23] propose a structure-aware self-adaptive wireless sensor network system to
monitor the environment in coal mines, which can detect structure variation caused by
underground collapse rapidly. The collapse holes can be located and outlined, and the detection
accuracy is bounded with such a system. They deployed a prototype system with 27 Mica2
motes and measured the system error, detection latency, packet loss rate, and network

������������	
������	

�
�������
������
��	���
�����
����	
����

 4

bandwidth. Based on the data collected in experiments, they also conducted a large-scale
simulation to evaluate the system scalability and reliability.

Sensor network can also be used in many other areas, such as public safety [24], [25] (sensing
and location determination at disaster sites), coordinated vehicle tracking [26], vehicle theft
detection and tracking [27], smart badges and tags [24], [25], monitoring hazardous chemical
levels and fires [24], managing inventory, monitoring product quality [28], [29], and many
others.

As pointed out by Akyildiz et al. [30], The characteristics of sensor networks, such as low cost,
easy deployment, flexibility, fault tolerance, and high sensing fidelity, will continue motivating
and creating many new and exciting applications for remote sensing. In the future, this wide
range of applications will make sensor networks an integral part of our lives.

3. SYSTEM ARCHITECTURE FOR MAD COW DISEASE
3.1. Characteristics of Mad Cow Disease Monitoring and Tracking System
As described in Section 1, the major functions of our mad cow disease monitoring and tracking
system are twofold. One part is to track each cattle, from its birth to slaughtering house, to
detect mad cow disease. The other part, deployed on transportation trucks and in the beef
process, is to track the beef until beef is put on the grocery shelf. The tiny sensor device is able
to detect virus, read the current level of body temperature, measure the heart-beating rate and
blood pressure for each cow. Our system is to provide disease detection and safety processing
monitoring. There are different kinds of events and sorts of queries, which can be divided into
categories:

1) Urgent events that only include mad cow disease detection. Once the urgent events are
observed, the sensor network should be able to report them to the closest base stations
and the control centers. These events may not require any aggregation and must be
forwarded by each intermediate node.

2) Routing observation events that include temperature measurement, heart beating
counting, blood-pressure recording and other routine tracking parameter of the cow.
Since each node on each cow can generate an amount of such information, sending all
data to the base stations and processing the low-level observation externally would be
very expensive in terms of energy and bandwidth consumption. It is improved in our
system through using in-network processing to produce high-level events. This may
involve a combination of local techniques (e.g. exchanging data with neighbor nodes)
and global techniques (e.g. comparing temperature readings against the average reading
in the network).

In addition to the various types of events in the system, there are also queries initialized by users
to retrieve data in the networks. The queries generated can also be divided into two categories:

1) Group data query which looks like “What’s the average temperature of cows in barn 1”
or “What’s the average temperature of cows in the field.” If the event information is
stored locally, then queries must be flooded to all nodes. But if event information is
stored using data-centric storage, the query can be sent to the sensor node associated
with that event.

������������	
������	

�
�������
������
��	���
�����
����	
����

 5

2) Disseminated data query which may be generated when one specific cow needs to be
monitored. Disseminated data query is rare except when emergency happens, but it is
required to be flooded into the whole sensor network.

Following the introduced characteristics above, we design our system architecture in the next
section.

3.2. System Architecture Design
The monitoring system that is shown in Figure 2 has a tiered architecture. Each sensor can only
communicate with its neighbors and it can extend the access path to a base station using directed
diffusion routing protocol.

Wireless Link

Local Monitoring Network

Internet

Server

Sensor

Database

Satelite

Sensor

Sensor

Sensor

Senor

BaseStation

BaseStation

Sensor5

Sensor3

Sensor4

Sensor6

Senor2Senor3

BaseStation

Senor22

Senor23

Senor24

Senor25

Gateway

Figure 2. System architecture of mad cow disease monitoring and tracking system

Base stations can be devices that have higher processing capability and more energy source,
such as PDAs. They are installed in the barn, stones or trees in the grass field, in the
transportation trucks and slaughtering houses. All base stations, grouped into a local monitoring
network, can forward information to a central base station which connects with the Internet and
can save the data information or forward them to the control center. When the base station
receives the integrated data information from the sensor network, it either forwards the
information to the central base station (marked as a gateway in Figure 2) or stores the
information to wait for more information to forward. While for urgent data, it forwards
immediately.

A database server is connected to the Internet, which provides statistical data for the control
server. Queries toward to the sensor networks are transmitted to the local monitoring network,
each base station will accept it. But one or some of them may broadcast the query in their sensor
networks using directed diffusion protocol.

������������	
������	

�
�������
������
��	���
�����
����	
����

 6

3.3. Distributed System
The distributed system is dedicated to the sensor network that includes the base station the
sensors connected to. The system view is shown in Figure 3 that is a tiered architecture. The
distributed system falls between sensor and network layer and application layer. It is able to
provide API for up-layer applications. The lowest level consists of the sensor nodes that
perform general purpose computing and networking, in addition to application-specific sensing.

Application

Distributed Operating System

Sensor and Network Layer

Figure 3. System architecture overview

Figure 4 illustrates the designed system which includes six components: a task scheduler,
concurrency control, power management, communication and invocation mechanism, and
resource discovery and database management.

The task scheduler provides a priority queue with two levels of priorities. Urgent tasks such as
virus detection, abnormal temperature and heart rate are assigned a higher priority. The higher
priority can preempt the lower priority tasks. This task scheduler provides real-time
communications.

The concurrency control is the same as TinyOS [31] that task-level concurrency is provided.
This concurrency provides fast switching which helps to save energy.

The power management adopted idle listening with periodic listening. The lower level sensors
can be set to power save mode to only response to incoming events. And some sensors can be
set to power off for a short of period.

Resource discovery is used by sensors to discover service from the base station if the sensors are
one hop away from the base station and the neighbor nodes if the node is away from the base
station.

Our system adapts data-centric storage mechanism provided by database management
component. It supports data aggregation in the network. This mechanism decreases the data
information propagation in the network, leveraging the computation and communication
tradeoff.

Invocation &
Communcation

Resource
Discovery

Database
Mangement

Task Scheduler Power
ManagementConcurrency

Figure 4. Distributed system for mad cow disease monitoring and tracking system

������������	
������	

�
�������
������
��	���
�����
����	
����

 7

4. TECHNIQUES AND MECHANISMS
4.1. Task scheduler
Usually, each sensor node is equipped with more than one sensor to support more applications.
For instance, in our mad cow disease monitoring and tracking system, each node can have virus
detection sensor, temperature reading sensor, heart beating counting sensor and blood pressure
testing senor. Every node should be able to send/receive bit information that an antenna is
required. To schedule the tasks triggered by the events or generated in the application layer, the
system has to provide an appropriate task scheduling mechanisms.

Due to the special characteristics of the mad-cow disease system, our multi-hop wireless sensor
network system adapts real-time communication architectures, event-driven OS with priority-
based multitasking, inter-task communication and synchronization. In the real time tracking
system, there are two kinds of events in different locations, normal and abnormal. Abnormal
events are exceptional symptoms of the cows, such as abnormal body temperature, blood
pressure and the heart beating, which are to be processed immediately. Under this emergency
conditions, both deadline-aware and distance-aware in the task scheduling mechanisms should
be concerned. By deadline-aware, we mean that a shorter deadline has a higher priority. Each
deadline is decided by the event urgency. By distance-aware, we mean that a longer distance has
a higher priority. From the fairness point of view, our communication scheduling policies to
deal with the urgent events, have to balance the weight of both time and space.

In order to find a method to implement of this cognizant time and space balance in the real time
architecture of mad-cow disease scheduling system, we conduct wide range of survey. A novel
policy called Velocity Monotonic Scheduling (VMS) proposed by [32], in which packet priority
is decided based on both distance and deadlines is suitable for packet scheduling in our sensor
networks. Based on a notion of packet requested velocity, the scheduling mechanism assigns the
priority to a packet. A packet with a higher requested velocity is assigned a higher priority.
Since this scheduling mechanism assigns the “right” priorities to packets based on their different
deadlines urgencies on the current hop, it improves the number of packets that meet their
deadline. In addition, this mechanism also solves the fairness problem that packets far away
from the base station will tend to have higher priorities when it competes against other packets
that are closer to the destination. Each packet is expected to make its end-to-end deadline if it
can move toward the destination at its requested velocity, which reflects its local urgency. This
mechanism can outperform deadline-based packet scheduling because velocity more accurately
reflects the local urgency at each hop when packets with the same deadline have different
distances to their destinations. In this way, both the weights of time and space in the urgent
events have been balanced.

Each packet is assigned a priority based on its requested velocity and queued at the network
layer when there are multiple outstanding packets. Several options are available for
implementing priority queues.

The approach we apply to the system queue priority is to maintain multiple FIFO queues, each
of which is corresponding to a fixed priority level. Each priority corresponds to a range of
requested velocities. A packet is first mapped to a priority, and then inserted into the FIFO
queue that corresponds to its priority. This approach is more efficient because no ordering needs
to be performed for every incoming packet. The per-packet overhead is logarithmic only in the
number of priority levels, not the number packets. There are other kinds of packet scheduling
schemes, which have their own advantages but don’t fit our system very well.

In TinyOS, the scheduler is power aware: the prototype puts the processor to sleep when the
thread queue is empty, but leaves the peripherals operating, so that any of them can wake up the

������������	
������	

�
�������
������
��	���
�����
����	
����

 8

system. This behavior provides efficient battery usage. Once the queue is empty, another thread
can be scheduled only as a result of an event, thus there is no need for the scheduler to wake up
until a hardware event triggers activity. More aggressive power management is left to the
application. But this FIFO without priority does not support real time communication. It is
small, which needs very small size of RAM.

In [33], Job Mulder et al. considered that the system which provides flexible application
software support should offer at least real time scheduling mechanisms, memory management,
and resource management. PEEROS proposes a new scheduling algorithm – EDFI [34] to
provide more functionality within limited resources. Each task has a deadline or defined priority
and the lowest priority task can use infinite loops. Infinite loops may cause higher energy
consumption. PEEROS is a combination of TinyOS and other multitask system. It is written in
C language that causes the system 10 times bigger than TinyOS, which causes PEEROS
requires big memory support.

4.2. Communications and Invocation
In this section, by analyzing the characteristics of different communication models, we select
one proper communication model from many existing models and exploit it into our system.

Client/Server Model [35]

Traditional Distributed Sensor Networks, using the client/server model, clients send data to the
servers where data processing tasks are carried out. This method shows its advantages in the
way of resources rational utilization by keeping the local sensors as simple as possible and let
the processing elements to do the complicated jobs. Though, this model has its own advantages,
it also introduces some factors which don’t match the requirements of our system. The problems
for Client/Server Model are not scalable, not appropriate for real time communication, can’t
respond to instance load change, lots of energy consumed for transmission.

Agent [36]

To improve the performance of traditional distribute of sensor network, a new method called
computer agent appeared: data stay at the local site, while the integration process is moved to
the data sites. By transmitting the computation engine instead of data, this paradigm offers some
benefits:

Network bandwidth requirement is reduced. Instead of passing large amounts of raw data over
the network through several round trips, only the agent with small size is sent. Generally
speaking, agent is a special kind of software that can be executed autonomously. Once
dispatched, it can migrate from one node to another node, performing data processing
autonomously, while software can typically only be executed when being called upon.

This is especially important for the real-time applications where the communication is through
low-bandwidth wireless connections:

1. Better network scalability. The performance of the network is not affected when the number
of sensor is increased. Agent architectures that support adaptive network load balancing could
do much of a redesign automatically.

2. Extensibility. Mobile agents can be programmed to carry task adaptive fusion processes that
extend the capability of the system.

������������	
������	

�
�������
������
��	���
�����
����	
����

 9

3. Stability. Mobile agents can be sent when the network connection is alive and return results
when the connection is re-established.

Therefore, the performance is not much affected by the reliability of the network.

Though this new approach makes a bigger progress in the traditional distributed
communication, it also increases the overhead to the system. Each sensor should have the ability
to process the data it obtains and the transition of the agents (software) also consumes the
bandwidth and energy of each node. In this way, it doesn’t fit our system very well, because
each sensor in our system should be as simple and energy efficient as possible. We find a more
improved model than agent, Active Message in [37].

Active Message [37], [38]

Active Message proposed by [37], [38] is an asynchronous communication mechanism intended
to expose the full hardware flexibility and performance of modern interconnection networks. It
has the ability to overlap communication and computation and reduction communication
overhead at the same time. It minimizes the software overhead in message passing nodes and
utilizes the full capability of the hardware. The basic idea is each message contains at its head
the address of a user level handler that is executed on message arrival with the message body as
argument. The role of the handler is to get the message out of the network and into the
computation ongoing on the processing node. The handler must execute and complete quickly.
This corresponds closely to the hardware capabilities in most message passing multiprocessors
where a privileged interrupt handler is executed on message arrival, and represents a useful
restriction on message driven processors. Under Active Messages the network is viewed as a
pipeline operating at a rate determined by the communication overhead and with latency related
to the message length and the network depth. The sender launches the message into the network
and continues computing; the receiver is notified or interrupted on message arrival and runs the
handler. To keep the pipeline full, multiple communication operations can be initiated from a
node, and computation proceeds while the messages travel through the network. To keep the
communication overhead to a minimum, Active Messages are not buffered except as required
for network transport. Much like a traditional pipeline, the sender blocks until the message can
be injected into the network and the handler executes immediately on arrival. Tolerating
communication latency has been raised as a fundamental architectural issue; this is not quite
correct. The real architectural issue is to provide the ability to overlap communication and
computation, which, in turn, requires low overhead asynchronous communication.

Active message is the best way to design dynamic network systems. The efficiency of this
model includes the elimination of buffering beyond network transport requirements, the simple
scheduling of nonsuspensive message handlers, and the arbitrary overlap of computation and
communication. By drawing the distinction between message handlers and the primary
computation, large grains of computation can be enabled by the arrival of multiple messages.

Our system employs the active message mechanism. The sensor clipped on the cow’s ear is to
detect virus and check the temperature and heartbeat of the cow. Once the application layer has
the requirement for communication, the sensor sends its data to the system that groups the data
into active message packets to be sent out. After its neighbors receive the active message, it
behaves according to the header information in the active message, aggregating data, forwarding
data, or dropping the message. Since active message is very small amount of control
information, it doesn’t produce lots of network traffic. In this way, data information can be
processed locally and sending data back to base station only in emergency, so that there isn’t
much transition. The implementation of active message is efficient way to deal with the
problems of energy efficiency and appropriates resource utilization.

������������	
������	

�
�������
������
��	���
�����
����	
����

 10

������������	
������	

�
�������
������
��	���
�����
����	
����

 11

4.3. Resource Discovery
Resource discovery is very important in design a distributed system. Jini’s service discovery
[39] is implemented base on TCP and UPD; it relies on mobile Java codes. It is not clear how
these may be implemented using data-centric, ad-hoc sensor networks with services based on
more generic mobile codes. Service Location Protocol (SLP) [40] is an IETF protocol for
service discovery that is designed solely for IP-based networks. Bluetooth [41] devices have a
range of 10 meter and can directly communicate with at most seven other Bluetooth devices in a
piconet. Bluetooth Service Discovery Protocol (SDP) [42] allows devices to browse and retrieve
services by matching service classes or device attributes. Only services within the range of the
device are returned.

Both Jini’s service discovery and SLP are not suitable for our sensor networks system because
they are base on TCP/UDP or IP networks. Due to distance limitation of Bluetooth, its SDP can
only retrieve service with range of 10 meters. The lookup service provided by [42] may
retrieves services that could be multiple hops from the requesting node.

A system architecture proposed by Lim in [42], which is specialized in sensor network systems
enlightens us on our system design. The whole sensor network infrastructure is divided into
three layers:

1. Application systems. For example, sensor information processing layer and
collaborative signal processing

2. Configurable distributed systems that provide distributed services to the application
systems

3. Sensor networking and physical device layer that routes messages through the ad-hoc
sensor network.

The system adopts data-centric directed diffusion protocol to implement all the distributed
services and for retrieve of data through dynamically changing ad-hoc sensor networks.
Distributed services and applications use the publish/subscribe API provides by directed
diffusion. To enable the ability to reconfigure sensor networking, configuration, and adaptation
functionalities, the sensors may make use of three main classes of distributed services: Lookup
service, composition service, and adaptation service. The lookup service enables new system
and network services to be registered and made available to other sensor nodes. The
composition service allows sensor nodes to be formed as clusters and provides the management
of the cluster. The adaptation service allows sensor nodes and clusters to reconfigure
dynamically to support node mobility, failure ad spontaneous deployment. These servers enable
sensor nodes to form community in ad hoc networks, support self-configuration and adapt to
real-time information changes and events. These servers may be replicated for higher
availability, efficiency and robustness.

In mad cow disease monitoring and tracking system, base stations are installed in the cow barn,
farming field and transporting truck. They have more powerful processing capacity and more
energy sources comparing with the sensor nodes clipped on the cow ears. The base station may
provide all the three services. A cluster of sensors can group to a network connected with one
base station. In directed diffusion, initially, the query will flood in the network. Once the base
station receives data from its networks, it’ll reinforce the shortest path. The base station
manages the mobility of the sensors.

������������	
������	

�
�������
������
��	���
�����
����	
����

 12

4.4 Pervasive database management
The real time tracking information of each cow can be very big. So an appropriate data
management method is necessary for the system. If event information is stored locally then
queries must be flooded to all nodes (unless the user has prior knowledge about the location of
the event). If event information is stored using data-centric storage [43], the query can be sent to
the sensor network nodes associated with that event name.

TinyDB [44] is a query processing system for extracting information from a network of TinyOS
sensors. TinyDB provides a metadata catalog to describe the kinds of sensor readings that are
available in the sensor network. It uses a declarative query language to describe the data. This
makes it easier to write applications, relative independent from the sensor network changes.
TinyDB manages the underlying radio network by tracking neighbors, maintaining routing
tables, and ensuring that every node in the network can efficiently and (relatively) reliably
deliver its data to the user. TinyDB allows multiple queries to be run on the same set of motes at
the same time. Queries can have different sample rates and access different sensor types, and
TinyDB efficiently shares work between queries when possible. To adapt a new sensor node to
the network, downloading the standard TinyDB code to new motes, and TinyDB does the rest.
TinyDB motes share queries with each other: when a mote hears a network message for a query
that it is not yet running, it automatically asks the sender of that data for a copy of the query,
and begins running it. No programming or configuration of the new motes is required beyond
installing TinyDB.

TinyDB is much easier to program and very easy to adapt new motes into the network. But
TinyDB maintains a routing table, and monitors its neighbor to deliver data, which may cost a
lot of energy, but provides robustness. Since in our system, the underlying OS isn’t as same as
TinyOS, it is impossible to apply the whole TinyDB to our system. The basic theoretic frame
work of our system can imitate TinyDB, but the necessary coding modification is needed in real
implementation.

In [45] divided the queries in an ALERT system into three categories:

1. Historical queries, which typically aggregate queries over historical data obtained from
the device network.

2. Snapshot queries that concern the device network at a given point in time.

3. Long-running queries, which concern the device network over a time interval.

We may have all these queries in our mad cow disease monitoring and tracking system. For
instance, we may want to see the temperature curve for a cow in its lifetime. Once a mad cow
disease is detected, we may want to retrieve the current cow body parameters in that area. Also,
we can query every node for body parameters in a certain time interval.

Other data management requirements are less universal across the three categories but yet must
be addressed in order to support a comprehensive ubiquitous computing environment. For
example, the issue of mobility raises a number of issues. First, the fact that the terminals (i.e.
devices) are constantly moving, and often have limited storage capacity means that a ubiquitous
computing system must be able to deliver data to and receive data from different and changing
locations. This results in the need for various kinds of proxy solutions, where users are handed
off from one proxy to another as they move. Protocols must be constructed in such a way as to
be able to tolerate such handoffs without breaking. Mobility also raises the need for intelligent

������������	
������	

�
�������
������
��	���
�����
����	
����

 13

data staging and pre-staging, so that data can be placed close to where the users will be when
they need it (particularly in slow or unreliable communications situations).

In [46] the authors describe two data management projects, one is called DataRecharging
project, which aims to provide data synchronization and dissemination of highly relevant data
for mobile users based on the processing of sophisticated user profiles; the other is called
Telegraph project, which is developing a dynamic dataflow processing engine to efficiently and
adaptively process streams of data from a host of sources ranging from web sources to networks
of sensors.

4.5. Power Management
The fundamental constraint on a networked sensor is its energy consumption, since it may be
either impossible or not feasible to replace its energy source. So to increase its usable lifetime
with restricted energy consumption is very important. In addition to power control designs on
Micro sensors in hardware, cross-layer power management [47] is also a feasible way.

TinyOS manages power management through the interaction of three elements (see Figure 5).
First, each service can be stopped through a call to its StdControl.stop command; components in
charge of hardware peripherals can then switch them to a low-power state. Second, the
HPLPowerManagement component puts the processor into the lowest-power mode compatible
with the current hardware state, which it discovers by examining the processor’s I/O pins and
control registers. Third, the TinyOS timer service can function with the processor mostly in the
extremely low power power-save mode.

TinyDB uses these features to support sensor network deployments that last for months. In this
context, idle listening dominates energy consumption. Low-power listening reduces the cost of
idle listening by increasing the cost of transmission. However, instead of low power listening,
TinyDB uses communication scheduling. Using coarse-grained (millisecond) time
synchronization, TinyDB motes coordinate to all turn on at the same time, sample data, forward
it to the query root, and return to sleep.

Figure 5: The TinyDB power management API. The application calls StdControl.stop to halt the low-
level hardware. HPLPowerManagement.nc sees changes to the hardware status registers, which causes it
to put the CPU into a low-power sleep state [38]

������������	
������	

�
�������
������
��	���
�����
����	
����

 14

To further reduce the average power consumption of the network, low power listening can be
combined with the periodic listening. Running both schemes simultaneously results in listening
at reduced power for only a fraction of the time. But periodic listening may cause query failure
when a query arrives within interval of two listening period.

These techniques attempt to minimize the energy usage at all levels of system operation. Thus,
in addition to minimizing energy usage, the system lifetime can be increased by modifying the
task allotment according to the available energy at network nodes. Some examples of such
techniques can be found in [48, 49, 50, 51] for routing and data gathering. The first requirement
for these techniques is to get the information about energy availability at the nodes. The
remaining energy in a battery can be estimated from its discharge function and measured
voltage supplied [51].

Also, in [52], the author proposed environmental energy harvesting framework (EEHF) toward
energy harvesting to adaptively learn the energy properties of the environment and the renewal
opportunity at each node through local measurements, make the information available in a
succinct form for use in energy aware task assignment such as load balancing, leader elections
for clustering. This is a way to allocate task with the spatial-temporal characteristics of energy
availability.

It is very complex to implement energy harvesting in the network because the harvesting
process itself cost energy, too. Idling listening adopted in TinyOS is a good mechanism to save
energy and manage the power efficiently.

To further reduce the average power consumption of the network, low power listening can be
combined with the periodic listening. Running both schemes simultaneously results in listening
at reduced power for only a fraction of the time. But periodic listening may cause query failure
when a query arrives within interval of two listening period. Virus detecting sensor should
always awake to report abnormal detection, while other sensors can set into sleep mode if no
readings are needed.

5. CONCLUSION
In this paper, we conducted a wide survey of the key mechanisms and techniques used in
distributed sensor networks. We compared several task scheduling from FIFO to multi-task
scheduling mechanism. Three techniques used in communication and invocation are compared.
I pointed out that Active Message is more suitable for sensor network comparing client/server
model and software agent. Lookup service is much better than the Jini, SLP from IETF, and
Bluetooth SDP. In pervasive database management, TinyDB provides a query processing
system for extracting information from a network of TinyOS. Because it relies on TinyOS
supporting, it is not suitable for my system. Idle listening power manage is better than other
mechanism. It is easy to implemented and efficient. Also, we analyzed the characteristics of
mad cow disease monitoring and tracking system, and, finally, provided the system architecture
and an instance of the distributed system.

������������	
������	

�
�������
������
��	���
�����
����	
����

 15

REFERENCES
[1] Satyanarayanan, M. (2001) “Pervasive computing: Vision and challenges”. IEEE Personal

Communication.

[2] Intanagonwiwat, C., Govindan, R., and Estrin, D. (2000) “Directed diffusion: A scalable and
robust communication paradigm for sensor networks”. Proceedings of the Mobicom’00.

[3] Berkeley, U. (2001), “Smart buildings admit their faults”. Website,
http://coe.berkeley.edu/labnotes/1101.smartbuildings.html.

[4] Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., and Anderson, J. (2002) “Wireless sensor
networks for habitat monitoring”. Proceedings of the ACM International Workshop on Wireless
Sensor Networks and Applications.

[5] Cerpa, A., Elson, J., D.Estrin, Girod, L., Hamilton, M., and Zhao, J. (2001) “Habitat monitoring:
Application driver for wireless communications technology”. Proceedings of the ACM
SIGCOMM Workshop on Data Communications in Latin America and the Caribbean.

[6] (2001). Website, http://www.destronfearing.com/.

[7] Destron Technologies, “Pm beef uses digital angel products in usda process verified program”.
Website, http://www.geneticasysid.com.br/Artigo17.htm.

[8] Pottie, G. and Kaiser, W. (2000) “Wireless Integrated Network Sensors”. Communications of
the ACM, 43.

[9] Doumit, S. S. and Agrawal, D. P. (2002) “Self-organizing and energy-efficient network of
sensors”. Proceedings of MILCOM 2002, October, vol. 2, pp. 1245–1250.

[10] Srisathapornphat, C., Jaikaeo, C., and chung Shen, C. (2001) “Sensor information networking
architecture and applications”. IEEE Personal Communications, 8, 52–59.

[11] Liu, C. and Cao, G. (2009) “Minimizing the cost of mine selection via sensor networks”. in
Proc. of IEEE INFOCOM, April, pp. 2168–2176.

[12] Xu, N. (2002) “A survey of sensor network applications”. IEEE Communications Magazine, 40.

[13] Cerpa, A., Elson, J., Estrin, D., and Girod, L. (2001) “Habitat monitoring: application driver for
wireless communications technology”. In ACM SIGCOMM Workshop on Data Communications
in Latin America and the Caribbean.

[14] Mainwaring, A. M., Culler, D. E., Polastre, J., Szewczyk, R., and Anderson, J. (2002) “Wireless
sensor networks for habitat monitoring”. WSNA, pp. 88–97.

[15] Biagioni, E. S. and Bridges, K. W. (2002) “The application of remote sensor technology to assist
the recovery of rare and endangered species”. International Journal of High Performance
Computing Applications, 16, 2002.

[16] Biagioni, E. S. and Sasaki, G. (2003) “Wireless sensor placement for reliable and efficient data
collection”. Proceedings of the 36 th Annual Hawaii International Conference on System
Sciences (HICSS03, p. 2003.

[17] Wang, H., Elson, J., Girod, L., Estrin, D., and Yao, K. (2003) “Target classification and
localization in habitat monitoring”. In ICASSP.

[18] Baptista, A. M., M. Wilkin, et al. (1999). “Coastal and Estuarine Forest Systems: A multi-
purpose infrastructure for the Columbia River.” Earth System Monitor 9(3): 1-2, 4-5, 16.

[19] Akyildiz, L. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (2002) “A survey on sensor
networks”. IEEE Communications Magazine, 40, 102–114.

[20] Milenkovi, A., Otto, C., and Jovanov, E. (2006) “Wireless sensor networks for personal health
monitoring: Issues and an implementation”. Computer Communications (Special issue: Wireless
Sensor Networks: Performance, Reliability, Security, and Beyond, 29, 2521–2533.

������������	
������	

�
�������
������
��	���
�����
����	
����

 16

[21] Xu, N., Rangwala, S., Chintalapudi, K. K., Ganesan, D., Broad, A., Govindan, R., and Estrin, D.
(2004) “A wireless sensor network for structural monitoring”. IN SENSYS, pp. 13–24, ACM
Press.

[22] James, P., Demmel, W., Kim, S., Kim, S., and Kim, S. (2005) “Wireless sensor networks for
structural health monitoring”. Tech. rep., in UC Berkeley Masters Thesis.

[23] Li, M. and Liu, Y. (2007) “Underground structure monitoring with wireless sensor networks”.
IPSN ’07: Proceedings of the 6th international conference on Information processing in sensor
networks, New York, NY, USA, pp. 69–78, ACM.

[24] Gutierrez, J. A., Naeve, M., Callaway, E., Bourgeois, M., Mitter, V., and Heile, B. (2001) “Ieee
802.15.4: A developing standard for low-power low-cost wireless personal area networks”. In
IEEE Network Magazine, p. 5.

[25] Callaway, E., Gorday, P., Hester, L., Gutierrez, J. A., Naeve, M., Heile, B., and Bahl, V. (2002)
“Home networking with ieee 802.15.4: A developing standard for low-rate wireless personal
area networks”. IEEE Communications Magazine, pp. 70–77.

[26] Srisathapornphat, C., Jaikaeo, C., and Shen, C.-C. (2000) “Sensor information networking
architecture”. In 2000 International Workshop on Parallel Processing (ICPP 2000.

[27] Song, H., Zhu, S., and Cao, G. (2008) Svats: “A sensor-network-based vehicle anti-theft
system”. in Proc. of IEEE INFOCOM, April, pp. 171–175.

[28] Shi, E. and Perrig, A. (2004) “Designing secure sensor networks”. Wireless Communication
Magazine, 11, 38–43.

[29] Akyildiz I.F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (2002) “A survey on sensor
networks”. IEEE Communications Magazine.

[30] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (2002) “Wireless sensor
networks: a survey”. Computer Networks, 38, 393–422.

[31] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K. (2000) “System architecture
directions for networked sensors”. Architectural Support for Programming Languages and
Operating Systems, pp. 93–104.

[32] Lu, C., Blum, B., Abdelzaher, T., Stankovic, J., and He, T. (2002) “Rap: A real-time
communication architecture for large-scale wireless sensor networks”. Proceedings of the IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS 2002).

[33] Pandey, R., Kottalam, J., Ramin, Y., Wirjawan, I., and Koshy, J. “Peeros–system software for
wireless sensor networks”. Tech. rep.

[34] Jansen, P., Mullender, S., Hvinga, P., and Scholten, J. (2003) “Lightweigh edf scheduling with
deadline inheritance”. Technical report (tr-crit-03-23).

[35] Jeong, H.-J., Nam, C.-S., and Shin, D.-R. (2008) “Design and implementation of middleware in
sensor networks using publish/subscribe model”. Proceedings of the IEEE International
Workshop on Semantic Computing and Applications, pp. 145–146.

[36] Qi, H., Iyengar, S., and Chakrabarty, K. (2001) “Multiresolution data integration using mobile
agents in distributedsensor networks”. IEEE Transaction on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 31, 383–391.

[37] Eicken, V. T., Culler, D., Goldstein, S., and Schauser, K. (1992) “Active messages: a
mechanism for integrated communication and computation”. Proceedings of the 19th Annual
International Symposium on Computer Architecture, pp. 256–266.

[38] Mainwaring, A. M. and Culler, D. E. (1999) “Design challenges of virtual networks: Fast,
general-purpose communication”. Proceedings of the 1999 ACM Sigplan Symposium on
Principles and Practise of Parallel Programming (PPoPP99), pp. 119–130.

[39] Arnold, K., Scheifler, R., and Waldo, J. (1999) “The Jini Specification”. Addison Wesley.

������������	
������	

�
�������
������
��	���
�����
����	
����

 17

[40] Guttman, E. (1999) “Service location protocol: Automatic discovery of ip network services”.
IEEE Internet Computing, 3, 71–80.

[41] Want, R., Hopper, A., Falco, V., and Gibbons, J. (1992) “The active badge location system”.
ACM Transaction on Information Systems.

[42] Lim, A. “Distributed services for information dissemination in self-organizing sensor
networks”. Journal of Franklin Institute, Special Issue on Distributed Sensor Networks for Real-
Time Systems with Adaptive Reconfiguration.

[43] Ratnasamy, S., Estrin, D., Govindan, R., Karp, B., Shenker, S., Yin, L., and Yu, F. (2002) “Data-
centric storage in sensornets”. Proceedings of the First Workshop on Sensor Networks and
Applications (WSNA).

[44] Madden, S. R., Franklin, M. J., Hellerstein, J. M., and Hong, W. (2005) “Tinydb: An
acquisitional query processing system for sensor networks”. ACM Trans. Database Syst, 30,
2005.

[45] Bonnet, P., Gehrke, J. E., and Seshadri, P. (2000) “Querying the physical world”. IEEE Personal
Communications, 7, 10–15.

[46] Franklin, M. (2001) “Challenges in Ubiquitous Data Management Informatics: 10 Years Back,
10 Years Ahead”. Springer-Verlag, lncs #2000 edn.

[47] Bougard, B., Pollin, S., Catthoor, F., and Dehaene, W. (2006) “Cross-layer power management
in wireless networks and consequences on system-level architecture”. Signal Processing, Special
section: Advances in signal processing-assisted cross-layer designs, 86, 1792–1803.

[48] Kalpakis, K., Dasgupta, K., and Namjoshi, P. (2002) “Efficient algorithms for maximum
lifetime data gathering and aggregation in wireless sensor networks”. Technical report umbc-tr-
02-13.

[49] Younis, M., Youssef, M., and Arisha, K. (2002) “Energy-aware routing in cluster-based sensor
networks”. Proceedings of the 10th IEEE/ACM International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS02).

[50] Shah, R. and Rabaey, J. (2002) “Energy aware routing for low energy ad hoc sensor networks”.
Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), pp.
350–355.

[51] Singh, S., Woo, M., and Raghavendra, C. S. (1998) “Power-aware routing in mobile ad hoc
networks”. Proceedings of the 4th Annual ACM/IEEE International Conference on Mobile
Computing and Networking (Mobicom), pp. 181–190.

[52] Kansal, A. and Srivastava, M. B. (2003) “An environmental energy harvesting framework for
sensor networks”. Proceedings of the 2003 international symposium on Low power electronics
and design.

Authors

Lei Zhang is an assistant professor of computer science, Frostburg State
University, University System of Maryland. She received M.S and Ph. D of
Computer Science from Auburn University in 2005 and 2008. Before she
pursued her graduate study in U.S, she worked as an instructor at school of
Electrical Engineering & Automation, Tianjin University, China. Her current
research interests include Wireless Networks Protocols Design and Applications,
Distributed Algorithm, Information Security, Data Mining and Human Computer
Interaction. She is a member of IEEE/ACM. She has been a technical reviewer
for numerous international journals and conferences.

������������	
������	

�
�������
������
��	���
�����
����	
����

 18

Alvin S. Lim is an Associate Professor of Computer Sciences, Auburn University,
Auburn, AL. He received his Ph. D of computer science from The University of
Wisconsin-Madison. His research interests include self-organizing networks,
wireless mobile networks, high performance networks, mobile computing and
databases, reliable and dynamically reconfigurable distributed systems, complex
software development, parallel processing, and performance measurements and
analysis. He has been the technical reviewer and editor for numerous international
journals and conferences.

Hui Song received his Ph.D. degree in Computer Science and Engineering
from The Pennsylvania State University in 2007. Since then, he has been with
the Department of Computer Science at Frostburg State University, where he is
currently a tenure-track Assistant Professor of Computer Science. His research
interests are in the areas of network and system security, wireless ad-hoc and
sensor networks, and mobile computing. He received one best paper award for
ACNS’08 and was a recipient of the best research assistant award of the
Department of Computer Science and Engineering at the Pennsylvania State
University in 2005. He has served as reviewers for numerous conferences and
journals and is a member of ACM and IEEE.

Xinliang Zheng received his Ph.D. degree in Computer Science and
Engineering from the University of South Carolina at Columbia in 2007. Since
then, he has been with the Department of Computer Science at Frostburg State
University, where he is currently a tenure-track Assistant Professor of
Computer Science. His research interests are in the areas of networks and
network security. He is a member of IEEE.

