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ABSTRACT 

This paper presents fuzzy goal programming approach to quadratic bi-level programming problem. In 

the model formulation of the problem, we construct the quadratic membership functions by determining 

individual best solutions of the quadratic objective functions subject to the system constraints. The 

quadratic membership functions are then transformed into equivalent linear membership functions by 

first order Taylor series approximation at the individual best solution point. Since the objectives of upper 

and lower level decision makers are potentially conflicting in nature, a possible relaxation of each level 

decisions are considered by providing preference bounds on the decision variables for avoiding decision 

deadlock. Then fuzzy goal programming approach is used for achieving highest degree of each of the 

membership goals by minimizing deviational variables.  Numerical examples are provided in order to 

demonstrate the efficiency of the proposed approach. 
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1. INTRODUCTION 

In this paper, we consider quadratic bi-level programming problem (QBLPP). QBLPP consists 

of a single decision maker namely upper level (first level)  decision maker (ULDM) with single 

objective at the upper level and a single decision maker namely lower level (second level) 

decision maker (LLDM) with single objective at the lower level. The objective function of each 

level decision maker (DM) is quadratic in nature and the constraints are linear functions. The 

execution of decision is sequential from upper level to lower level. Each level DM 

independently controls only a set of decision variables. The decision of ULDM is affected by 

the reaction of the LLDM due to dissatisfaction with the decision of the ULDM. Therefore, 

decision deadlock arises frequently in the hierarchical organization in the decision-making 

situation.   

Bi-level programming is a powerful and robust technique for solving hierarchical decision- 

making problem. It has been applied in many real life problems such as agriculture, bio-fuel 

production, economic systems, finance, engineering, banking, management sciences, 

transportation problem, etc. The bi-level programming problem (BLPP) has received increasing 

attention in the literature. Candler and Townsley [1] as well as Fortuny- Amat and McCarl [2] 

presented the formal formulation of BLPP. Anandalingam [3] proposed Stackelberg solution 

concept to multi-level programming problem (MLPP) as well as bi-level decentralized 

programming problem (BLDPP). Lai [4] applied the concept of fuzzy set theory at first to 
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MLPP by using tolerance membership functions. Shih et al. [5], Shih and Lee [6] extended 

Lai’s concept by introducing non-compensatory max-min aggregation operator and 

compensatory fuzzy operator respectively for MLPP. Sakawa et al. [7] developed interactive 

fuzzy programming for MLPP. Sinha [8, 9] presented alternative multi-level programming 

based on fuzzy mathematical programming. Arora and Gupta [10] presented interactive fuzzy 

goal programming approach for linear BLPP with the characteristics of dynamic programming. 

Satisfactory solution is derived by updating the satisfactory degree of the decision makers with 

the consideration of overall satisfactory balance between both the levels. A bibliography of 

references on bi-level programming as well as multi-level programming in both linear and 

nonlinear cases, which is updated biannually, can be found in the work of Vicente and Calamai 

[11].  

Non-linear BLPP has been addressed in [12-13]. Edmund and Bard [13] discussed nonlinear bi-

level mathematical problems in 1991. In contrast to BLPPs, nonlinear BLPPs [14, 15] have not 

been discussed extensively. Malhotra and Arora [16] developed an algorithm for solving linear 

fractional bi-level programming problem (LFBLPP) based on preemptive goal programming. 

Sakawa & Nishizaki [17-18] used interactive fuzzy programming for solving LFBLPP both in 

crisp and fuzzy environment. Calvete and Galé [19] studied optimality conditions for LFBLPP. 

Ahlatcioglu and Tiryaki [20] developed two interactive fuzzy programming algorithms for 

decentralized two-level linear fractional programming problem by using the technique of multi-

objective linear fractional programming problem due to Chakraborty and Gupta [21], and 

Charnes and Cooper [22]. Mishra [23] discussed weighting method for LFBLPP by using 

analytical hierarchy process [24]. However, the solution obtained by Mishra’s approach [23] is 

the solution of the individual best solution of the ULDM or the LLDM. 

It is worth mentioning that quadratic problems arise directly in applications related to least-

square regression with bounds or linear constraints, central economic planning, robust data 

fitting, input-allocation problem, transportation, facility locations, traffic assignment problem, 

portfolio optimization, etc. QBLPP has been studied in [25- 30] Vicente et al. [27] introduced 

two descent methods for QBLPP in which the lower level function is strictly convex quadratic, 

the upper level function is quadratic, and they proved that “checking local optimality for bi-

level programming is a NP-hard problem”. Wang et al. [28] presented optimality conditions and 

algorithm solving linear quadratic programming problem. Thirwani and Arora [29] developed 

an algorithm for solving QBLPP for integer variables. They solved the problem by linearization 

technique and obtained integer solution of the QBLPP by using Gomory cut and dual simplex 

method. Calvete and Galé [30] studied optimality conditions for the linear fractional/ quadratic 

bi-level programming problem based on Karush – Kuhn – Tucker conditions and duality theory. 

Narang and Arora [31] presented an algorithm for solving an indefinite integer QBLPP with 

bounded variables. They solved the problem by solving the relaxed problem and developed a 

mixed integer cut solution technique for finding the integer solution. Etoa [32] presented a 

smoothing sequential quadratic programming to determine a solution of a convex QBLPP. Li 

and Wang [33] discussed linear-QBLPP in which the objectives of lower level are convex 

quadratic functions and the objectives of upper level are linear functions. They transformed the 

original problem into equivalent non-linear problem based on Karush – Kuhn – Tucker 

conditions and solved the equivalent problem using genetic algorithm.  

Mishra and Ghosh [34] studied interactive fuzzy programming approach to bi-level quadratic 

fractional programming problems by updating the satisfactory level of the DM at the first level 

with consideration of overall satisfactory balance between the levels. In fuzzy environment, Pal 

and Moitra [35] proposed fuzzy goal programming (FGP) procedure for solving QBLPP in 

2003. In [35], Pal and Moitra formulated QBLPP in two phases by using the notion of distance 

function. At the first phase of the solution process, Pal and Moitra transform QBLPP model into 

nonlinear goal programming model in order to maximize the membership value of each of the 
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fuzzy objective goals based on their priorities in the decision context. However, each level DM 

has only one objective function, therefore the concept of priority is not appropriate. 

Recently, Pramanik and Dey [36] studied priority based FGP approach to multi-objective 

quadratic programming problem. In this study, we extend the concept of Pramanik and Dey [36] 

for solving QBLPP. We first construct quadratic membership function by determining 

individual best solution of the objective function of the level DMs. The quadratic membership 

functions are then transformed into linear membership functions by first order Taylor series 

approximation. Since the objectives of the level DMs are generally conflicting in nature, 

possible relaxations of decision of upper and lower level DMs are simultaneously considered for 

avoiding decision deadlock in the decision-making situation by providing preference bounds on 

the decision variables under their control. Then FGP models are formulated for achieving 

highest degree of each of the membership goals by minimizing negative deviational variables. 

To demonstrate the efficiency of the proposed FGP approach, three numerical examples are 

solved and distance function is used to select compromise optimal solution. 

Our main results are as follows: (i) Two FGP models for solving QBLPP are presented. (ii) 

Maximization-type and minimization-type QBLPPs are solved to demonstrate the applicability 

of the proposed FGP models. (iii) Logical explanations are provided for considering preference 

bounds on the decision variables. (iv) We transform the quadratic membership functions into 

equivalent linear membership functions at the individual best solution point by first order Taylor 

series before using FGP. 

Rest of the paper is organized in the following way: section 2 presents related works. Section 3 

provides the formulation of QBLPP for maximization-type objective function. In section 4, we 

describe fuzzy programming formulation of QBLPP. Subsection 4.1 explains the linearization 

of membership functions by first order Taylor polynomial series. Subsection 4.2, explains why 

DMs offer preference bounds on decision variables. Subsection 4.3 presents formulation of FGP 

models to QBLPP. Section 5 is devoted to provide formulation of QBLPP for minimization-

type objective function. Section 6 presents distance functions to select compromise optimal 

solution for the level DMs. Section7 provides FGP algorithm to QBLPP. In section 8, we solve 

three numerical examples in order to show the efficiency of the proposed FGP approach. 

Finally, section 9 concludes the paper with final conclusion and future work. 

2. RELATED WORKS 

FGP approach studied by Mohamed [37] is an important technique in dealing with conflicting 

objectives of decision makers for satisfying decision for overall benefit of the organization. 

Moitra and Pal [38] extended the concept of Mohamed for solving linear BLPP. Pramanik and 

Roy [39] discussed FGP approach to MLPP and they extended the FGP approach for a BLDPP.  

They perform sensitivity analysis with the variation of tolerance values on decision variables to 

show how the solution is sensitive to the change of tolerance values. Baky [40] extended the 

concept of Moitra & Pal [38] and Pramanik & Roy [39] for solving multi-objective multi-level 

programming problem. 

For non-linear BLPP, as already mentioned, QBLPP was studied by Pal and Moitra [35]. In 

their approach, they formulate fuzzy quadratic programming model to minimize the group 

regret of degree of satisfaction of level decision makers by using Hamming distance [41]. Then 

they transform the quadratic model into an equivalent non-linear FGP model to achieve the 

highest degree of satisfaction to the extent possible for the level decision makers. In the decision 

making process, linear approximation technique suitable for non-linear goal programming 

studied by Ignizio [42] is applied to obtain satisfactory solution. Finally, they formulate priority 

based FGP model taking decision variables at first priority level and objective goals at second 

priority level without considering the system constraints. They argued for not incorporating 
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system constraints in the final formulation by stating that they do not come as a part of the 

decision search system. However, in actual practice it is observed that system constraints play 

vital role for decision search systems. Therefore, due to neglecting system constraints their FGP 

creates the problem of offering infeasible solution or undesirable solutions. Again, their 

procedure includes several stages and transformation variables as well as negative and positive 

deviation variables that indicate extra burden for solving QBLPP.     

Osman et al.[43] extended the fuzzy approach of Abo-Sinna [15]  for solving non-linear bi-level 

and tri-level multi-objective decision making under fuzziness. Their method based on the 

concept that the lower level decision maker maximizes membership goals taking a goal or 

preference of the ULDM into consideration. The level DMs elicit non-linear membership 

functions of fuzzy goals for their non-linear objective functions and especially the ULDM 

specifies linear fuzzy goals for the decision variables. LLDM solves a fuzzy programming with 

a constraint on a satisfactory degree of ULDM. However, there is a possibility that their fuzzy 

approach offers undesirable solution because of inconsistency among the fuzzy goals of the 

non-linear objective functions and linear fuzzy goals of the decision variables [44].       

The research presented in this paper aims to present easy and simple FGP algorithms for solving 

QBLPP by reducing complexity of transformation variables and membership goals of decision 

variables.  

3. FORMULATION OF QBLPP 

We consider QBLPP of maximization - type of objective function at each level. Let ULDM 

controls the decision vector )x...,,x,x(x
1N112111 = and LLDM controls the decision vector 

).x...,,x,x(x
22N22212 =  

Mathematically, the problem can be formulated as:  

[ULDM]:
1x

max Z1 ( x ) = ( xDx
2

1
xC 1

T

1 + )                                                                                 (1) 

[LLDM]:
2

max
x

Z2 ( x ) = ( xDx
2

1
xC 2

T

2 + )                                                                                 (2)                                

subject to 

∈x S = {( 21 x,x )| 0x,0x,BxAxA 212211 ≥≥≤+ }                                                                  (3) 

The symbol ‘T’ denotes transposition. x = 21 xx ∪ is the set of decision vector, N1 + N2 = N total 

number of decision variables and M is the total number of constraints in the 

system. 1C , 2C and B are constant vectors. 1A , 2A are constant matrices. 1D , 2D are constant 

symmetric matrices. We assume that the objective functions are concave. Here, we also assume 

that the polyhedron S to be non-empty and bounded. 

4. FUZZY PROGRAMMING FORMULATION OF QBLPP 

To formulate the fuzzy programming model of a QBLPP, we transform the objective functions 

)x(Z1 and )x(Z2  into fuzzy goals by means of assigning aspiration level to each of them. The 

optimal solution of each objective function )x(Zi (i = 1, 2), when calculated in isolation, would 

be considered as the best solution and associated objective value can be considered as the 

aspiration level of the corresponding fuzzy goal for i-th level DM.  

Let, 
B

ix = ( )B

iN

B

1iN

B

iN

B

2i

B

1i x,...,x,x,...,x,x
ii + (i = 1, 2) be the individual best solution of the 

objective function of i-th level DM subject to the system constraints.  
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Also let, 
B

iZ = ( )B

ii xZ  = ( )xZmax i
Sx∈

(i = 1, 2). 

Then the fuzzy goals appear in the form:  

Z1 ( x )
~
≥ B

1Z , Z2 ( x )
~
≥ B

2Z   

Here “
~
≥ ” indicates the fuzziness of the aspiration level. 

Using the individual best solutions, we formulate the payoff matrix as given below: 

















)x(Z)x(Zx

)x(Z)x(Zx

)x(Z)x(Z

B

22

B

21

B

2

B

12

B

11

B

1

21

                                                                                                          (4) 

The maximum value of each column of payoff matrix provides upper tolerance limit or aspired 

level of achievement for the objective function i.e. 
B

iZ  = =




 B

ii xZ ( )xZmax i
Sx∈

(i = 1, 2) and the 

minimum value of each column provides lower tolerance limit or lowest acceptable level of 

achievement for i-th objective function i.e. 

W
iZ = minimum of {Zi (

B

1x ), Zi (
B

2x )} (i = 1, 2). 

The membership function of the ULDM can be written as: 

µ1 ( x ) = 










≤

≤≤
−

−
≥

W
11

B
11

W
1W

1
B
1

W
11

B
11

Z)x(Zif,0

Z)x(ZZif,
ZZ

Z)x(Z

Z)x(Zif,1

                                                                              (5) 

Here, 
B

1Z and 
W

1Z  are respectively the upper and lower tolerance limits of the fuzzy objective 

goal for the ULDM. 

Similarly, the membership function of the LLDM can be written as:     

 

µ2 ( x ) = 










≤

≤≤
−

−
≥

W
22

B
22

W
2W

2
B
2

W
22

B
22

Z)x(Zif,0

Z)x(ZZif,
ZZ

Z)x(Z

Z)x(Zif,1

                                                                             (6) 

Here, 
B

2Z  and 
W

2Z  are respectively the upper and lower tolerance limits of the fuzzy objective 

goal for the LLDM. 

Now, the QBLPP reduces to the following problem: 

max )x(1µ                                                                                                                                (7) 

max )x(2µ                                                                                                                                    (8) 

subject to 

∈x S = {( 21 x,x )| 0x,0x,BxAxA 212211 ≥≥≤+ }.      

4.1. Linearization of membership functions by Taylor series approximation 

Let, )x,...,x,x,...,x,x(x iN1iNiN2i1ii
ii

∗∗
+

∗∗∗∗
= be the individual best solution of )x(µ i of i-th level 

DM (i = 1, 2) subject to the system constraints. Then, we transform the quadratic membership 

function )x(µ i (i = 1, 2) into an equivalent linear membership function ( )xiξ (i = 1, 2) at 



International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011 

46 

 

 

 

)x,...,x,x,...,x,x(x iN1iNiN2i1ii
ii

∗∗
+

∗∗∗∗
= by using first order Taylor series approximation as follows: 

( )x1µ ≅ 




µ

∗
11 x + 





µ

∗∗
11

1

111 x
x∂∂)x-x( + )x-x( 122

∗





µ

∗
11

2

x
x∂∂ +…+ )x-x(

11 1NN

∗





µ

∗
11

N

x
x∂∂

1

+

)x-x( 11N1N 11

∗
++ 





µ

∗

+

11

1N

x
x∂∂

1

+...+ )x-x( 1NN

∗ =




µ

∗
11

N

x
x∂∂ ( ),x1ξ                                       (9) 

( )x2µ ≅ 




µ

∗
22 x + )x-x( 211

∗





µ

∗
22

1

x
x∂∂ + )x-x( 222

∗





µ

∗
22

2

x
x∂∂ +…+ )x-x(

22 2NN

∗

+




µ

∗
22

N

x
x∂∂

2

)x-x( 12N1N 22

∗
++ 





µ

∗

+

22

1N

x
x∂∂

2

+…+ )x-x( 2NN

∗ =




µ

∗
22

N

x
x∂∂ ( )x2ξ         (10)                                           

4.2. Characterization of preference bounds on the decision variables for both level 

DMs 

Since the individual best solution of each level DM is different, the question of direct 

compromise optimal solution does not arise. Therefore, cooperation between the level DMs is 

necessary to reach a compromise optimal solution. In this context, each level DM tries to obtain 

maximum benefit by considering the benefit of other DM also. Therefore, we consider the 

relaxation on decision of both the level DMs simultaneously to reach a compromise optimal 

solution. In the proposed FGP approach, DMs provide their preference upper and lower bounds 

on the decision variables under their control. Let ( )−∗ − j1j1 ax  and ( )+∗ + j1j1 ax  (j = 1, 2, …, N1) be 

the lower and upper bounds of decision variable j1x (j = 1, 2, …, N1) provided by the ULDM. 

Here, )x,...,x,x,...,x,x(x N11N1N112111
11

∗∗
+

∗∗∗∗
= is the individual best solution of the membership 

function )x(µ1 of UDLM when calculated in isolation subject to the given constraints. Similarly, 

( )−∗ − j2j2 ax  and ( )+∗ + j2j2 ax  (j = 1, 2, …, N2) be the lower and upper bounds of decision variable 

j2x (j = 1, 2, …, N2) provided by the LLDM. 
∗

+
∗∗∗∗

= 1N2N222212
22

x,x,...,x,x(x )x,..., N2

∗
is the 

individual best solution of the membership function )x(µ2 of LLDM when calculated in 

isolation subject to the given constraints.Therefore, we have 

( )−∗ − j1j1 ax  ≤ j1x  ≤ ( )+∗ + j1j1 ax  (j = 1, 2, …, N1)                                                                          (11)                                                                               

( )−∗ − j2j2 ax  ≤ j2x  ≤ ( )+∗ + j2j2 ax  (j = 1, 2, …, N2)                                                                        (12)                                

Here, 
−
j1a  and 

+
j1a  (j = 1, 2, …, N1) are the negative and positive tolerance values, which are not 

necessarily same. Generally, x1j lies between ( )−∗ − j1j1 ax  and ( )+∗ + j1j1 ax  (j = 1, 2,…, N1). 

Similarly, preference bounds of the decision variables under the control of LLDM can be 

determined. 

4.3. Formulation of FGP model of QBLPP 

The QBLPP reduces to the following problem:  

max )x(1ξ                                                                                                                                (13) 

max )x(2ξ                                                                                                                                (14)  
                                                                                                    

subject to 
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,BxAxA|)x,x{(Sx 221121 ≤+=∈ },0x,0x 21 ≥≥  

( )−∗ − j1j1 ax  ≤ j1x  ≤ ( )+∗ + j1j1 ax  , (j = 1, 2, …, N1) 

( )−∗ − j2j2 ax  ≤ j2x ( )+∗ +≤ j2j2 ax  (j = 1, 2, …, N2). 

The maximum value of a membership function is unity, so for the defined membership 

functions in (13) and (14), the flexible membership goals with aspiration level unity can be 

stated as: 

1dd)x( 111 =−+ξ +−

                                                                                                                    
(15)  

                               

1dd)x( 222 =−+ξ +−
                                                                                                                    (16)                                

Here ,d1

− −
2d   represent the negative deviational variables and ,d1

+
 

+
2d  represent the positive 

deviational variables. In this paper, we have considered two FGP models for solving QBLPP.   

FGP model (i): min α = ∑
=

+2

1i
id + ∑

=

−2

1i
id                                                                                        (17)                           

              

subject to 






µ

∗
11 x + 





µ

∗∗
11

1

111 x
x∂∂)x-x( + )x-x( 122

∗





µ

∗
11

2

x
x∂∂ +…+ )x-x(

11 1NN

∗





µ

∗
11

N

x
x∂∂

1

+

)x-x( 11N1N 11

∗
++ 





µ

∗

+

11

1N

x
x∂∂

1

+...+ )x-x( 1NN

∗





µ

∗
11

N

x
x∂∂ + −

1d - +
1d = 1, 






µ

∗
22 x + )x-x( 211

∗





µ

∗
22

1

x
x∂∂ + )x-x( 222

∗





µ

∗
22

2

x
x∂∂ +…+ )x-x(

22 2NN

∗ +




µ

∗
22

N

x
x∂∂

2

)x-x( 12N1N 22

∗
++ 





µ

∗

+

22

1N

x
x∂∂

2

+…+ )x-x( 2NN

∗





µ

∗
22

N

x
x∂∂ + −

2d - +
2d = 1,                                  

,BxAxA|)x,x{(Sx 221121 ≤+=∈ },0x,0x 21 ≥≥                                             
 

( )−∗ − j1j1 ax  ≤ j1x ≤ ( )+∗ + j1j1 ax , (j = 1, 2, …, N1) 

( )−∗ − j2j2 ax  ≤ j2x ≤ ( )+∗ + j2j2 ax , (j = 1, 2, …, N2) 

,0di ≥− ,0di ≥+  −
id × +

id = 0, (i = 1, 2). 

FGP model (ii): min γ                                                                                                              (18)                                                            

subject to 






µ

∗
11 x + 


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11
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∗
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
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x∂∂
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+

)x-x( 11N1N 11
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++ 
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µ

∗

+

11
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x∂∂
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+...+ )x-x( 1NN
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µ

∗
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N
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∗
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∗
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2d = 1,                                  

,BxAxA|)x,x{(Sx 221121 ≤+=∈ },0x,0x 21 ≥≥                                              

( )−∗ − j1j1 ax  ≤ j1x ≤ ( )+∗ + j1j1 ax , (j = 1, 2, …, N1) 
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( )−∗ − j2j2 ax  ≤ j2x ≤ ( )+∗ + j2j2 ax , (j = 1, 2, …, N2) 

γ ≥ −
id , γ ≥ +

id , (i = 1, 2) 

,0di ≥− ,0di ≥+  −
id × +

id = 0, (i = 1, 2). 

Since the maximum possible value of membership goal is unity, positive deviation is not 

possible. Observing this fact, Pramanik and Dey used only negative deviational variable in the 

achievement function [45, 46] e.g. (15) can be written 1d)x( 11 =+ξ −

  
                               (19) 

However, they do not impose any restriction on negative deviational variable. If we see (19), we 

observe that maximum value of 
−
1d will be unity. Therefore, we have 1d0 1 ≤≤ −     (20)   

Then according to Pramanik and Dey [45, 46], and using the restriction (20), the proposed FGP 

models for solving QBLPP can be presented as: 

FGP model (I): min α = ∑
=

−2

1i
id                                                                                                (21)                           

          

subject to 






µ

∗
11 x + 





µ

∗∗
11

1

111 x
x∂∂)x-x( + )x-x( 122

∗





µ

∗
11

2

x
x∂∂ +…+ )x-x(

11 1NN

∗





µ

∗
11

N

x
x∂∂

1

+

)x-x( 11N1N 11

∗
++ 





µ

∗

+

11

1N

x
x∂∂

1

+...+ )x-x( 1NN

∗





µ

∗
11

N

x
x∂∂ + −

1d = 1, 






µ

∗
22 x + )x-x( 211

∗





µ

∗
22

1

x
x∂∂ + )x-x( 222

∗





µ

∗
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2

x
x∂∂ +…+ )x-x(

22 2NN

∗ +




µ

∗
22

N

x
x∂∂

2

)x-x( 12N1N 22

∗
++ 





µ

∗

+

22

1N

x
x∂∂

2

+…+ )x-x( 2NN

∗





µ

∗
22

N

x
x∂∂ + −

2d = 1,                                  

,BxAxA|)x,x{(Sx 221121 ≤+=∈ },0x,0x 21 ≥≥                                             
 

( )−∗ − j1j1 ax  ≤ j1x ≤ ( )+∗ + j1j1 ax , (j = 1, 2, …, N1) 

( )−∗ − j2j2 ax  ≤ j2x ≤ ( )+∗ + j2j2 ax , (j = 1, 2, …, N2) 

1d0 i ≤≤ −
(i = 1, 2). 

FGP model (II): min γ                                                                                                             (22)                                                            

subject to 






µ

∗
11 x + 





µ

∗∗
11

1

111 x
x∂∂)x-x( + )x-x( 122

∗





µ

∗
11

2

x
x∂∂ +…+ )x-x(

11 1NN

∗





µ

∗
11

N

x
x∂∂

1

+

)x-x( 11N1N 11

∗
++ 





µ

∗

+

11

1N

x
x∂∂

1

+...+ )x-x( 1NN

∗





µ

∗
11

N

x
x∂∂ + −

1d = 1, 






µ

∗
22 x + )x-x( 211

∗





µ

∗
22

1

x
x∂∂ + )x-x( 222

∗





µ

∗
22

2

x
x∂∂ +…+ )x-x(

22 2NN

∗ +




µ

∗
22

N

x
x∂∂

2

)x-x( 12N1N 22

∗
++ 





µ

∗

+

22

1N

x
x∂∂

2

+…+ )x-x( 2NN

∗





µ

∗
22

N

x
x∂∂ + −

2d = 1,                                  

,BxAxA|)x,x{(Sx 221121 ≤+=∈ },0x,0x 21 ≥≥                                              

( )−∗ − j1j1 ax  ≤ j1x ≤ ( )+∗ + j1j1 ax , (j = 1, 2, …, N1), 

( )−∗ − j2j2 ax  ≤ j2x ≤ ( )+∗ + j2j2 ax , (j = 1, 2, …, N2), 

γ ≥ −
id , (i = 1, 2), 
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1d0 i ≤≤ −
(i = 1, 2). 

5. FORMULATION OF QBLPP FOR MINIMIZATION-TYPE OBJECTIVE 

FUNCTION 

Here, we consider QBLPP for minimization - type of objective function at each level. 

Mathematically, QBLPP can be presented as follows: 

[ULDM]:
1x

min Z1 ( x ) = ( xDx
2

1
xC 1

T

1 + )                                                                                (23) 

[LLDM]:
2x

min Z2 ( x ) = ( xDx
2

1
xC 2

T

2 + )                                                                            (24) 

subject to 

∈x S = {( 21 x,x ) | 0x,0x,BxAxA 212211 ≥≥≤+ }                                                             (25) 

Here, we assume that the objective functions are convex and the polyhedron S is non-empty and 

bounded. Let, )x...,,x,x...,,x,x(x B
iN

B
1iN

B
iN

B
2i

B
1i

B

i
ii += (i = 1, 2) be the individual best solution of i-th 

level DM subject to the given constraints such that B
iZ = 

Sx
min

∈
)x(Zi (i = 1, 2). Then the fuzzy 

goals assume the form as )x(Zi
~
≤ B

iZ (i = 1, 2). 

Using the individual best (minimum) solutions, we construct a payoff matrix as: 

















)x(Z)x(Zx

)x(Z)x(Zx

)x(Z)x(Z

B

22

B

21

B

2

B

12

B

11

B

1

21

                                                                                                          (26) 

The minimum value of each column of )x(Zi (i = 1, 2) gives lower tolerance limit for the 

objective function i.e. 
B

iZ = 




 B

ii xZ  = ( )xZmin i
Sx∈

(i = 1, 2) and the maximum value of each 

column provides upper tolerance limit for i-th objective function i.e. 

W
iZ = maximum of {Zi (

B

1x ), Zi (
B

2x )} (i = 1, 2). 

 The quadratic membership function for minimization – type objective function )x(Zi (i =1, 2) 

is formulated as: 

iν ( x ) = 










≤

≤≤
−

−
≥

B
ii

W
ii

B
iB

i
W
i

i
W
i

W
ii

Z)x(Zif,1

,Z)x(ZZif,
ZZ

)x(ZZ

Z)x(Zif,0

(i =1, 2)                                                               (27) 

Here, B
iZ and W

iZ (i = 1, 2) are the lower and upper tolerance limits of the fuzzy objective goal 

for i-th level DM. 

The theoretical concept of minimization -type QBLPP remains the same as discussed for the 

maximization - type QBLPP. 

The proposed FGP models for solving QBLPP can be presented as: 

FGP model (I): min α = ∑
=

−2

1i
id                                                                                                 (28) 
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
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2d = 1, 

∈x S = {( 21 x,x ) | 0x,0x,BxAxA 212211 ≥≥≤+ }, 

( )−∗ − j1j1 ax  ≤ j1x ≤ ( )+∗ + j1j1 ax , (j = 1, 2, …, N1) 

( )−∗ − j2j2 ax  ≤ j2x ≤ ( )+∗ + j2j2 ax , (j = 1, 2, …, N2) 

1d0 i ≤≤ −
(i = 1, 2). 

FGP model (II): min γ                                                                                                                (29) 

subject to 
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



ν

∗

+

22

1N

x
x∂∂

2

+…+ )x-x( 2NN
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2d = 1, 

∈x S = {( 21 x,x ) | 0x,0x,BxAxA 212211 ≥≥≤+ }, 

( )−∗ − j1j1 ax  ≤ j1x ≤ ( )+∗ + j1j1 ax , (j = 1, 2, …, N1) 

( )−∗ − j2j2 ax  ≤ j2x ≤ ( )+∗ + j2j2 ax , (j = 1, 2, …, N2) 

γ ≥ −
id , (i = 1, 2) 

1d0 i ≤≤ −
(i = 1, 2). 

6. USE OF DISTANCE FUNCTIONS TO OBTAIN COMPROMISE OPTIMAL 

SOLUTION 

In the context of seeking optimal compromise solution, it may be mentioned here that, in 

general, different models (methods or approaches) provide different optimal solutions. Since the 

objective goals are conflicting in nature, the decision makers feel confused to select the best 

compromise solution derived from different models. In order to overcome such difficulties, the 

concept of distance function introduced by Yu [47] can be used for measuring the ideal point 

dependent solution for identifying the most satisficing solution. The family of distance functions 

for obtaining compromise optimal solution is formulated as: 
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Lp = ( p2

1i
i )d1(∑

=
− )1/p                                                                                                              (30) 

Here, di (i = 1, 2) denotes the degree of closeness of the preferred compromise solution to the 

optimal solution vector with respect to i-th objective function and the symbol ‘p’ denotes the 

distance parameter.  

For p = 2, L2 = ( 22

1i
i )d1(∑

=
− )

1/2
.           (31) 

Now for minimization problem, di is defined as: di = (individual best solution/ preferred 

compromise solution) and for maximization problem, di is defined as: di = (preferred 

compromise solution/ individual best solution). The solution for which L2 = ( 22

1i
i )d1(∑

=
− )

1/2
 is 

minimum would be the compromise optimal solution for the DMs.        

7. THE FGP ALGORITHM FOR QBLPP 

By the following steps, we now present the proposed FGP algorithm for solving QBLPP: 

Step 1: Calculate the individual best solution 
B

ix = ( )B

iN

B

1iN

B

iN

B

2i

B

1i x,...,x,x,...,x,x
ii + (i = 1, 2) of 

each objective function Zi ( x ) (i = 1, 2) for both the DMs subject to the given constraints. 

Step 2: Construct the payoff matrix. Then determine upper tolerance limit and lower tolerance 

limit of each objective function Zi ( x ) (i = 1, 2) for i-th level DM.  

Step 3: Construct the quadratic membership function )x(µ i or )x(iν  (i = 1, 2) of the fuzzy 

objective goal for each level DM. 

Step 4: Determine the individual best solution )x,...,x,x,...,x,x(x iN1iNiN2i1ii
ii

∗∗
+

∗∗∗∗
=  of the 

quadratic membership function )x(µ i or )x(iν  (i = 1, 2) of i-th level DM (i = 1, 2) subject to the 

constraints.   

Step 5: Transform the quadratic membership function )x(µ i (i = 1, 2) into equivalent linear 

membership function ( )xiξ (i = 1, 2) at the individual best solution 

point )x,...,x,x,...,x,x(x iN1iNiN2i1ii
ii

∗∗
+

∗∗∗∗
= by using first order Taylor series approximation as 

given by (9) and (10). 

Step 6: Both level DMs provide their preference upper and lower bounds on the decision 

variables. 

Step 7: Formulate the FGP models (FGP model (I) and FGP model (II)).  

Step 8: Solve the models. 

Step 9: Distance function L2
 is used to identify the compromise optimal solution for both level 

DMs. 

Step 10: End. 

8. NUMERICAL EXAMPLES 

Example1. To illustrate the proposed FGP approach, we consider the following problem with 

maximization – type of objective function at each level: 

[ULDM]: 
1x

max Z1 ( x ) = 6x1 + 3x2 -
2
1x - 2

2x  

[LLDM]: 
2x

max Z2 ( x ) = x1 + 5x2 - 
2
2x  

subject to 

x1 + x2 ≤ 5, 

3x1 + 2x2 ≤ 9, 



International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011 

52 

 

 

 

2x1 + x2 ≤ 6, 

x1 ≥ 0, x2 ≥ 0. 

We find the individual best solution B
1Z = 10.558 at (2.308, 1.038) and B

2Z = 7.694 at (1.556, 

2.167) subject to the constraints for ULDM and LLDM respectively. Then the fuzzy goals 

appear in the form: 

Z1 ( x ) 
~
≥ 10.558 and Z2 ( x ) 

~
≥ 7.694. 

 
 

Payoff matrix =  





694.7719.8
137.7558.10

      

Here, W
1Z = 8.719 and W

2Z = 7.137. 

The quadratic membership functions of both level DMs are constructed as: 

µ1 ( x ) =
719.8-558.10

719.8-)x(Z1 =
839.1

719.8-)x-x-x3x6(
2
2

2
121 +

, 

µ2 ( x ) =
137.7-694.7

137.7-)x(Z2 =
557.0

137.7-)x-x5x( 2
221 +

. 

The membership function )x(µ1  for ULDM is maximal at the point (2.308, 1.038) and the 

membership function )x(µ2  for LLDM is maximal at the point (1.556, 2.167). Then the 

quadratic membership functions are transformed into equivalent linear membership functions at 

the individual best (maximal) solution point by first order Taylor polynomial series as follows: 

)x(1ξ = µ1 (2.308, 1.038) + (x1 - 2.308) )038.1,308.2(
x

1

1

µ
∂

∂
+ (x2 - 1.038) )038.1,308.2(

x
1

2

µ
∂

∂
,                                

)x(2ξ = µ2 (1.556, 2.167) + (x1 - 1.556) )167.2,556.1(
x

2

1

µ
∂

∂
+ (x2 - 2.167) ).167.2,556.1(

x
2

2

µ
∂

∂
                   

Let 1.5 ≤ x1 ≤ 3 and .25 ≤ x2 ≤ 3 be the preference bounds provided by the respective level DMs.  

Then the proposed FGP models can be written as: 

FGP model (I): min α = ∑
=

−2

1i
id  

subject to 

1 + (x1 - 2.308) × (0.731) + (x2 - 1.038) × (0.488) + −
1d = 1, 

1 + (x1 - 1.556) × (1.795) + (x2 - 2.167) × (1.196) + −
2d = 1, 

x1 + x2 ≤ 5, 

3x1 + 2x2 ≤ 9, 

2x1 + x2 ≤ 6, 

1.5 ≤ x1 ≤ 3, 

0.25 ≤ x2 ≤ 3, 

1d0 i ≤≤ −
(i = 1, 2), 

x1 ≥ 0, x2 ≥ 0. 

Then, following the procedure, the proposed FGP model (I) gives the solution *
1Z = 9.916, *

2Z  = 

4.474 at *
1x = 2.752, *

2x = 0.372. The membership values are *
1ξ = 0.999, *

2ξ = 1. 

FGP model (II): min γ  

subject to  

1 + (x1 -  2.308) × (0.731) + (x2 - 1.038) × (0.488) + −
1d = 1, 

1 + (x1 - 1.556) × (1.795) + (x2 - 2.167) × (1.196) + −
2d = 1, 

x1 + x2 ≤ 5, 
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3x1 + 2x2 ≤ 9, 

2x1 + x2 ≤ 6, 

1.5 ≤ x1 ≤ 3, 

0.25 ≤ x2 ≤ 3, 

γ ≥ −
id , (i = 1, 2), 

1d0 i ≤≤ − (i = 1, 2). 

x1 ≥ 0, x2 ≥ 0. 

The proposed FGP model (II) provides the solution *
1Z = 10.397, *

2Z = 5.558 at *
1x = 2.53, *

2x = 

0.705. The corresponding membership values are *
1ξ = 0.999, *

2ξ = 0.999. 

Table 1. Comparison of distances for the optimal solutions of the numerical Example 1 based on 

proposed two FGP models. 

Proposed models *
1x , *

2x  *
1Z , *

2Z  L2 

FGP model (I) 2.752, 0.372 9.916, 4.474 0.423 

FGP model (II) 2.53, 0.705 10.397, 5.558 0.278 

 

Note 1: From table 1, we observe that the proposed FGP model (II) offers better optimal 

solution than the proposed FGP model (I) based on distance function L2 by considering same 

preference bounds.  

Example2. We consider the following QBLPP studied by Pal and Moitra [35]: 

[ULDM]: 
1x

max Z1 ( x ) = x1+2 2
1x - (x2-2)

2
 

[LLDM]: 
2x

max Z2 ( x ) = (x1 -2)
2
 + 2

2x  

subject to 

x1 + x2 ≤  6, 

x1 +x2 ≥ 2, 

-x1 +x2 ≤ 2, 

-x1 +x2 ≥ 2, 

x1, x2 ≥ 0. 

We find the individual best solution B
1Z = 36 at (4, 2) and B

2Z = 16 at (2, 4) subject to the 

constraints for ULDM and LLDM respectively. Then the fuzzy goals appear in the form: 

Z1 ( x ) 
~
≥ 36 and Z2 ( x ) 

~
≥ 16. 

 
 

Payoff matrix =  








166

836
      

Here, W
1Z = 6 and W

2Z = 8. 

The quadratic membership functions of both level DMs are constructed as: 

µ1 ( x ) =
6-36

6-)x(Z1 =
30

)2x(x2x
2

2
2
11 −−+

, 

µ2 ( x ) =
8-16

8-)x(Z2 =
8

8x)2x( 2
2

2
1 −+−

. 

The membership function )x(µ1  for ULDM is maximal at the point (4, 2) and the membership 

function )x(µ2  for LLDM is maximal at the point (2, 4). Then the quadratic membership 
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functions are transformed into equivalent linear membership functions at the individual best 

(maximal) solution point by first order Taylor polynomial series as follows: 

)x(1ξ = µ1 (4, 2) + (x1 - 4) )2,4(µ
x

1

1∂

∂
+ (x2 - 2) )2,4(µ

x
1

2∂

∂
,                                 

)x(2ξ = µ2 (2, 4) + (x1 - 2) )4,,2(µ
x

2

1∂

∂
+ (x2 - 4) ).2,4(µ

x
2

2∂

∂
                        

Let 3≤ x1 ≤ 5 and 2 ≤ x2 ≤6 be the preference bounds provided by the respective level DMs.  

Then the proposed FGP models can be written as: 

FGP model (I): min α = ∑
=

−2

1i
id  

subject to 

1 + (x1 - 4) × 17/30 + −
1d = 1, 

1 + (x2 - 4) × 1 + −
2d = 1, 

x1 + x2 ≤  6, 

x1 +x2 ≥ 2, 

-x1 +x2 ≤ 2, 

-x1 +x2 ≥ 2, 

3≤ x1 ≤ 5, 

2 ≤ x2 ≤6,  

1d0 i ≤≤ −
(i = 1, 2), 

x1 ≥ 0, x2 ≥ 0. 

Then, following the procedure, the proposed FGP model (I) gives the solution *
1Z = 30, *

2Z  = 10 

at *
1x = 3, *

2x = 3. The membership values are *
1µ = .467, *

2µ = .25 

FGP model (II): min γ  

subject to  

1 + (x1 - 4) × 17/30 + −
1d = 1, 

1 + (x2 - 4) × 1 + −
2d = 1, 

x1 + x2 ≤  6, 

x1 +x2 ≥ 2, 

-x1 +x2 ≤ 2, 

-x1 +x2 ≥ 2, 

3≤ x1 ≤ 5, 

2 ≤ x2 ≤6,  

γ ≥ −
id , (i = 1, 2), 

1d0 i ≤≤ − (i = 1, 2). 

x1 ≥ 0, x2 ≥ 0. 

The proposed FGP model (II) provides the same solution set *
1Z = 30, *

2Z  = 10 at *
1x = 3, *

2x = 3. 

The membership values are *
1µ = .467, *

2µ = .25. 

Pal and Moitra [35] obtained the same solution set. Using the same tolerance 1 for x1 and 2 for 

x2, as considered in the proposed FGP models,  Osman et al. [43] obtained leader’s individual 

best solution (4, 2) which cannot be acceptable for the lower level decision maker. 

Example3. We consider the following QBLPP with minimization – type of objective function 

at each level: 



International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011 

55 

 

 

 

[ULDM]: 
1x

min Z1 ( x ) = 3 2
1x + 4 2

2x - 2x1- 2x2 

[LLDM]: 
2x

min Z2 ( x ) = 5 2
1x +2 2

2x - x1 - 2x2 

subject to 

2x1 + x2 ≥ 2, 

x1 + 3x2 ≤ 7, 

x1 ≥ 0, x2 ≥ 0. 

The individual best (minimum) solution for ULDM and LLDM are B
1Z = 0.158 at (0.789, 0.421) 

and B
2Z = 0.75 at (0.5, 1) respectively subject to the constraints. 

The fuzzy goals are as follows: 

Z1 ( x ) 
~
≤ 0.158 and Z2 ( x )

~
≤ 0.75. 

The payoff matrix is of the form 






75.075.1
836.1158.0

. Here, W
1Z = 1.75  and W

2Z = 1.836. 

The quadratic membership functions for ULDM and LLDM are of the form: 

1ν ( x ) =
158.075.1

)x(Z75.1 1

−

−
=

592.1

)x2x2x4(3x75.1 21
2
2

2
1 −−+−

and  

2ν ( x ) =
75.0836.1

)x(Z836.1 2

−

−
=

086.1

)x2xx2(5x836.1 21
2
2

2
1 −−+−

 

The quadratic membership function for ULDM is maximal at (0.789, 0.421) subject to the 

constraints and the quadratic membership function for LLDM is maximal at (0.5, 1) subject to 

the constraints. The quadratic membership functions 1ν ( x ) and 2ν ( x ) are transformed into 

equivalent linear membership functions at the individual maximal point as follows:  

)x(1ξ = 1ν (0.789, 0.421) + (x1 – 0.789) )421.0,789.0(
x

1

1

ν
∂

∂
+ (x2 -0.421) )421.0,789.0(

x
1

2

ν
∂

∂
, 

)x(2ξ = 2ν (0.5, 1) + (x1 -0.5) 
1x∂

∂
2ν (0.5, 1) + (x2 -1) 

2x∂

∂
2ν (0.5, 1) 

Let 0.55 ≤ x1 ≤ 1.5 and 0.5 ≤ x2 ≤ 1.2 be the preference bounds provided by ULDM and LLDM 

respectively. 

The proposed FGP models for solving QBLPP can be formulated as: 

FGP model (I): min α = ∑
=

−2

1i
id  

subject to 

1 + (x1 – 0.789) × (-1.717) + (x2 – 0.421) × (-0.859) + −
1d = 1, 

1 + (x1 – 0.5) × (-3.683) + (x2 – 1) × (-1.842) + −
2d = 1, 

2x1 + x2 ≥ 2, 

x1 + 3x2 ≤ 7, 

0.55 ≤ x1 ≤ 1.5, 

0.5 ≤ x1 ≤ 1.2, 

1d0 i ≤≤ −
(i = 1, 2),  

 x1 ≥ 0, x2 ≥ 0. 

Solving the above FGP model (I), the solution set is obtained as *
1Z = 0.188, *

2Z = 1.562 at *
1x = 

0.75, *
2x  = 0.5. The resulting membership values are *

1ξ = 0.999, *
2ξ = 1. 

FGP model (II): min γ  
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subject to 

1 + (x1 – 0.789) × (-1.717) + (x2 – 0.421) × (-0.859) + −
1d = 1, 

1 + (x1 – 0.5) × (-3.683) + (x2 – 1) × (-1.842) + −
2d = 1, 

2x1 + x2 ≥ 2, 

x1 + 3x2 ≤ 7, 

0.55 ≤ x1 ≤ 1.5, 

0.5 ≤ x1 ≤ 1.2, 

γ ≥ −
id , (i = 1, 2), 

1d0 i ≤≤ −
(i = 1, 2). 

 x1 ≥ 0, x2 ≥ 0. 

By solving the FGP model (II) we get the same solution set *
1Z = 0.188, *

2Z = 1.562 at *
1x = 0.75, 

*
2x  = 0.5. The obtained membership values are *

1ξ = 0.999, *
2ξ = 1. 

Note 2: From Example 3, we see that the proposed FGP model (I) and FGP model (II) offer the 

same solution set subject to the same preference bounds.    

Note 3: We observe that the proposed two FGP models offer the same solution set or different 

solution set depending on the problem considered. Therefore, it is better to solve the problems 

by both the FGP models and use distance function L2 to identify the compromise optimal 

solution.  

Note 4: All solutions of the problem are obtained by Lingo software version 6.0. 

9. CONCLUSIONS  

In this paper, an alternative FGP approach has been studied for solving QBLPP. The proposed 

approach is easy to implement. Firstly, we transform QBLPP into a linear bi-level programming 

problem by using first order Taylor series approximation. Preference bounds provided by the 

upper and lower level DMs are considered for relaxation on decision. Then two FGP models are 

formulated in order to solve the problem by minimizing negative deviational variables. Here, we 

do not require positive deviational variables. We can apply the proposed concept to multi-level 

quadratic and multi-level quadratic fractional programming problem. The proposed concept can 

also be extended to solve QBLPP with fuzzy parameters.  

The main drawback of the proposed approach is that it solves hypothetical problem. Here, for 

decision-making, degrees of membership functions of the objective goals are considered.  

However, But, degree of rejection should be simultaneously considered. In this sense, 

intuitionistic fuzzy sets due to Atanassov [48] and intuitionistic fuzzy goal programming 

technique due to Pramanik and Roy [49-51] could be applied to modeling QBLPP after using 

linearization technique.  

We hope that the proposed FGP approach can contribute to future study in the field of practical 

hierarchical decision-making problems involving quadratic objectives especially in industrial, 

marketing, supply-chain management problems, etc. 

Our future work will include the use of the concept presented in this paper to develop an 

algorithm for solving linear fractional / quadratic bi-level programming problem. 

Finally, it is worth mentioning that, although the proposed FGP approach is fruitful and easy to 

implement in dealing with QBLPP, it is not the only approach to be taken to solve QBLPP. 

Special attention has also to be paid in dealing with QBLPP in intuitionistic fuzzy environment. 

Research in the field involving QBLPP in intuitionistic fuzzy environment is, therefore, an open 

issue.  
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