

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011

DOI : 10.5121/ijsea.2011.2402 11

Discrete Software Reliability Growth Models with
Discrete Test Effort Functions

Sk.MD.Rafi
1
 and Shaheda Akthar

2

1
Assoc.Professor, Dept.of CSE , SMITW, Affiliated to JNTU,Kakinada

Mail: mdrafi.527@gmail.com

2
Professor, Dept.of CSE, SMCE, Affiliated to JNTU,Kakinada

Mail:shaheda.akthar@yahoo.com

Abstract

Number of software Reliability growth models has been proposed in the literature. A mathematical

technique which describes the software testing phenomenon known as the software reliability growth

model. Software reliability growth models are used to predict the number of faults and reliability of the

software. In the view of this software reliability growth models are basically differentiated as the

continuous and discrete models. There is a plenty of development in the continuous models but little

towards the discrete models. In this paper we have presented a discrete reliability growth model with

different discrete testing effort functions and the same time software release policy is discussed. A new

imperfect debugging discrete software reliability growth model with testing effort is proposed. All

calculations are done on real data. The results shows the proposed testing effort models are perfectly fit to

the data.

Keywords

 Software Reliability, NHPP, Testing effort, Discrete SRGM.

I.INTRODUCTION

Software plays an important role in every body’s life. From the general usages to the heavy
equipment needs the software. As the software usages increase every body needs a zero defect
software. Software with zero defects treated as the quality and reliable software. But software is
developed rather than manufactured like classic sense. During software development software is
going through phases like requirement, design and code there is chance that error might propagate
in to the software. Even though we have sophisticated techniques in identifying the errors ,but
complexity of the software make errors to escape. Several quality control and quality
improvement techniques has been developed in early phases of software life cycle intended in
improving the software.

Although the efficiency, performance and reliability are external functional requirements,
but they play an important role in the quality of the software. Software reliability is defined as
how long a software will function well before it struck with a fault. Many companies are
spending enormous amount of cost during development to achieve the good quality software
product. Reliability and quality are two important factors associated with software. People used to
spend much time and effort during the testing to find the errors. Software reliability growth
models [5][9] which were described as mathematical formulation of complex expressions which
describes the real time testing environment. These SRGM provides the mathematical relation
between time span and cumulative faults which are discovered during the testing. Several
reliability growth models are proposed in software literature. These reliability growth models
help in understanding the real testing environment. These reliability growth models are
categorized as how they analyze the software failure data. Failure data can analyzed by the count

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011

12

process models which considers the failure count data for reliability estimation and time interval
process models which requires the time interval data. Generally these software reliability growth
models are divided as two groups one based on calendar/execution time period and another based
on the number of test cases used. Goel and Okumoto [5][6] proposed a exponential SRGM, which
is characterized by the time and cumulative number of failures. Yamada [10] has proposed a
NHPP S shaped software reliability growth model, called as delayed S shaped model and
Inflection S shaped model. If the models considers time span for their model they are called as the
continuous execution time models and where as if they consider number of test cases to
characterize their data is called as Discrete time models [1][8][9].

In discrete time models [1][8][9] software fault detection period is countable. A test case is
defined as single computer test run executed in an hour, intended to know its behavior. These test
cases can be used in an hour, day, week or even month. Most SRGM are charactrised by the mean
value function of non homogeneous Poisson process and uses the past failure data collected
during testing phase to predict the quality of the software. Recent days new SRGM of non
homogeneous Poisson process(NHPP) models which describes the testing strategy with effort
used during testing. Testing effort during software testing better described by number of test
cases used, person/months and time. Yamada proposed a SRGM with testing effort described by
exponential, rayleigh and weibull curve. In the same way Huang proposed logistic curve as to
define testing effort during the testing. Kapur proposed a model in which the testing phase is
assumed to have two different process namely, fault isolation and fault detection process. Musa
developed a scheme for classifying existing SRGM’s and demonstrated the execution time is
better time domain for software reliability modeling than calendar time.

Generally software testing is not always perfect in nature, testing is influenced by several
factors. Due to the complexity nature of faults during testing faults are not completely removed.
There is a chance that one fault may influence another one, which cause for additional faults in
the software. The concept of imperfect debugging is introduced by Goel. He observed the
imperfect debugging in jelinski and Moranda model. Some models observe imperfect debugging
with testing effort.

In this paper we proposed perfect and imperfect debugging testing effort dependent
discrete software reliability growth model. The testing effort is described by discrete exponential,
discrete logistic and discrete gompertz curve. Assuming that discrete failure intensity proportional
to the faults remain in the software and proportionality based on current testing effort expenditure
at arbitrary test case. Also we have analyzed software release time based on cost and software
intensity.

2.TESTING EFFORT FUNCTIONS

Testing effort is described as amount of testing expenditure is spend during the testing.

A) Discrete exponential curve: let W(n) be denote the expected cumulative number of faults
detected up to n

th
 testing-period. Discrete analog exponential curve as , b represents rate

at which testing effort is consumed. ‘a’ represents the initial total test effort before the
testing begins.

))(()()1(nWabnWnW −××=−+ δ (1)

Above difference equation is solved using probability generating function.

]1[)()1(b
n

anW ×−−×= δ (2)

By using the property ex
x

x

=+
∞>−

)1(lim
/1

 and nt ×= δ we get the above equation (2) as

)1(e
tb

a
×−

−× in
continuous model.

B) Discrete Gompertz TEF : : let G(n) be denote the expected cumulative number of faults
detected up to nth testing-period. Gompertz Curve model is one of the S- shaped growth
model. Discrete analog Gompertz TEF is given by

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011

13









×

×=+

k

nG
b

nGnG
)(

)log(

)()1(

δ

 (3)

Solving the above equation with first order linear difference equation we get exact solution as

a
b

knG
n

))log(1(
)(

δ+×= (4)

C) Discrete Logistic TEF : let L(n) be denote the expected cumulative number of faults
detected up to n

th
 testing-period. Logistic Curve model is one of the S- shaped growth

model. Discrete analog Logistic TEF is given by

))()(1(
)(

)()1(nLknL
k

nLnL −+×
×

=−+
αδ (5)

Solving the above equation we get the exact solution as

)1(1
)(

αδ ×−×+
=

n

m

k
nL (6)

Above equation when applied property ex
x

x

=+
∞>−

)1(lim
/1

 and nt ×= δ we get

e
t

m

k
×−

×+
α

1

 logistic curve in continuous form. The parameter m is defined as

m

k
L

+
=

1
)0((7)

3. PARAMETER ESTIMATION OF TESTING EFFORT FUNCTIONS

A) Discrete Exponential TEF:

 The parameter estimates of a
∧

 and b
∧

 which are estimated values of a and b can be obtained by

the following procedure of method of least square. The equivalent regression equation for Eq (2)

is

)()(nWBAnY ×+= (8)

Where

)()1()(nWnWnY −+= (9)

abA δ= and bB δ−=

Based on the regression analysis we estimate the values of A and B and in turn we can estimate a

and b values as

δ

B
band

B

A
a −=−= (10)

B) Discrete Gompertz TEF:

The parameters of Discrete Gompertz TEF such as a ,b and k is obtained as simple linear
regression equation. At first the Eq.(3) is converted in to linear passion. Now take the log on
both side of the Eq.(3) to get

)(log)log())(loglog(

)(log)1(log

nGbkb

nGnG

δδ +−

=−+
 (11)

From this above equation we get

)(log)(nGBAnY += (12)

Where

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011

14

)(log)1(log)(nGnGnY −+= (13)

C) Discrete Logistic equation:

The parameters of discrete logistic TEF such as k, m and α is obtained as simple linear

equation. The equation (5) is converted as linear passion. We take the following the

regression equation

)1()(+×+= nLBAnY (14)

Where

 δ×= ntn
 (15)

L
L

Y
n

n

n

1+= (16)

Here , δ is a constant difference interval.And

)1(

1

αδ ×−
=A (17)

)1(αδ

αδ

×−×

×−
=

k
B (18)

Now from above

^

^
^ 1

B

A
k

−
= (19)

^

1
1

A

−=×αδ (20)

∑ ×−

∑

=

=

×

−

=
N

n

n

n

N

n
n

L

Lk

m

1

1

^

^

)(

)(

)1(αδ

 (21)

Where
^^

BandA are the estimates of parameters A and B, respectively.

4. MODELING SOFTWARE RELIABILITY GROWTH MODEL

WITH DISCRETE TEF

4.1 Discrete software reliability growth model with Discrete TEF based on NHPP.

The following assumptions are made for above reliability growth model
a) Software is subjected to failure at random test runs caused by the error remaining in the

software.
b) When a failure occurs, the error causing that failure is immediately removed , no new

faults are introduced.
c) Testing effort expenditure are described by discrete exponential, discrete logistic and

discrete gompertz curve.
d) The expected discrete failure intensity to the current testing effort expenditure is

proportional to the current remaining error content.
e) The fault removal process follows the NHPP.

))((
)(

)()1(
nmab

nw

nmnm
−×=

−+
 (22)

Solving the abve differential equation under the initial condition m(0)=0, we get

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011

15

∏
=

×−−=
n

i

iwbanm
0

)))(1(1()((23)

The failure intensity at nth test case is given by

∏
−

=

×−×××=
1

0

))(1()()(
n

i

iwbnwbanλ (24)

4.2 Imperfect debugging discrete software reliability growth model with discrete

TEF based on NHPP

The following are the assumptions for the above models

a) the fault removal process follow the NHPP.
b) The software is subject to failure random times caused by faults remaining in the system
c) The mean number of faults detected by the current testing effort is proportional to the

number of remaining faults in the system.
d) The proportionality of fault detection is constant.
e) The consumption of testing effort is modeled by discrete logistic, discrete gompertz and

discrete exponential curve.
f) When a fault is detected & removed new faults may be generated. When removing or

fixing a detected fault , the probability of introducing another fault is a constant β .

Based on above assumption the discrete SRGM with discrete testing effort is described by

))()((
)(

)()1(
nmnmab

nw

nmnm
−×+××=

−+
βδ (25)

Solving the above equation under the condition m(0)=0 we the get

∏
−

=

−×××−−×
−

=
1

0

)))1()(1(1(
)1(

)(
n

i

biw
a

nm βδ
β

 (26)

Next imperfect debugging model based on following

))((
)(

)()1(
nmpab

nw

nmnm
−××=

−+
 (27)

Solve the above difference equation under the condition that m(0)=0. we get

∏
=

×−−××=
n

i

iwbpanm
0

)))(1(1()((28)

Next imperfect debugging model based on the following equation

))((
)(

)()1(
nmpab

nw

nmnm
×−×=

−+
 (29)

Now above equation is solved under the condition m(0)=0. we get

∏
=

××−−×=
n

i

iwpb
p

a
nm

0

)))(1(1()((30)

5. PARAMETER ESTIMATION AND NUMERICAL

ILLUSTRATION

MLE is method is used for the parameter estimation for proposed models. All data sets are
used in the form of (ni,xi, yi) where i=1,2,3 …..N. where ni is test run number at which the xi

is the cumulative testing time used to find yi number of cumulative faults detected during
testing. The likelihood function for unknown parameters with mean value function is given
by

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011

16

∏
−

=

−

−

−

−−

×
−

−
=

−

N

i

ii

ii

nn

yy
nmnm

mm

ii
yy

nmofparametersL

ii

1

1

1

)))()((exp(

)(

1
[

))((

)]()(1

 (31)

Taking natural logarithm of above equation we get

∑
∑=

=
−−

−−

−−−

−−×−

=
N

i

N

i
iiii

iiii

yynn

nnyy

mm

mm

L
1

1
11

11

)!ln()}()({

))()(ln()(

ln
 (32)

The MLE of the SRGM parameters can be obtained by maximizing L in the equation (32).

Form the equation (25) and (32) we get

∏∏

∑

==

=
−

×−−×−×−+

++×−=

N

i

N

i

N

i
ii

iwbaiwb

iwbaL yy

00

1
1

)))](1(1()))](1(ln(

))(ln()ln()[ln()(ln
 (33)

Now

∑ ∏
= =

−
=−−−×−=

∂

∂ N

i

N

i
ii

ibw
aa

L
yy

1 0
1

0)))(1(1(
1

)(
ln (34)

∏
=

−−

=
N

i

N

ibw

a
y

0

)))(1(1(

 (35)

Same for parameter b as

∏ ∑∑ ∑
= ==

−

=
− −

×−×−
−

×−

−=
∂

∂

N

i

N

i

N

i

i

j
ii

N

ibw

iw
ibwa

jbw

jw

bb

L

yy

y

1 11

1

0
1

]
))(1(

)(
))(1([

))(1(

)(
)([

ln

 (36)

Here we have selected two data sets to present our evaluation of proposed models. Data set
one taken from Ohba where a total of 47.65 CPU hours has been spend during testing to get
a total of 328 faults were discovered by spending 19 weeks. The following diagram depicts
the actual testing effort spend during testing to the estimated testing effort with our proposed
discrete testing effort functions.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15 17 19

TIME(WEEKS)

T
E

S
T

IN
G

 E
F

F
O

R
T

(C
P

U
 H

R
S

)

Gompertz

exponential

Actual

logistic

 Fig1: Actual/Estimated logistic, gompertz and exponential TEF for DS1

The estimated parameters of discrete exponential TEF from equation(2) is a=175 and
b=0.01252 and δ=1.3 , from equation (4) the estimated values of discrete gompertz TEF are
k=54, a=0.0131 and b=0.841 and the estimated parameters for discrete logistic TEF are

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011

17

k=50.78 and m=17.82 from the equation (6). The following table gives the predictive value of
the testing effort respect to the actual testing effort.
 Table-1

Comparison result for different TEF for DS1

TEF Curve Bias Variation MRE RMS-PE

Exponential -1.806 1.55 0.01 0.925

Gompertz -2.098 2.83 0.007 1.89

Logistic -0.45 1.84 0.02 1.78

The following table depicts the values of parameters of mean value functions. All parameters are

calculated based on MLE from the equation 36 and 37.

Table-II

Estimated Parameter values and model comparison for DS1

Model a r MSE Noise

SRGM with Discrete

Exponential TEF
470 0.0251 207 -0.324

SRGM with discrete

Gompertz TEF
581 0.0171 218 0.361

SRGM with discrete

Logistic TEF
606 0.0161 222 0.217

Yamada delayed S

shaped model
384 0.0219 640 2.33

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19
TIME(WEEKS)

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F

F
A

IL
U

R
E

S

D.Exponential

D.Gompertz

D.Logistic

original

Fig 2. Cumulative number of failures for discrete Logistic, Gompertz and Exponential TEF

based SRGM

6. OPTIMAL SOFTWARE RELEASE POLICY

It is very important for every software company to know how much of time needed to spend
on the software and resources required to spend on the software[4][6]. The software release
problem [7] has a great importance in the software literature. Several people had their own
theory on software release concept. In this paper we formalize the software release concept in
terms of cost spend during operational, cost spend for unit testing effort and cost during the
maintenance activity. We obtained the software release time based on the cumulative number
of failures, by minimizing the total cost and maximizing the reliability [2][8][10].
Mathematically we formulate this problem as

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011

18

C1= the cost of fixing error during the testing phase.
C2= the cost of fixing error during the operational phase where C2>0.
C3= the cost per unit test expenditure.
minimize C(n)=C1*m(n)+C2*(m(nLC)-m(n))+C3*W(n). (37)
subjected to λ (n)= λ0 from (38) we observe that

)(*))1()((*

))1()((*)1()(

32

1

nwnmnm

nmnmnCnC

CC

C
+−−

+−−=−−
 (38)

)(*)()(*
123 CCC nnw −−= λ (39)

∏
−

=

−−−=
1

1
123

))](*1(***)([*)(
n

i

iwbbanw CCC (40)

So, if

CC
C

ab

12

3

−
> and there exist n=n1 such that

∏∏
=

−

=

−>
−

>−
n

ibwab
n

ibwab
ii CC

C 11

012

3

1

0

))(1())(1(

C(n) is minimum at n=n1 , while if

∏∏
=

−

=

−>
−

>−
n

ibwab
n

ibwab
ii CC

C 11

012

3

1

0

))(1())(1(

C(n) is minimum at n=n1 and n1+1

If

CC
C

ab

12

3

−
< , C(n) is minimum at n=0 while if

If

CC
C

ab

12

3

−
= is minimum at both n=0 and 1.

Now if
∏ ∏

−

=

−

=

−−−−

=−−
1

1

2

1

))(1()1())(1()(

)1()(

n

i

n

i

ibwnabwibwnabw

nn λλ

 (41)

From above

∏
−

=

−−−−−
2

1

)]1())1(1)(())[(1(
n

i

nwnbwnwibwab (42)

Since
)(

)1(

)1(

)(

iw

iw

iw

iw +
>

−
for all i > 0, λ(n) is monotonically increasing in (0,nx) and

decreasing thereafter where n satisfies

b
ww

andb
ww nnnn xxxx

<
+

−≥−
−)1(

1

)(

1

)(

1

)1(

1 (43)

If λ(nx)>λ0 and there exist n2 and n3 (0<n2<nx<n3)such that
λ(n2)≤λ0 and λ(n2+1)>λ0 (44)
λ(n3)≤ λ0 and λ(n3-1)>λ0 (45)

the reliability of the system is given by

))]()1((exp[)(nmnmnR −+−= (46)

From above mean value function the reliability is given by

e
n

i

ibwnabw
nR ∏= =

−−
0

))](1()([
)((47)

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011

19

From (25) we get

e
n

nR
)]1([

)(
+−

=
λ

 (48)

Then the desired intensity is achieved for all n≤n2 and n≥n3 , while if λ(nx)≤λ0 the desired

failure intensity is achieved.

Combining the cost and reliability requirements

(i) if ∏ ∏
−

−

= =

−>>−

1

0 012

3
1 1

))(1())(1(
n n

ibwabibwab
i iCC

C (49)

λ(nx)>λ0 and there exist n2 and n3 satisfying the equation (45) and (46) then
if n1<n2 or n1>n3 , n

*
=n1 , if n2<n1<n3 then if

C(n2) <C(n3), n
*
=n2.

C(n2) >C(n3), n
*
=n3.

C(n2) =C(n3), n
=n3 or n=n2.

If λ(nx)≤λ0 , n
*=n1.

(ii) if ∏ ∏
−

−

= =

−=>−

1

0 012

3
1 1

))(1())(1(
n n

ibwabibwab
i iCC

C (50)

λ(nx)>λ0 and there exist n2 and n3 satisfying the equation (45) and (46) then
if n1<n2 or n1>n3 , n

*=n1 , if n2<n1<n3 then if
C(n2) <C(n3), n

*=n2.
C(n2) >C(n3), n

*
=n3.

C(n2) =C(n3), n
*
=n3 or n

*
=n2.

If there exist n3 satisfying (46) then
If n1 ≥ n3-1, n

*
 =n1+1 else n

*
=n3

Else if λ(nx) ≤ λ0 and n1 < nx , n
*=n1

Else if λ(nx) ≤ λ0 and n1 ≥ nx , n
*=n1 +1.

(iii) if

CC
C

ab

12

3

−
≤ , λ(nx)>λ0 and there exist n2 and n3 satisfying (45) and (46) then

n
*
=n2 else if there exist n3 satisfying (46) then n

*
=n3, while if

CC
C

ab

12

3

−
≤ , λ(nx)≤λ0

,n*=1.
Numerical illustration : in this we discussed the optimal release policy based on cost ,
intensity and reliability. By using the first data set, the estimated parameters of discrete
exponential TEF from equation(2) is α=175 and b=0.01252 and δ=1.3, a=470 and r=0.0251.
we assume C1=10, C2= 20 and C3=4 , nLC=100 and λ0 =0.8. using assumed values we get
n1=39 and n3=55 , C(n1)=5373.84 and C(n3)=5425.88 ,λ(n1)=2.494 and λ(n3)=0.561. using
the theorem we get low intensity at n*=55 and high reliability R(55)=0.57. but only cost has
to be minimized the n*=39 but failure intensity is high and reliability is minimum
R(39)=0.08.

7.CONCLUSION

In this paper , we have developed a discrete SRGM with discrete exponential , discrete
gompertz and discrete logistic TEF curve. At the same time we have developed discrete
imperfect debugging SRGM with discrete TEF. We have developed optimal release policy
based on cost, reliability and intensity requirements.

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011

20

0

2000

4000

6000

8000

10000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91

Time(weeks)

C
o

s
t

(a)

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Time(weeks)

In
te

n
s

it
y

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Time(weeks)

R
e

li
a

b
il

it
y

(c)

Fig 3: (a) Total cost (b) Intensity (c) Reliability

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4, October 2011

21

REFERENCES

[1] Brooks W.D. and Motley R.W., Analysis of discrete software reliability models, Technical

Report,RADC-TR-80-84, Rome Air Develop, 1980, New York.

[2] Kapur P.K. and Garg R.B., Cost-reliability optimums release policies for a software system with

testing effort, OPERATION RESEARCH. 27(2), 1990, pp 100 - 114.

[3] “An Introduction to difference equations “ third edition by Saber Elaydi Springer series.

[4] Koch H.S. and Kubat P., Optimal release time for computer software, IEEE Transaction on software

Eng ,vol-SE-9,1983,pp323-327.

[5] Musa J.D. et al, Software reliability: measurement, prediction and application, McCraw-Hill, 1987,

New York.

[6] Okumoto K. and Goel A.L., Optimal release time for software systems based on reliability and cost

criteria, J. Systems and software , 1980, 1, pp 315 -318.

[7] Ross S.M., Software reliability: the stopping rule problem, IEEE Tram oti Software Eng, SE – 11,

1985, pp 1472-1476.

[8] Kapur, P.K.; Min Xie; Garg, R.B.; Jha, A.K, “A discrete software reliability growth model with

testing effort “ IEEE conference ,1994, pp16-20.

[9] Yamada S.and Osaki S., Discrete software reliability growth models, Applied stochastic models and

data analysis, 1985, 1, pp 65-77.

[10] Yamada S. and Osaki S., Optimal software release policies with simultaneous cost and reliability

requirements, Euro J. Operation Research 31, 1987, pp46-51.

Sk.MD.Rafi received B.Tech (comp) from Jawaharlal Nehru Technological University,

M.Tech (comp) from Acharya Nagarjuna University. Pursuing PhD from Jawaharlal

Nehru Technological University. Presently working as Associate. Professor in Sri

Mittapalli Institute of Technology for women, affiliated to J.N.T.U, Kakinada. My area

of interest is Software Reliability, Software Architecture Recovery, Network Security,

and Software Engineering. Published So many research papers in various International

Journals.

Shaheda Akthar received Bachelor of computer science and Master of Computer Science

from Acharya Nagarjuna University, M.S (Software Systems) from BITS, Pilani, received

PhD(Comp) from Acharya Nagarjuna University. Presently working as .Professor in Sri

Mittapalli College of engineering, affiliated to J.N.T.U, Kakinada. My area of interest is

Software Reliability, Software Architecture Recovery, Network Security, and Software

Engineering. Published So many research papers in various International Journals.

