
International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

DOI : 10.5121/ijsea.2011.2301 1

PATTERNS FOR BUSINESS-TO-CONSUMER E-

COMMERCE APPLICATIONS

Xiaohong Yuan
1
 and Eduardo B. Fernandez

2

1
Department of Computer Science, North Carolina A&T State University

Greensboro, NC, USA
xhyuan@ncat.edu

2
Department of Computer Science and Engineering, Florida Atlantic University

Boca Raton, FL, USA
ed@cse.fau.edu

ABSTRACT

E-commerce is one of the most important web applications. We present here a set of patterns that describe

shopping carts, products, catalogue, customer accounts, shipping, and invoices. We combine them in the

form of composite patterns, which in turn make up a domain model for business-to-consumer e-commerce.

We also indicate how to add security constraints to this model. This domain model can be used as a

computation-independent model from which specific applications can be produced using a model-driven

architecture approach.

KEYWORDS

semantic analysis pattern, e-commerce, model-driven architecture, computation-independent model

1. INTRODUCTION

Model-Driven Architecture (MDA) is an approach to application modeling and code generation

[1, 2]. It starts from a Computation-Independent Model (CIM) of a system, which describes the

domain and requirements. The CIM encapsulates the semantics of the problem solved by the

application and this semantics should be carried along the model transformations and reflected in

the code. The CIM is also useful for building applications in a more conventional way.

The use of patterns is a promising avenue to let inexperienced designers build conceptual models

and as a tool for building domain models. Analysis patterns [3] are conceptual structures that

capture the experience of analysts and constitute reusable elements of analysis models. Semantic

Analysis Patterns (SAPs) [4] are an extension of analysis patterns to include more problem

semantics. They emphasize basic functional aspects of the application model and serve as a

starting point when translating requirements into a conceptual model. This type of pattern

represents a minimum application (a set of basic use cases) so that it can be applied to a variety of

situations and it can be combined with other related patterns to describe more complex

applications.

It has been proposed to apply analysis patterns through specialization when there are abstract

patterns, or through analogy when there are patterns from another domain [4]. There was also the

attempt to integrate analysis patterns into MDA [5]. Hamza and Fayad have proposed stable

analysis patterns as a way of developing and utilizing analysis patterns in building software

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

2

systems [6], [7]. Stable analysis patterns are designed to satisfy the criteria of traceability and

generality. Bobkowska and Grabowski have examined the roles of analysis patterns and analyzed

their strengths and weaknesses [8]. They’ve also presented a case study of applying analysis

patterns in system analysis.

This paper demonstrates a method of creating CIMs by using SAPs. Individual SAPs related to e-

commerce are identified and combined into a domain model for business-to-consumer e-

commerce applications. We also illustrate how security can be added to one of the patterns of the

domain model. The domain model includes such aspects as shopping carts, products, catalogs,

customer accounts, shipment, invoices and inventories. The individual patterns have been

published before [9, 10, 11, 12], but corrections and extensions have been made here. The

component patterns of the individual SAPs are not presented here.

The paper is structured as follows. Section 2 to 6 present the Catalog pattern, the Shopping Cart

pattern, the Invoice pattern, the Order and Shipment pattern, and the Stock Manager pattern

respectively. Section 7 presents a domain model for business-to-consumer e-commerce. Section 8

discusses how to add security constraints in patterns of this type. Section 9 discusses related work

to end with some conclusions in Section 10.

2. CATALOG PATTERN

2.1 Intent

How can users find conveniently what products are available?

2.2 Context

E-commerce systems where customers can buy products

2.3 Problem

Web shops sell a variety of products, sometimes totally unrelated, e.g., books and food. An

important problem is: How to organize product information, provide on-line guidance to the

users, and improve the attraction of the web site so that users are willing to visit and return?

2.4 Forces

The solution is affected by the following forces:

• We need to classify and describe a variety of products so that customers can find easily

what they want.

• We should be able to provide more detailed information about products of interest to a

customer.

• We should be able to relate products so that we can recommend similar products to

customers when they buy a product.

• We should keep customers informed of new products or changes in product prices or

availability.

2.5 Solution

Figure 1 shows the class diagram for Catalog pattern. A Catalog is a collection of products. The

Product class defines the type of product being sold, it contains the basic attributes of each

product. In particular, a status attribute indicates special aspects, e.g., a new product. New

products may be separated from the regular products and made known to the customers [13].

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

3

The ProductInfo class provides more detailed information about a product. It may also include

comparison among different varieties of the same product, different brands, or provide the best

price/performance ratio. Similar products are modeled as a self-association of class Product.

Modifications to the products are notified to the customers by email to let them know there is

some new or interesting product. A class ProductObserver watches for changes and notifies

customers. Note that these classes are a type of Observer pattern. Class Notification keeps

records of notifications sent to users. Figure 2 shows the collaborations triggered when products

are modified.

Figure 1. Class diagram for Catalog pattern

Figure 2. Sequence diagram for updating a product

<< actor >>

:WebClerk :Product
:ProductObserver

updateProduct

modify

<< actor >>

:Customer

notify

getState

notify

Customer

ProductObserver

init ()

modify()

Notification

Catalog

topic

create ()
delete ()

getProduct ()

Product

productId

price

status

getStatus ()

insertProduct ()
deleteProduct()

updateProduct ()

findTopic()

ProductInfo

advantage

comparison

setAdvantage ()

setComparison ()

getAdvantage ()

getComparison ()

1

*

*

1

* *
Send

View

*

*

IsSimilarTo

name

customerID

address

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

4

2.6 Consequences

This pattern provides the following advantages:

• This pattern provides the needed infrastructure to describe products conveniently.

Navigational classes can be added to show this information in attractive ways.

• The catalogue can classify products according to different criteria to allow convenient

search and selection.

• The pattern provides a way to find more detailed information about products.

• Products can be related because they have a similar topic or because we keep statistics of

products bought by people.

• We can keep customers informed of any changes to the products.

• This pattern is scalable. It is suitable for various kinds of web shops, from web malls to

personal stores.

• This pattern refers to product types. Some sites sell individual products, e.g., a used-car

site, an auction site. In this case the Product class becomes a set of individual products

and we need an additional class to indicate the product type.

The pattern also has the following liability: It is rather complex for small shops.

2.7 Known uses

• On-line book stores, music stores, shoe stores, wine stores, etc.

• Most Web Application servers, e.g., IBM’s WebSphere Commerce Suite, incorporate

catalogs [14].

• Amazon.com

3. SHOPPING CART PATTERN

3.1 Intent

This pattern describes web shopping using a shopping cart

3.2 Context

E-Commerce systems where customers can buy products

3.3 Problem

Customers can select and purchase different products for a web shop. The shopping process must

have well defined steps. This is necessary because we need to show the customer where he is in

the process. The problem is now: How to describe the shopping process in a precise way?

3.4 Forces

The solution is affected by the following forces:

• We should show clearly to the customer which items she has selected and their

individual and total cost.

• We should create an order and its corresponding invoice for the selected items.

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

5

• We should keep information about the buying habits of the customers so we can offer

them a better service.

• We should reward loyal customers with discounts and special offers.

3.5 Solution

The most common metaphor for the shopping process is based on the concept of

shopping cart, analogous to the carts used in supermarkets. Figure 3 shows the class

diagram for the Shopping Cart pattern. The ShoppingCart class collects information

about all the products a customer has selected. The CartItem object indicates the

quantity and the product selected by a customer. A customer can query the products in his

cart and remove products from the cart. The Customer class indicates the customer

responsible for a shopping cart. When the shopping cart is checked out, an order and an

invoice will be generated (the Order and Invoice classes). Figure 4 shows the process of

selecting and checking out a product.

Figure 3. Class diagram for Shopping Cart pattern

ShoppingCart

cartId

numberOfItems

cartPrice

showItem()

addItem ()

removeItem()

checkout

calcTotalPrice()

Order

Invoice

amount

date

specification

status

Customer

CustomerId
passwd

setProfile ()

getProfile ()

updateProfile()

CustomerProfile

name

address

phoneNumber

e_mail

creditInfo

shippingInfo

Member

account

setAccount ()

getAccount ()

CartItem

quantity

unitprice

calcPrice ()

*

0..*

* 1 Owns

Product

productId

status

price

getStatus ()

getState()

notify()

getCatalog()

*
*

Selections

1 1 Has

Becomes
1 1

()

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

6

Figure 4. Sequence diagram for buying and checking out a product

3.6 Consequences

• This pattern describes an abstract shopping process. It provides common elements for

building shops in the Internet. It can be applied to various web shops from those selling

shoes to those selling software.

• The pattern should help reduce the complexity of the shopping process in the Internet.

All or some of the process steps can be displayed to the user for his guidance.

• The pattern does not provide a mechanism to prevent errors, such as wrong credit card

number, errors in billing address or shipping address.

• We can show what items the customer has selected and their unit and total prices.

• At the end of the process the contents of the shopping cart becomes an order to be

shipped to the customer and the corresponding invoice is created.

• We can keep detailed information about the shopping habits of our customers.

• Loyal customers (members of our loyalty club) can receive discounts of coupons to buy

new items.

3.7 Known uses

Amazon.com, Borders.com, barnesandnoble.com

<< actor >>

:Customer :Product :CartItem

select

:Customer ShoppingCart :Invoice

create
calcPrice

addItem

checkout
getProfile

calcTotalPrice

generate

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

7

4. INVOICE PATTERN

4.1 Intent

The pattern describes events such as the creation and validation of an invoice, followed by the

payment process.

4.2 Context

Institutions or enterprises that require payment for products or services

4.3 Problem

There are many systems where we need to combine the functions of creating and preparing an

invoice, and paying that invoice, including the corresponding validations. How do we represent

this process in a general and abstract manner?

4.4 Forces

The solution is affected by the following forces:

• The creation, preparation, and validation of an invoice requires specific actors, actions in

specific sequences, and must follow specific rules.

• Preparation and validation should be done by different people (separation of duty).

• There should be flexibility about who is responsible for a payment and how the

payments will be made.

• The system and the client need a convenient way of keeping track of the payments made.

• Validation of every prepared invoice and every received payment has to be made to

ensure that the client’s information is correct and in accordance to the requirements and

regulations of each system.

• We need to keep track of who created an invoice, who validated it, and who validated a

payment.

4.5 Solution

Figure 5 is the class diagram for the Invoice pattern. Class InvoiceCreator defines an interface

for creating an invoice. It also provides a way of preparing the invoice by adding or deleting

items from it, specifying different properties, which are used to derive the final scope of the

invoice. Class Invoice represents the document in which all the goods or services are

incorporated together with the nature of each item. Class InvoiceValidator is used to ensure that

the invoice that resulted from the steps described above is in a consistent form that complies with

the trade usage. Classes BillingPolicy and ValidationRule include business policies that apply to

the preparation and validation of invoices, and validation of payment.The Payment class

represents the payment made by the client for the products and/or services incorporated in the

invoice. Class PaymentValidator is used to validate payments according to validation rules.

Class Employee keeps track of who validated a payment, and class Customer represents the

customer that makes payments for the given invoice.

Figure 6 shows the sequence diagram for creating, preparing and validating an invoice. Figure 7

shows the sequences diagram for payment of an invoice. Figure 8 shows the activity diagram of

creating and paying for an invoice.

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

8

Figure 5. Class diagram for Invoice pattern

 Figure 6. Sequence diagram for creating, preparing and validating an invoice

:InvoiceCreator

:Invoice

:InvoiceValidator

create()

initialize

addItem(item)

[complete]

validate

loop -[more items]-

calculateAmount

:ValidationRule

check

Invoice

isValidInvoice

1

*

type

*

*

*

* 1

1

*

isPaidBy

isPaidBy

Employee

name

invoiceID
date

time

itemsBought

totalAmount

discounts

Payment

<<interface>>
InvoiceCreator

BillingPolicy

date

<<interface>>

InvoiceValidator

Validation Rule

date

create

and

1 *

create *

*

validate

validatedBy

accountableFor

*

*

validatedBy

idPaymentMethod

*

*

applies

validate

applies

isValidPayment

<<interface>>

PaymentValidator

*

*

applies to

1

*

Customer

customerId

1

*

*

*

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

9

Figure 7. Sequence diagram for invoice payment

Figure 8. Activity diagram for invoice creation and payment

Invoice Payment

create

validate payment

create

receive payment

prepare

validate

send

make payment

:Client :Invoice :PaymentValidator

getTotalSum

makePayment

validate

validatePayment

:ValidationRule

check

:Payment create

return status

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

10

4.6 Consequences

• This pattern describes an abstract invoice preparation process that can be tailored to

different specific situations.

• We can keep track of who prepared and who validated an invoice, as well as who

validated payments.

• We can apply different validation rules to an invoice and a payment.

4.7 Known uses

• A point-of-sale system in any department store that sells products, such as Macy’s.

• An on-line shopping store, where people use the Internet to log onto an on-line shop in

order to buy different items, e.g. Amazon.

• Monthly invoicing for telephone or internet service, e.g. Comcast.

• SAP has an Invoice management product where they create and prepare invoices.

5. ORDER AND SHIPMENT PATTERN

5.1 Intent

This pattern describes the placement of an order for some product and its corresponding

fulfillment.

5.2 Context

E-Commerce systems where customers can buy products

5.3 Problem

How to describe the process of placing an order for some product and fulfilling the order.

5.4 Forces

The solution is affected by the following forces:

• The institution needs to track order fulfilment to maintain customer satisfaction.

• The model must include representations of real-life documents, e.g., Orders, Line Items,

and Invoices.

• Equivalent products may be substituted for requested products.

5.5 Solution

Figure 9 shows the class diagram for Order and Shipment pattern. The association between class

Shipment and class Order shows that each shipment has a corresponding order, but an order

does not necessarily result in a shipment (e.g. the order could be cancelled). The Invoice class

describes the invoices created for each shipment. The diagram also shows that not all products

ordered may be in the final shipment or that some of these products may be different from those

ordered. Figure 10 and 11 show the sequence diagram and activity diagram for ordering and

receiving a product.

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

11

Figure 9. Class diagram for Order and Shipment pattern

Invoice

date

accountNo

sales
salesTax

freight

paymentType
paymentStatus

Shipment

date

shipment No

shipment Type

receive Status

Customer

name
phone No
address

credit Info

0..*

1

 Order

date

orderNo

status

LineItem

quantity

Product_Type

modelNo
price
description

1 0..*

Places

0..* 1

Order for

1

0..1

create()

calc_cost()

receive_

payment()

create()
check _order()
receive_

shipment()

close()
assemble()

ship()

add_customer()
update_addr()

create()
calc _cost()

cancel()

add _info()

check _credit()

process()

close()
check _shipment

change _price()
change_price()

*

Corresponds to

Product

product Id

*

0..1

*

Included in

customerID

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

12

Figure 10. Sequence diagram for ordering and receiving a product

Figure 11. Activity diagram for order and shipment

aCustomer anOrder:

Order
aShipment:

Shipment

create calc_cost

process

receive

assemble

receive_payment

create

add_customer

aCustomer:

Customer

anInvoice:

Invoice

shipreceive_shipment

aProduct:

Product

include

check_order
check_shipment

Order Shipment Invoice

create

process

assemble

create

prepare

send
ship

cancel

receive
payment

Order Shipment Invoice

create

process

assemble

create

prepare

send
ship

cancel

receive
payment

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

13

5.6 Consequences

• An “order” is always generated in the “system” based on the customer’s expressed need.

• An order is always linked to a customer.

• Some type of documentation is always generated, with a copy archived and a copy

delivered to the customer along with the product.

• The ordered product could be an individual unit, not a type.

• The ordering or receiving customers could be another subsystem or system.

• Each shipment can be related to its corresponding order.

• The receiver may or may not be the same customer who placed the order.

• The model also applies to services, with class Shipment representing the delivery of the

requested service.

5.7 Know uses

• A retailer/service provider of some type of devices, e.g., pagers, orders a quantity of

devices to be resold at retail.

• A customer orders food from a restaurant.

• A customer orders a product from an e-commerce company, e.g. Amazon.com

6. STOCK MANAGER PATTERN

6.1 Intent

This pattern keeps track of quantity and location of items in stock, and updates these quantities

according to the different stages of manufacturing or production.

6.2 Context

Institutions or manufacturing system that use components to build products

6.3 Problem

How can businesses, manufacturing shops, libraries, etc., keep track of their stocks of items of

different types and their locations?

6.4 Forces

The solution is affected by the following forces:

• In a company, items can be materials used for manufacturing or finished products. There

is the possibility of losses or destruction of this stock. The institution must be able to

keep track of the actual number of items in stock.

• Other functional units may change the stock quantities; i.e., any transfer or use of items

anywhere should update the corresponding inventory quantities.

• The solution must describe a fundamental semantic unit. This means the solution must be

simple enough to apply to a variety of situations. This is the basis for reusability.

• The solution must include representations of real-life documents.

6.5 Solution

Figure 12 shows the class diagram for the Stock Manager pattern. Items are classified into two

varieties: finished products and components (used in product manufacturing). There exists many

differences in the management of these two entities. Classes Stock and Component/Product are

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

14

related by a composition association. The quantities, described by the Inventory class, are a joint

property of Stock and Component/Product that has different values for different links. This

model permits a designer to define different types of stock as separate collections; e.g., stock of

components, stock of products. Different types of inventories can be generalized into a class

Inventory.

Figure 12. Class diagram for the Stock Manager pattern

Figure 13 shows the sequence diagram for moving items in or out of stock. When components or

products are moved to or out of stock, their onHand values are increased or reduced by applying

operation add_to_stock or remove_from_stock. Operation add_to_stock determines the

distribution of items into local stockrooms based on some predetermined criteria. When

 *

 *

 *

 *

 Stock

add_element()

remove_element()

 Product

productId

 Inventory

onHand

tr ansfer (qty,from,to)
add_to_stock(qty)

remove_from_stock(qty

 adj_discrepancy()

 Location

number

location
size

add_StockR oom()
delete_StockR oom()

 Distribution

localonHand

localReserved

cycleCount
localAvailab le

add_to_localStock(qty)

remove_from_localStock (qty)

localReserve(qty)
localUnreserve(qty)

verify_count()
adj_discrepancy()

set_cycle_count()

 C omponen t

itemNum

description
ProductInvento ry

availab le
reserved

receiving
onOrder

minQty

maxQty
reserve()

un reserve()

receive()
un receive()

order()
unorder ()

check_ lowerLimit()

C omponentInventory

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

15

components and products are moved to or out of specific stockrooms operation

add_to_localStock or remove_from_localStock increases or reduces the localonHand quantity.

Components or products can be transferred from one stockroom to another. Figure 14 shows the

process of this action.

Figure 13. Sequence diagram for moving items in or out of stock

Figure 14. Sequence diagram for item transfer

Figure 15 shows the complex changes to the inventory during manufacturing. We first assume

that Customer Orders have already been processed into a form that indicates in detail what and

how many components are needed in the manufacturing for a type of product; this is a Shop

Order. When a Materials Employee cuts the Shop Order, the values of reserved components are

increased based on the quantity indicated by this Shop Order. When components have been

physically picked from the stockroom, the values of reserved and onHand for these components

are reduced. When fabrication is finished, ProductInventory quantities are updated by

increasing their onHand value. Usually, a Shop Order takes several days from cut to finish. The

stages cut, pick and fab let people know what is the status of the Shop Order.

add_to_stock(qty)

 add_to_localStock(qty i)

 add_to_localStock(qty j)

 remove_from_stock(qty)

 remove_from_localStock(qty k)

 remove_from_localStock(qty l)

 :Materials : Inventory : Distribution-i : Distribution-j
Employee

 transfer(qty,from,to)

 add_to_localStock(qty)

 remove_from_localStock(qty)

 : Materials

 Employee

:

Distribution-i : Inventory : Distribution-j

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

16

Figure 15. Sequence diagram for manufacturing a Shop Order

6.6 Consequences

The pattern can be used to keep track of quantities of interest for different types of stock and their

distributions.

• The activities that affect the inventory may be different in different applications.

• Although the pattern is described in manufacturing terms, it can be applied to represent

the inventory of a library, a business, or similar places.

• Documents such as Shop Orders and others are considered part of the external systems

that interact with the inventory and are not represented in the pattern.

6.7 Known uses

• The model presented here was applied in the development of an inventory prototype for

the Information Technology Dept. of the Pager Products Division of Motorola in

Boynton Beach, FL.

• Hay’s inventory model [15], includes some aspects which we left out. However, his

model doesn’t include dynamic aspects, attributes, or operations; it doesn’t separate

either stock from inventory.

• Fowler dedicates a chapter (Chapter 6 in [3]), to Inventory and Accounting.

 cut

 reserve(qty i) : localReserve(qty k)

 : localReserve(qty l)

 reserve(qty j) localReserve(qty m)

 localReserve(qty n)

 pick

 remove_from_stock(qty i) : remove_from_localStock(qty k)

 : remove_from_localStock(qty l)

 remove_from_stock(qty j) remove_from_localStock(qty m)

 remove_from_localStock(qty n)

 unreserve(qty i) : localUnreserve(qty k)

 : localUnreserve(qty l)

 unreserve(qty j)
 localUnreserve(qty m)

 localUnreserve(qty n)

 fab

 add_to_stock(qty p)

:Materials : Shop : Component : Component : Distribu- : Distribu- : Product

 Employee Order Inventory-i Inventory-j tion-k tion-1 Inventory

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

17

7. A DOMAIN MODEL FOR E-COMMERCE

The five component patterns can be combined to develop a domain model for e-commerce

applications. Each component pattern can correspond to a subsystem. Figure 16 shows how the

component patterns are combined into the domain model. Classes that are in several component

patterns such as Customer, Invoice are only included in one subsystem. Subsystems dependencies

are also shown in the diagram. The CartItem in Shopping Cart subsystem corresponds to the

LineItem in Order and Shipment subsystem, so LineItem is removed from the Order and

Shipment subsystem.

Figure 16. The domain model for e-commerce

8. SECURE E-COMMERCE

Security constraints can be added to each of the component patterns to produce a domain model

for secure e-commerce. We demonstrate here how to add security constraints by instantiating a

security pattern, that is, Role-Based Access Control (RBAC) pattern [16]. In the RBAC pattern,

users are assigned to the roles according to their tasks or jobs and rights are assigned to the roles.

In this way, a need-to-know policy can be applied, where roles get only the rights they need to

perform their tasks. Figure 17 shows how to add security constraints to the Shopping Cart pattern

by applying six instances of the RBAC pattern.

Product

ProductInfo

Catalog

ProductObserver Customer

ShoppingCart

CartItem

CustomerProfile

Order

Member

Notification

ProductType

BillingPolicy InvoiceCreator

Invoice Employee Payment

InvoiceValidator PaymentValidator

ValidationRule

Inventory

Product Inventory

ComponentInventor

y

Stock

Component Distribution

ComponentInventory

Catalog

Stock Manager

Shopping Cart

Invoice

Shipment

Order and Shipment

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

18

Figure 17. Adding security constraint to Shopping Cart pattern

9. RELATED WORK

Jazayeri and Podnar [17] presented a business and domain model for information commerce,

which describes a virtual environment in which buyers and sellers of information may trade

information products. The domain model was developed from scratch from use cases. The

Customer, Product and Order classes in the domain model are also included in our domain model.

The roles of Intermediary and Provider, as well as Request, Offer, Document are not included in

our model.

A phase-structured model for e-commerce business models is presented in [18]. In this model,

business processes are broken down into five phases: advertising, negotiation, ordering, payment,

and delivery. A 3-party model (customer, intermediary, provider) is used to model interactions in

e-commerce business models. The phase model is used to analyze the specific security

requirements of e-commerce business models, highlight potential threat scenarios and describe

their solutions. Our domain model covers advertising (in the Catalog patter), ordering, payment

and delivery phases. Our model does not include the intermediary party.

 Object-Oriented Hypermedia Design Method (OOHDM) [19] is a web application design

method that includes conceptual design, navigational design, abstract interface design and

implementation. In [20], OOHDM was extended to allow developers clearly specify and design

web applications that embody business processes. The extended OOHDM was used to model

an online retail store. Our domain model includes similar objects or cover similar aspects

in their conceptual schema of the online retail store, for example, ShoppingCart, Order,

Customer, Item, CD, ShippingAddress, PaymentOptions, DeliveryOptions.

Lau [21] conducted domain analysis of e-commerce systems, and applied feature-based model

template development process to develop and model a business-to-consumer e-commerce system.

The feature model consists of over 200 features which were divided into two categories: store

front and business management. The model template includes two class diagrams and seventeen

activity diagrams. Our model and their model both have objects such as Catalog, Customer,

Product, ShoppingCart, CartItem, Order, Payment, etc. Their model has features that we do not

cartId

cartPrice
numOfItems

ShoppingCart

addItem()

removeItem()

Product

productID

price

* CartItem
quantity
unitPrice

calcPrice()

<<role>.
Manager

Right

viewShoppingCart

Right

<<role>>
Customer

<<role>>
Employee

updateProduct()

viewShoppingCart
addItem
removeItem

Right
updateProduct

Right

viewProduct

Right

viewProduct

Right

viewShoppingCart

Only for his own shopping
cart

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

19

have, such as wishlist, customer registration, etc. Our model includes inventory and stock

management, invoice creation and validation which are not covered by their model.

10. CONCLUSION AND DISCUSSION

This paper presents a set of patterns appropriate for business-to-consumer e-commerce. These

patterns are then combined into a domain model. This paper also shows how security constraints

can be added to the domain model. The domain model can be used as a CIM from which specific

applications (for example, an inventory management system) can be produced using an MDA

approach. A correct CIM is fundamental for any MDA process because it defines the semantics of

the problem represented by the application solution. If the details of one the component SAPs are

not of interest we can replace the SAP by a Façade [22].

When we add security constraints in the CIM we can enforce that all the applications derived

from it follow the same constraints along the MDA transformations [23]. Similarly, institution

policies and legal regulations can be defined in the domain model. Varieties of the model can be

produced for different environments requiring different regulations, for example, HIPAA

regulations can be used for medical applications.

Our domain model includes the basic aspects of e-commerce. It could be extended by adding an

Intermediary role, a Wishlist, etc. Other aspects that can be added include personalization [24, 25]

and usability-oriented patterns [13, 26, 27].

REFERENCES

[1] Alhir, S. S. (2003) “Understanding the model driven architecture (MDA),” Models and Tools,

available at: http://www.methodsandtools.com/archive/archive.php?id=5

[2] Brown, A. W. (2004) “Model driven architecture: principles and practice”, Softw. Syst. Model, vol. 3,

pp 314-327.

[3] Fowler, M. (1997) Analysis Patterns – Reusable Object Models, Addison-Wesley.

[4] Fernandez, E. B. and Yuan, X. (2000) “Semantic analysis patterns”, Procs. of 19th Int. Conf. on

Conceptual Modeling (ER2000), pp 183-195.

[5] Filkorn, R.

 and Návrat, (2005) P.

 “
An approach for integrating analysis patterns and feature

diagrams into model driven architecture,” SOFSEM 2005: Theory and Practice of Computer

Science, Lecture Notes in Computer Science, Springer Berlin.

[6] Fayad M. and Wu, S. (2002) “Merging multiple conventional models in one stable model”, Comm.

of the ACM, vol. 45, No 9, pp 102-106.

[7] Hamza, H. and Fayad, M. E.(2004), “Applying analysis patterns through analogy: problems and

solutions”, Journal of Object Technology, vol. 3, No. 3, , http://www.jot.fm

[8] Bobkowska, A. and Grabowski, J. (2009) “The role of analysis patterns in systems analysis,” Procs.

of the 14
th

 European Conference on Pattern Languages of Programs (EuroPLoP 2009), available at:

http://hillside.net/europlop/europlop2009/submission/schedule.cgi

[9] Fernandez, E. B. (2000) “Stock Manager: An analysis pattern for inventories”, Procs. of the 7th

Conf. on Pattern Languages of Programs (PLoP 2000), http://jerry.cs.uiuc.edu/~plop/plop2k

[10] Fernandez, E., B., Yuan, X., and Brey, S. (2000) “Analysis patterns for the order and shipment of a

product”, Procs. of the 7th Conf. on Pattern Languages of Programs (PLoP 2000),

http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/proceedings.html

[11] Fernandez, E. B., Liu, Y. and Pan, R. Y. (2001) “Patterns for internet shops “,Procs. of the 8th Conf.

on Pattern Languages of Programs (PLoP 2001),

 http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/accepted-papers.html

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

20

[12] Fernandez, E. B. and Yuan, X. (2009) "An analysis pattern for invoice processing", Procs. of the

16th Conf. on Pattern Languages of Programs (PLoP 2009), August 28-30, Chicago, Illinois, USA.

[13] Lyardet, F. and Rossi, G. (1998) “Patterns for dynamic websites”, Procs. of the 5th Conf. on Pattern

Languages of Programs (PLoP 1998), http://jerry.cs.uiuc.edu/~plop/

[14] IBM Corp., “Patterns for e-business”, http://www.ibm.com/developerworks/patterns/

[15] Hay, D. (1996) Data Model Patterns-- Conventions of Thought, Dorset House Publications.

[16] Sandhu, R., Coyne, E. J., Feinstein, H. L. and Youman, C.E. (1996) “Role-based access control

models,” Computer, vol. 29 , No2, 38-47.

[17] Jazayeri, M. and Podnar, I., (2001) “A business and domain model for information commerce,”

Procs. of the 34
th

 Hawaii International Conference on System Sciences.

[18] Hauswirth, M., Jazayeri, M., Schneider, M. (2001) “A phase model for E-Commerce business

models and its application to security assessment,” Procs. of the 34
th

 Hawaii International

Conference on System Sciences.

[19] Schwabe, D. and Rossi, G. (1998) “An object oriented approach to web-based applications design,”

Theory and Practice of Object Systems, vol. 4(4), pp 207-225.

[20] Schmid, H. A. and Rossi, G. (2004) “Modeling and designing processes in e-commerce

applications,” IEEE Internet Computing, January-February.

[21] Lau, S. Q.(2006) Domain Analysis of E-Commerce Systems Using Feature-Based Model Template.

Masters Thesis, http://gp.uwaterloo.ca/files/2006-lau-masc-thesis.pdf

[22] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (2994) Design Patterns –Elements of Reusable

Object-Oriented Software, Addison-Wesley.

[23] Delessy, N and Fernandez, E. B. (2008) “A pattern-driven security process for SOA applications",

Procs. of the 3rd Int. Conf. on Availability, Reliability, and Security (ARES 2008). Barcelona, Spain,

pp 416-421.

[24] Palmer, M. “A personalization design pattern for dynamic websites”, http://objectdesign.com

[25] Rossi, G., Schwabe, D., Danculovic, J. and Miaton, L. (2001) “Patterns for personalized web

applications”, Procs. of the 6
th

 European Conference on Pattern Languages of Programs (EuroPLoP

2001), http://www.hillside.net/patterns/EuroPLoP/

[26] Lyardet, F., Rossi, G. and Schwabe, D. (1999) “Patterns for adding search capabilities to web

information systems”, Procs. of the 4
th

 European Conference on Pattern Languages of Programs

(EuroPLoP 1999), http://www.argo.be/europlop/index.html

[27] Rossi, G., Lyardet, F. and Schwabe, D. (2000) “Patterns for e-commerce applications”, Procs. of the

5
th

 European Conference on Pattern Languages of Programs (EuroPLoP 2000),

http://www.coldewey.com/europlop2000/

