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ABSTRACT 

E-commerce is one of the most important web applications. We present here a set of patterns that describe 

shopping carts, products, catalogue, customer accounts, shipping, and invoices. We combine them in the 

form of composite patterns, which in turn make up a domain model for business-to-consumer e-commerce. 

We also indicate how to add security constraints to this model. This domain model can be used as a 

computation-independent model from which specific applications can be produced using a model-driven 

architecture approach. 
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1. INTRODUCTION 

Model-Driven Architecture (MDA) is an approach to application modeling and code generation 

[1, 2].  It starts from a Computation-Independent Model (CIM) of a system, which describes the 

domain and requirements. The CIM encapsulates the semantics of the problem solved by the 

application and this semantics should be carried along the model transformations and reflected in 

the code. The CIM is also useful for building applications in a more conventional way.  

The use of patterns is a promising avenue to let inexperienced designers build conceptual models 

and as a tool for building domain models. Analysis patterns [3] are conceptual structures that 

capture the experience of analysts and constitute reusable elements of analysis models. Semantic 

Analysis Patterns (SAPs) [4] are an extension of analysis patterns to include more problem 

semantics. They emphasize basic functional aspects of the application model and serve as a 

starting point when translating requirements into a conceptual model. This type of pattern 

represents a minimum application (a set of basic use cases) so that it can be applied to a variety of 

situations and it can be combined with other related patterns to describe more complex 

applications. 

It has been proposed to apply analysis patterns through specialization when there are abstract 

patterns, or through analogy when there are patterns from another domain [4]. There was also the 

attempt to integrate analysis patterns into MDA [5].  Hamza and Fayad have proposed stable 

analysis patterns as a way of developing and utilizing analysis patterns in building software 
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systems [6], [7]. Stable analysis patterns are designed to satisfy the criteria of traceability and 

generality. Bobkowska and Grabowski have examined the roles of analysis patterns and analyzed 

their strengths and weaknesses [8]. They’ve also presented a case study of applying analysis 

patterns in system analysis.  

This paper demonstrates a method of creating CIMs by using SAPs. Individual SAPs related to e-

commerce are identified and combined into a domain model for business-to-consumer e-

commerce applications. We also illustrate how security can be added to one of the patterns of the 

domain model.  The domain model includes such aspects as shopping carts, products, catalogs, 

customer accounts, shipment, invoices and inventories. The individual patterns have been 

published before [9, 10, 11, 12], but corrections and extensions have been made here. The 

component patterns of the individual SAPs are not presented here.  

The paper is structured as follows. Section 2 to 6 present the Catalog pattern, the Shopping Cart 

pattern, the Invoice pattern, the Order and Shipment pattern, and the Stock Manager pattern 

respectively. Section 7 presents a domain model for business-to-consumer e-commerce. Section 8 

discusses how to add security constraints in patterns of this type. Section 9 discusses related work 

to end with some conclusions in Section 10. 

2. CATALOG PATTERN 

2.1 Intent 

How can users find conveniently what products are available? 

2.2 Context 

E-commerce systems where customers can buy products 

2.3 Problem  

Web shops sell a variety of products, sometimes totally unrelated, e.g., books and food. An 

important problem is: How to organize product information, provide on-line guidance to the 

users, and improve the attraction of the web site so that users are willing to visit and return?   

2.4 Forces 

The solution is affected by the following forces: 

• We need to classify and describe a variety of products so that customers can find easily 

what they want. 

• We should be able to provide more detailed information about products of interest to a 

customer. 

• We should be able to relate products so that we can recommend similar products to 

customers when they buy a product. 

• We should keep customers informed of new products or changes in product prices or 

availability. 

2.5 Solution 

Figure 1 shows the class diagram for Catalog pattern. A Catalog is a collection of products. The 

Product class defines the type of product being sold, it contains the basic attributes of each 

product. In particular, a status attribute indicates special aspects, e.g., a new product. New 

products may be separated from the regular products and made known to the customers [13].   
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The ProductInfo class provides more detailed information about a product. It may also include 

comparison among different varieties of the same product, different brands, or provide the best 

price/performance ratio. Similar products are modeled as a self-association of class Product. 

Modifications to the products are notified to the customers by email to let them know there is 

some new or interesting product.  A class ProductObserver watches for changes and notifies 

customers.  Note that these classes are a type of Observer pattern. Class Notification keeps 

records of notifications sent to users. Figure 2 shows the collaborations triggered when products 

are modified.  

Figure 1. Class diagram for Catalog pattern 

 

 

Figure 2. Sequence diagram for updating a product 
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2.6 Consequences 

This pattern provides the following advantages: 

• This pattern provides the needed infrastructure to describe products conveniently. 

Navigational classes can be added to show this information in attractive ways. 

• The catalogue can classify products according to different criteria to allow convenient 

search and selection. 

• The pattern provides a way to find more detailed information about products. 

• Products can be related because they have a similar topic or because we keep statistics of 

products bought by people. 

• We can keep customers informed of any changes to the products. 

• This pattern is scalable. It is suitable for various kinds of web shops, from web malls to 

personal stores. 

• This pattern refers to product types. Some sites sell individual products, e.g., a used-car 

site, an auction site. In this case the Product class becomes a set of individual products 

and we need an additional class to indicate the product type.  

The pattern also has the following liability: It is rather complex for small shops. 

2.7 Known uses 

• On-line book stores, music stores, shoe stores, wine stores, etc.  

• Most Web Application servers, e.g., IBM’s WebSphere Commerce Suite, incorporate 

catalogs [14].  

• Amazon.com 

3. SHOPPING CART PATTERN 

3.1 Intent 

This pattern describes web shopping using a shopping cart 

3.2 Context 

E-Commerce systems where customers can buy products 

3.3 Problem  

Customers can select and purchase different products for a web shop. The shopping process must 

have well defined steps. This is necessary because we need to show the customer where he is in 

the process. The problem is now: How to describe the shopping process in a precise way? 

3.4 Forces 

The solution is affected by the following forces: 

• We should show clearly to the customer which items she has selected and their 

individual and total cost. 

• We should create an order and its corresponding invoice for the selected items. 



International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011 

5 

• We should keep information about the buying habits of the customers so we can offer 

them a better service. 

• We should reward loyal customers with discounts and special offers. 

3.5 Solution 

The most common metaphor for the shopping process is based on the concept of 

shopping cart, analogous to the carts used in supermarkets. Figure 3 shows the class 

diagram for the Shopping Cart pattern. The ShoppingCart class collects information 

about all the products a customer has selected. The CartItem object indicates the 

quantity and the product selected by a customer. A customer can query the products in his 

cart and remove products from the cart. The Customer class indicates the customer 

responsible for a shopping cart. When the shopping cart is checked out, an order and an 

invoice will be generated (the Order and Invoice classes). Figure 4 shows the process of 

selecting and checking out a product.  

 

Figure 3. Class diagram for Shopping Cart pattern 
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Figure 4. Sequence diagram for buying and checking out a product 
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3.7 Known uses 

Amazon.com, Borders.com, barnesandnoble.com 
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4. INVOICE PATTERN 

4.1 Intent 

The pattern describes events such as the creation and validation of an invoice, followed by the 

payment process. 

4.2 Context 

Institutions or enterprises that require payment for products or services 

4.3 Problem  

There are many systems where we need to combine the functions of creating and preparing an 

invoice, and paying that invoice, including the corresponding validations. How do we represent 

this process in a general and abstract manner? 

4.4 Forces 

The solution is affected by the following forces: 

• The creation, preparation, and validation of an invoice requires specific actors, actions in 

specific sequences, and must follow specific rules. 

• Preparation and validation should be done by different people (separation of duty). 

• There should be flexibility about who is responsible for a payment and how the 

payments will be made. 

• The system and the client need a convenient way of keeping track of the payments made. 

• Validation of every prepared invoice and every received payment has to be made to 

ensure that the client’s information is correct and in accordance to the requirements and 

regulations of each system. 

• We need to keep track of who created an invoice, who validated it, and who validated a 

payment.  

4.5 Solution 

Figure 5 is the class diagram for the Invoice pattern. Class InvoiceCreator defines an interface 

for creating an invoice. It also provides a way of preparing the invoice by adding or deleting 

items from it, specifying different properties, which are used to derive the final scope of the 

invoice. Class Invoice represents the document in which all the goods or services are 

incorporated together with the nature of each item. Class InvoiceValidator is used to ensure that 

the invoice that resulted from the steps described above is in a consistent form that complies with 

the trade usage. Classes BillingPolicy and ValidationRule include business policies that apply to 

the preparation and validation of invoices, and validation of payment.The Payment class 

represents the payment made by the client for the products and/or services incorporated in the 

invoice. Class PaymentValidator is used to validate payments according to validation rules. 

Class Employee keeps track of who validated a payment, and class Customer represents the 

customer that makes payments for the given invoice.  

Figure 6 shows the sequence diagram for creating, preparing and validating an invoice. Figure 7 

shows the sequences diagram for payment of an invoice. Figure 8 shows the activity diagram of 

creating and paying for an invoice. 
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Figure 5. Class diagram for Invoice pattern 
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Figure 7. Sequence diagram for invoice payment 

 

 

Figure 8. Activity diagram for invoice creation and payment 
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4.6 Consequences 

• This pattern describes an abstract invoice preparation process that can be tailored to 

different specific situations. 

• We can keep track of who prepared and who validated an invoice, as well as who 

validated payments. 

• We can apply different validation rules to an invoice and a payment. 

4.7 Known uses 

• A point-of-sale system in any department store that sells products, such as Macy’s.   

• An on-line shopping store, where people use the Internet to log onto an on-line shop in 

order to buy different items, e.g. Amazon.  

• Monthly invoicing for telephone or internet service, e.g. Comcast. 

• SAP has an Invoice management product where they create and prepare invoices. 

5. ORDER AND SHIPMENT PATTERN 

5.1 Intent 

This pattern describes the placement of an order for some product and its corresponding 

fulfillment. 

5.2 Context 

E-Commerce systems where customers can buy products 

5.3 Problem  

How to describe the process of placing an order for some product and fulfilling the order. 

5.4 Forces 

The solution is affected by the following forces: 

• The institution needs to track order fulfilment to maintain customer satisfaction.  

• The model must include representations of real-life documents, e.g., Orders, Line Items, 

and Invoices. 

• Equivalent products may be substituted for requested products. 

5.5 Solution 

Figure 9 shows the class diagram for Order and Shipment pattern. The association between class 

Shipment and class Order shows that each shipment has a corresponding order, but an order 

does not necessarily result in a shipment (e.g. the order could be cancelled).  The Invoice class 

describes the invoices created for each shipment. The diagram also shows that not all products 

ordered may be in the final shipment or that some of these products may be different from those 

ordered. Figure 10 and 11 show the sequence diagram and activity diagram for ordering and 

receiving a product. 
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Figure 9. Class diagram for Order and Shipment pattern 
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Figure 10.  Sequence diagram for ordering and receiving a product 

 

 

Figure 11. Activity diagram for order and shipment 
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5.6 Consequences 

• An “order” is always generated in the “system” based on the customer’s expressed need. 

• An order is always linked to a customer. 

• Some type of documentation is always generated, with a copy archived and a copy 

delivered to the customer along with the product. 

• The ordered product could be an individual unit, not a type. 

• The ordering or receiving customers could be another subsystem or system. 

• Each shipment can be related to its corresponding order. 

• The receiver may or may not be the same customer who placed the order. 

• The model also applies to services, with class Shipment representing the delivery of the 

requested service. 

5.7 Know uses  

• A retailer/service provider of some type of devices, e.g., pagers, orders a quantity of 

devices to be resold at retail. 

• A customer orders food from a restaurant. 

• A customer orders a product from an e-commerce company, e.g. Amazon.com 

6. STOCK MANAGER PATTERN 

6.1 Intent 

This pattern keeps track of quantity and location of items in stock, and updates these quantities 

according to the different stages of manufacturing or production. 

6.2 Context 

Institutions or manufacturing system that use components to build products  

6.3 Problem  

How can businesses, manufacturing shops, libraries, etc.,  keep track of their stocks of items of 

different types and their locations? 

6.4 Forces 

The solution is affected by the following forces: 

• In a company, items can be materials used for manufacturing or finished products. There 

is the possibility of losses or destruction of this stock. The institution must be able to 

keep track of the actual number of items in stock. 

• Other functional units may change the stock quantities; i.e., any transfer or use of items 

anywhere should update the corresponding inventory quantities. 

• The solution must describe a fundamental semantic unit. This means the solution must be 

simple enough to apply to a variety of situations.  This is the basis for reusability. 

• The solution must include representations of real-life documents. 

6.5 Solution 

Figure 12 shows the class diagram for the Stock Manager pattern. Items are classified into two 

varieties: finished products and components (used in product manufacturing). There exists many 

differences in the management of these two entities. Classes Stock and Component/Product are 
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related by a composition association. The quantities, described by the Inventory class, are a joint 

property of Stock and Component/Product that has different values for different links. This 

model permits a designer to define different types of stock as separate collections; e.g., stock of 

components, stock of products. Different types of inventories can be generalized into a class 

Inventory.  

Figure 12. Class diagram for the Stock Manager pattern 
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components and products are moved to or out of specific stockrooms operation 

add_to_localStock or remove_from_localStock increases or reduces  the localonHand quantity. 

Components or products can be transferred from one stockroom to another. Figure 14 shows the 

process of this action.   

 

Figure 13.  Sequence diagram for moving items in or out of stock 

 

Figure 14.  Sequence diagram for item transfer 
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Figure 15. Sequence diagram for manufacturing a Shop Order 
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7. A DOMAIN MODEL FOR E-COMMERCE 

The five component patterns can be combined to develop a domain model for e-commerce 

applications. Each component pattern can correspond to a subsystem. Figure 16 shows how the 

component patterns are combined into the domain model. Classes that are in several component 

patterns such as Customer, Invoice are only included in one subsystem. Subsystems dependencies 

are also shown in the diagram. The CartItem in Shopping Cart subsystem corresponds to the 

LineItem in Order and Shipment subsystem, so LineItem is removed from the Order and 

Shipment subsystem. 

Figure 16. The domain model for e-commerce 
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Figure 17. Adding security constraint to Shopping Cart pattern 

9. RELATED WORK 

Jazayeri and Podnar [17] presented a business and domain model for information commerce, 

which describes a virtual environment in which buyers and sellers of information may trade 

information products. The domain model was developed from scratch from use cases. The 

Customer, Product and Order classes in the domain model are also included in our domain model. 

The roles of Intermediary and Provider, as well as Request, Offer, Document are not included in 

our model. 

A phase-structured model for e-commerce business models is presented in [18]. In this model, 

business processes are broken down into five phases: advertising, negotiation, ordering, payment, 

and delivery. A 3-party model (customer, intermediary, provider) is used to model interactions in 

e-commerce business models. The phase model is used to analyze the specific security 

requirements of e-commerce business models, highlight potential threat scenarios and describe 

their solutions. Our domain model covers advertising (in the Catalog patter), ordering,  payment 

and delivery phases. Our model does not include the intermediary party. 

 Object-Oriented Hypermedia Design Method (OOHDM) [19] is a web application design 

method that includes conceptual design, navigational design, abstract interface design and 

implementation. In [20], OOHDM was extended to allow developers clearly specify and design 

web applications that embody business processes. The extended OOHDM was used to model 

an online retail store. Our domain model includes similar objects or cover similar aspects 

in their conceptual schema of the online retail store, for example, ShoppingCart, Order, 

Customer, Item, CD, ShippingAddress, PaymentOptions, DeliveryOptions.  

Lau [21] conducted domain analysis of e-commerce systems, and applied feature-based model 

template development process to develop and model a business-to-consumer e-commerce system. 

The feature model consists of over 200 features which were divided into two categories: store 

front and business management.  The model template includes two class diagrams and seventeen 

activity diagrams. Our model and their model both have objects such as Catalog, Customer, 

Product, ShoppingCart, CartItem, Order, Payment, etc. Their model has features that we do not 
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have, such as  wishlist, customer registration, etc. Our model includes inventory and stock 

management, invoice creation and validation which are not covered by their model.  

10. CONCLUSION AND DISCUSSION 

This paper presents a set of patterns appropriate for business-to-consumer e-commerce. These 

patterns are then combined into a domain model. This paper also shows how security constraints 

can be added to the domain model. The domain model can be used as a CIM from which specific 

applications (for example, an inventory management system) can be produced using an MDA 

approach. A correct CIM is fundamental for any MDA process because it defines the semantics of 

the problem represented by the application solution. If the details of one the component SAPs are 

not of interest we can replace the SAP by a Façade [22].  

When we add security constraints in the CIM we can enforce that all the applications derived 

from it follow the same constraints along the MDA transformations [23]. Similarly, institution 

policies and legal regulations can be defined in the domain model. Varieties of the model can be 

produced for different environments requiring different regulations, for example, HIPAA 

regulations can be used for medical applications.  

Our domain model includes the basic aspects of e-commerce. It could be extended by adding an 

Intermediary role, a Wishlist, etc. Other aspects that can be added include personalization [24, 25] 

and usability-oriented patterns [13, 26, 27].  
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