
International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

DOI:10.5121/ijitcs.2014.4301 1

SOEGOV: A SERVICEORIENTED E-GOVERNANCE

APPROACH FOR EFFECTIVE SERVICE DELIVERY

Rama Krushna Das1, Manas Ranjan Patra2 and Sujata Patnaik2

1National Informatics Centre, Berhampur, India
2Department of Computer Science, Berhampur University, India

ABSTRACT

In recent years there has been an exponential growth of e-Governance in India. It is growing to such a
scale that requires full attention of the Government to ensure collaboration among different government
departments, private sectors and Non-Governmental Organisations(NGOs). In order to achieve successful
e-Governance, Government has to facilitate delivery of services to citizens, business houses and other
public or private organisations according to their requirements. In this paper, we have proposed
integration of different government departments using a Service Oriented e-Governance(SOeGov)
approach with web services technology and Service Oriented Architecture(SOA). The proposed approach
can be effectively used for achieving integration and interoperability in an e-Governance system.We have
demonstrated the working of our approach through a case study where integration of several departments
of the provincial Government of Odisha (India) has been made possible.

KEYWORDS

e-Governance, SOeGov, SWeP, Service Composition, Service Orchestration, Service Design, Service
Monitoring, Service Deployment.

1. INTRODUCTION

E-Governance facilitates governmental information to citizens and other stakeholders in
electronic form. Besides this, effective service delivery to citizens and empowerment of people
through access to information without much intervention of bureaucracy are some of the primary
goals of e-Governance [1].Typical characteristics of e-Governance systems include, need forhigh
interoperable, large-scale, distributed, and heterogeneous systems cutting acrossgeographical
boundaries and administrative domains. Therefore, achieving interoperabilityamong e-
Governance applications towards seamless integration and information exchange is ofparamount
importance.The above characteristics of e-Governance systems necessitate the choice of a
suitable designapproach to build applications to realize a pragmatic system [2].The Service
Oriented design approach to e-Governance combines Information and Communication
Technology(ICT) with service delivery goals and enables various government departments to re-
use services that are already developed. The purpose is to provide anagile Service Oriented
solution for integrating different government departments irrespective of the underlying
technology they are using. It requires to change existing applications, data, and content into web
services using a special approach without touching the existing applications.For implementing
these concepts, we have considered to develop an application named “Single Window e-
Governance Portal” (SWeP) for transaction of Government services among different
departments, irrespective of different underlying technologies they use. The SWeP works as a
single source of information for all government content, and provides front end for all the
government services provided by various government departments. Using web service technology

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

2

the services and applications provided by different departments are made available on the
SWeP.The government transactions made on this web service based implementation makes them
interoperable, reusable, easily accessibleand easy to integrate.

2. SOeGov: SERVICE ORIENTED E-GOVERNANCE

A Service Oriented e-Governance (SOeGov) approach as discussed below is usedto change
existing applications, data, and content into web services using a special approach without
touching the existing applications. It presents a new software development paradigm that
endorses direct association of different government departments and citizens, without depending
on the delivery model. It involves several steps in realizing the SOeGov approach, namely, (1)
Service identification, (2) Service Specification, (3) Service Realisation, (4) Service Publication,
(5) Service Orchestration, (6) Service Deployment (Implementing Solution), and (7) Service
Monitoring.The following Figure-1 depicts the activities associated with each of the above steps.

Gather I/O
Requirements

Service
Identification

Service
Specification

Service
Features

Service Type

Services Allocated
To Layers

Orchestrated
Services

List Of Initial
Services

Process Flow
Diagrams

Domain
Decomposition

Service
Realization

Service
Orchestration

Service
Monitoring

Service
Deployment

START

END

Service
Publication

Finding & Binding
Services

Figure 1. Steps involved in executing the SOeGov approach

A brief description of each step follows:

Step 1: Initially, we gather input requirements and necessary data by studying the system
thoroughly.
Step 2: Next, we identify the services using certain use cases and domain decomposition
techniques. The main artefacts at the end of this step are a list of initial services and process
flows.
Step 3: In this step, we give a detailed specification of services. The artefacts of this step are
service features and service types.

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

3

Step 4: This step involves service realization, where we assign the identified services to various
layers in a Service Oriented stack.
Step 5: Next, all the identified services are published using Universal Description, Discovery, and
Integration(UDDI) specifications, for finding and binding the services in the application.
Step 6: At this stage, the services are orchestrated using Business Process Execution
Language(BPEL) tool.
Step 7: Next, the web services are implemented by choosing a language like PHP, Java or dot net.
Step 8: Finally,the services are monitored at run time as per the monitoring framework, which is
independent of the business logic.

3. SERVICE IDENTIFICATION

Service identification can start with identifying different applicable services for the SWeP, The
software developmentbegins by analysing an application domain and identifying a set of services
to be provisioned.These services form the fundamental design objects upon which a complete
system can be built. The process flow of the identified services are depicted in Figure 2.

NREGA Service

ID :String
HOF : String
VNAME : String
BPLS tns : bpl
FindBPLId()
AddNREGA()
EditNREGA()
RemoveNREGA()

BPL Service

ID : String
NAME : String
FNAME : String
MNAME : String
MOF : int
INCOME : int
VNAME : String
GP : String
BLOCK : String
DIST : String
AddName()
EditName()
FindBPLId()
RemoveBPLId()

AAY Service

ID :String
HOF : String
VNAME : String
BPLS tns : bpl
FindBPLId()
AddAAY()
EditAAY()
RemoveAAY()

IAY Service

ID :String
HOF : String
VNAME : String
BPLS tns : bpl
FindBPLId()
AddIAY()
EditIAY()
RemoveIAY()

RSBY Servcie

ID :String
HOF : String
NREGA tns : nrega
FindNREGAId()
AddRSBY()
EditRSBY()
RemoveRSBY()

MAMATA Service

ID :String
HOF : String
VNAME : String
BPLS tns : bpl
FindBPLId()
AddMAMATA()
EditMAMATA()
RemoveMAMATA()

KJY Service

ID :String
HOF : String
 IAY tns : iay
Find IAYId()
AddKUTIRJY()
EditKUTIRJ()
RemoveKUTIRJ()

Figure 2. Process flow of the identified Services

4. SERVICE SPECIFICATION

In this, we have specified the comprehensive details about a service such as service messages,
interfaces, Web Services Description Language(WSDL), service dependency, service invocation
etc. During service specification, the artefacts comprising of the service orientation are formally
defined, for example,atomicand composite services, also the components implementing them
alongside with their interfaces.

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

4

5. SERVICE REALISATION

In Service realization, services and components are allocated to specific layers of SOA.

• Layer 1–Citizen Access Layer This layer provides users with a means to interact with
services. At this layer, we have provided several interface channels such as computer (PC),
Mobile, PDA or cellular, kiosks as shown in Figure 3.Using these interfaces, a citizen can
access a service through the Service Interface Layer.

• Layer 2–Service Interface Layer: This layer gives access to the e-government portal
through the application layer interface. It manages the interface proposed for the clients
interacting with the e-Governanceapplication. For example, it contains a web server for the
users connected via a web browser, a WAP server for the users connected via Mobile
phones or PDAs. Separating this layer from the application layer makes the application
accessible via various channels such as web browsers and even cellular phones, without
having to change the application's implementation. Finally, the communications with the
application layer will be done using the Simple Object Access Protocol(SOAP) over
Hypertext Transfer Protocol(HTTP).

• Layer 3–Application Layer: As illustrated in Figure 3, the application in government
Department “1” as a consumer starts a business process that includes executing tasks at
governmentdepartments “2” and “3” as service providers. In addition to the notification
service provided by the e-Governancecentral platform, the application at “A” will
communicate with theBPEL at its premises to execute the complete process. The
BPEL component invokes the department “2” Web service (IAY), department “3” Web
service (KJY) and they communicate with each other through SOAP messages and
execute according to the rules that had been set earlier in its orchestration engine.

• Layer 4–Shared Service Layer: At this layer both atomic and composite services are
allocated. This Layer can be considered as a bridge between the higher and lower layers,
and is characterized by a number of services that are carrying out individual business
functions. The service layer usually includes service interfaces and message types. There
are six types of services as shown in Figure 3. at this layer and the core services are
integrated/orchestrated as per the rules predefined and stored in the Business Process
Execution Language (BPEL) at the upper layer.

• Layer 5 – Data Layer: The data layer ensures proper storage and persistence of the
government data. The management of the access rights to the data is ensured by the
Database Management System (DBMS). A separate data layer reduces the architectural
complication required to provide access to the government data. It allows departments to
create and leverage services. The concept of data layer leads to increased opportunities for
reusability and reduces system cost for long-term operations. We have achieved loose
coupling with definition of data layer such that physical data can be reorganized without
affecting applications.

6. SERVICE PUBLICATION

Universal Description, Discovery, and Integration (UDDI) is widely accepted as the standard for
Web services publishing, querying, and discovery. A UDDI registry allows us to publish and
browse web service references via SOAP (Simple Object Access Protocol) and HTTP
interfaces.It is a standard Web Services discovery protocoland Web Services description format; a
UDDI registry can contain metadata for any type of service, which are described by Web
Services Description Language (WSDL). For theimplementationof SWeP, a "private" UDDI
registry that runs as a servlet under Apache Tomcat is created as “OdisaGovt”. MySQL is used as
the persistent store for the local UDDI registry. The client API for the UDDI registry is developed
using PHP.

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

5

Single Window e-Governance Portal
(Web Browser)

Citizen Access layer

Service Interface Layer

SO
AP

Application A Application B Application N…
Dept. A Dept. B Dept. N

Application Layer

BPEL BPEL …
Shared Service

Layer

BPL Service
Service Monitoring

Engine

NREGA

IAY KJY

RSBY

DBMS 1 DBMS 2 DBMS 3 DBMS N…
Data Layer

Dept. 1 Dept. 2 Dept. 3 Dept. N

PC Mobile Tablet Kiosk

BPEL

AAY

Mamata

Figure 3. Different Layers of SWeP

7. SERVICE COMPOSITION AND ORCHESTRATION

Service Composition encourages the design of services that can be reused in multiplesolutions
that are themselves made up of composed services. The capability of the serviceto be recomposed
is independent of the size and complexity and size of the service composition, which is directly
responsible for the agility promised bySOA. Bu reusing existing services SOA composes new
solutions. The following section describes in detail the service composition and orchestration for
our case study SWeP.

7.1. Building BPEL Process for SWeP

We have used Oracle Jdeveloper 11g (11.1.1.5.0) software for process orchestration and for
building BPEL. JDeveloper[4] is a freeware IDE supplied by Oracle Corporation. It offers
features for development in Java, XML,PHP SQL and PL/SQL, HTML, JavaScript, and BPEL.
JDeveloper covers the complete development lifecycle from design through coding, debugging,
optimization and profiling to deploying.With JDeveloper, Oracle has aimed to simplify
application development by focusing on providing a visual and declarative approach to
application development in addition to building an advanced coding-environment. Oracle
JDeveloper integrates with the Oracle Application Development Framework (ADF) that
simplifies application development. This Jdeveloper studio is used for SOA by installing an
extension for SOA via the JDeveloper Updates wizard “check for updates”. Through this, the

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

6

SOA composite editor is installed. Now it is referred as Oracle SOA suite. Oracle SOA Suite[3] is
a comprehensive, hot-pluggable software suite to build, deploy and manage Service-Oriented
Architecture (SOA). This comes under the Oracle Fusion Middleware family.

A sample screen shot of the Oracle SOA suite is shown in Figure 4.

Figure 4. Oracle SOA suite screen shot

7.2 Developing a BPEL Process

In a typical case, the BPEL business process receives a request, the process invokes the involved
Web services and then responds to the original caller. As the BPEL process communicates with
other Web services, it depends on the WSDL descriptions of the Web services.

In BPEL defining a business process means essentially to create a new Web service that is a
composite of existing services. In the new BPEL interfacethe composite Web service uses a set of
port types, through which it provides operations like any other Web service.

To develop a new BPEL process, we go through the steps as follows:

1. Understand about the services involved in the project
2. Define the new WSDL for the BPEL process
3. Define partner link types
4. Define the BPEL process:

- Define the namespaces
- Define the partner links
- Define variables
- Define the process logic

These steps are applied to build BPEL process for our SWeP.

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

7

Step1: Services involved in the composition

The initiating point for writing BPEL process definition is to get information about the web
services involved in the process. The proposed Single Window e-Governance Portal(SWeP)
system involves the following autonomous services and composite web services like KJY and
RSBY. The Complete SWeP service composition is shown in the Figure -7 below. The
corresponding service composition code is shown in detail in the Table-1 below for reference.

RSBY Service: This web service is used to add names of RSBY beneficiaries. It is exposed to the
service consumers with interface named RSBY as shown in Figure-5. This interface contains
operation named “execute()”. Through this interface and operation, the consumer invokes the
RSBY service. The invoked RSBY service routes the request to the BPL service to find that the
candidate is enrolled in BPL or not. If it is enrolled in BPL then it invokes the NREGA service to
find that the candidate is enrolled in NREGA or not. If it is not enrolled in NREGA, the NREGA
service adds the candidate’s name in NREGA database.

Figure 5. RSBY Service composition

Figure 6. KJY Service composition

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

8

KJY Service: This web service is used to add names of KJY beneficiaries. It is exposed to the
service consumers with interface named KJY as shown in Figure 6. This interface contains
operation named “execute()”. Through this interface and operation, the consumer invokes the
KJY service. The invoked KJY service routes the request to the BPL service to find that the
candidate is enrolled in BPL or not. If it is enrolled in BPL then it invokes the IAY service to find
that the candidate is enrolled in IAY or not. If it is not enrolled in IAY, the IAY service adds the
candidates name in IAY database.

Step 2: Define the WSDL for SWeP

Since WSDL describes the complete contract for application communication,it plays an important
role in the overall Web services architecture. This ensure interoperability at the service description
layer. The WSDL code of the SWeP is shown in Table 1. The WSDL specification of the SWeP
defines the available port types for its clients and its operations, messages, partner link types, and
properties of interest to the process. The first part of WSDL is the target namespace. The name
space is just like a XML schema definition. Anything that we name under WSDL definition
automatically becomes part of name space.

Step 3: Define the Partner Link Types

The next step is to define the partner link types. Partner link types represent the communication
between a BPEL process and the web services (Partners)involved, which the BPEL process
invokes.

BPL Service: It is an atomic service with certain operations as shown in Figure-7. This service is
used to find BPL status of Citizens for getting other BPL related benefits.

NREGA Service: It is an atomic service with certain operations as shown in Figure-7.This
service is used to find NREGA status of Citizens for getting minimum 100 days of work and its
related payment if he/she belongs to BPL category.

IAY Service: It is an atomic service with certain operations as shown in Figure-7. This service is
used to find IAY status of Citizens for getting financial help for building a pucca house he/she
belongs to BPL category.

AAY Service: It is an atomic service with certain operations as shown inFigure-7. This service is
used to find AAY status of Citizens for getting minimum food grains each month under food
security programme if he/she belongs to BPL category.

Mamata Service: It is an atomic service with certain operations as shown in Figure-7This service
is used to find Mamata status of pregnant ladies of the BPL household.

RSBY Service: It is a composite service and hence this service maintains two more partner
services, namely BPL Service and NREGA Service.This service is used to find RSBY status of
Citizens, who is already enrolled in NREGA.

KJY Service: It is a composite service and hence this service maintains two more partner
services, namely BPL Service and IAY Service.This service is used to find KJY status. of
Citizens, who is already enrolled in IAY.

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

9

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="Service" xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="Service"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="Service" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
>
<xsd:documentation></xsd:documentation>
<!-- ~~~
 TYPE DEFINITION - List of services participating in this BPEL process
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --> 
<wsdl:types> 
<xsd:schemaxmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="Service"> 
<xsd:complexType name="Bpl Service"> 
<xsd:sequence> 
<xsd:element name="ID" type="xsd:string"></xsd:element> 
<xsd:element name="NAME" type="xsd:string" ></xsd:element> 
    <xsd:element name="FNAME" type="xsd:string" ></xsd:element> 
    <xsd:element name="MNAME" type="xsd:string" ></xsd:element> 
    <xsd:element name="MOF" type="xsd:int" ></xsd:element> 
    <xsd:element name="INCOME" type="xsd:int" ></xsd:element> 
    <xsd:element name="VNAME" type="xsd:string" ></xsd:element> 
    <xsd:element name="GP" type="xsd:string" ></xsd:element> 
    <xsd:element name="BLOCK" type="xsd:string" ></xsd:element> 
    <xsd:element name="DIST" type="xsd:string" ></xsd:element> 
 </xsd:sequence> 
</xsd:complexType> 
<!—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
 PORT TYPE DEFINITION – It  groups a set of operations into  a logical service unit.  
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --> 
<wsdl:portType name="Service">
<wsdl:operation name="searchBpls">
<wsdl:input message="tns:searchBplsRequest"/>
<wsdl:output message="tns:searchBplsResponse"/>
</wsdl:operation>
<wsdl:operation name="searchAays">
<wsdl:input message="tns:searchAaysRequest"></wsdl:input>
<wsdl:output message="tns:searchAaysResponse"></wsdl:output>
</wsdl:operation>
 <wsdl:operation name="searchNregs">
<wsdl:input message="tns:searchNregsRequest"></wsdl:input>
<wsdl:output message="tns:searchNregsResponse"></wsdl:output>
</wsdl:operation>
 <wsdl:operation name="searchRsbys">
<wsdl:input message="tns:searchRsbysRequest"></wsdl:input>
<wsdl:output message="tns:searchRsbysResponse"></wsdl:output>
</wsdl:operation>
 <wsdl:operation name="searchIays">
<wsdl:input message="tns:searchIaysRequest"></wsdl:input>
<wsdl:output message="tns:searchIaysResponse"></wsdl:output>
</wsdl:operation>
 <wsdl:operation name="searchKutirjs">
<wsdl:input message="tns:searchKutirjsRequest"></wsdl:input>
<wsdl:output message="tns:searchKutirjsResponse"></wsdl:output>
</wsdl:operation>
 <wsdl:operation name="searchMamatas">
<wsdl:input message="tns:searchMamatasRequest"></wsdl:input>
<wsdl:output message="tns:searchMamatasResponse"></wsdl:output>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="Service" type="tns:Service">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="searchBpls">
<soap:operationsoapAction="http://localhost/arati/Service.php" />
<wsdl:input>
<soap:body use="literal" namespace="Service" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" namespace="Service" />
</wsdl:output>
</wsdl:operation>

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

10

Step 4: Define the Business Process

The next step is to start writing the BPEL process definition. The BPEL process starts the
execution of the business processafter receiving an incoming message from the client. In our
example, the client invokes the BPEL process by sending an input message. Below, we briefly
describe the main elements of the BPEL process construction:

Namespaces: In this, we define the target namespace and the namespaces to access the partner
links WSDL, and the BPEL process WSDL description files. The name space for our problem is
coded as shown in Table 2.

Table 2. Name Space for SWeP

Partner Links: In this process, we identify the partner links which define different partners that
interact with the BPEL process. The following is the code for partner links for our SWePservice
which is shown in Table 3.

Table 3. Partner Links of SWeP

<?xml version = "1.0" encoding = "UTF-8" ?>
<!--
//
 Oracle JDeveloper BPEL Designer
 Created: Thu May 29 19:36:13 IST 2014
 Author: R K Das
 Type: BPEL 1.1 Process
 Purpose: Synchronous BPEL Process
///
-->
<process name="Web_Service"
 targetNamespace="http://xmlns.oracle.com/services/service_composition/Web_Service"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:client="http://xmlns.oracle.com/services/service_composition/Web_Service"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

<!-- //
 PARTNERLINKS
 List of services participating in this BPEL process
 //->
<partnerLinks>
<!-- The 'client' role represents the requester of this service. It is
used for callback. The location and correlation information associated
with the client role are automatically set using WS-Addressing. -->
<partnerLink name="E_Governance_Portal" partnerLinkType="client:Web_Service" myRole="Web_ServiceProvider"/>
<partnerLink name="BPL" partnerLinkType="client:Web_Service"
partnerRole="Web_ServiceProvider"/>
<partnerLink name="IAY" partnerLinkType="client:Web_Service"
partnerRole="Web_ServiceProvider"/>
<partnerLink name="AAY" partnerLinkType="client:Web_Service"
partnerRole="Web_ServiceProvider"/>
<partnerLink name="NREGA" partnerLinkType="client:Web_Service"
partnerRole="Web_ServiceProvider"/>
<partnerLink name="RSBY" partnerLinkType="client:Web_Service"
partnerRole="Web_ServiceProvider"/>
<partnerLink name="KJY" partnerLinkType="client:Web_Service"
partnerRole="Web_ServiceProvider"/>
</partnerLinks>

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

11

Variables: These are used to store, reformat and transform messages. We generally need a
variable for every message sent to the partners and receive back messages from them. Each
variable has a specific type. The following code shown in Table 4demonstrates the variables used
by SWePBPEL process.

Table 4. Variables of SWeP

Process logic definition: In this we specify the order in which the partner Web services are
invoked. For our case, we start with a <sequence>tag that defines several activities which will be
performed sequentially. Within the that, we first specify the input message that starts the business
process. We do that with the <receive> construct, which waits for the matching message. After
that, we link the client partnerwith themessage reception. The process logic is shown in Table 5.

Table 5. Partner Links of SWeP

Table 5. Orchestration Logic of SWeP

The remaining codes for other orchestration processes also follow the same pattern. The
corresponding BPEL process diagram for this code is shown in Figure -7.

<!--
 //
 VARIABLES
 List of messages and XML documents used within this BPEL process
 //
 -->
<variables>
<!-- Reference to the message passed as input during initiation -->
<variable name="inputVariable" messageType="client:Web_ServiceRequestMessage"/>
<!-- Reference to the message that will be returned to the requester-->
<variable name="outputVariable" messageType="client:Web_ServiceResponseMessage"/>
</variables>

<!-- //
ORCHESTRATION LOGIC
Set of activities coordinating the flow of messages across the
services integrated within this business process
/// -->
<sequence name="main">
<!-- Receive input from requestor. (Note: This maps to operation defined in Web_Service.wsdl) -->
<!-- Generate reply to synchronous request -->
<receive name="Receive_Input" createInstance="no"
partnerLink="E_Governance_Portal" portType="client:Web_Service"
operation="process"/>
<assign name="Assign_Input"/>
<invoke name="Invoke_BPL" bpelx:invokeAsDetail="no" partnerLink="BPL"
portType="client:Web_Service" operation="process"/>
<assign name="Assign_BPL_Output"/>
<invoke name="Invoke_IAY" bpelx:invokeAsDetail="no" partnerLink="IAY"
portType="client:Web_Service" operation="process"/>
<assign name="Assign_IAY_Output"/>
<invoke name="Invoke_KJY" bpelx:invokeAsDetail="no" partnerLink="KJY"
portType="client:Web_Service" operation="process"/>
<assign name="Assign_KJY_Output"/>
<reply name="Reply_output" partnerLink="E_Governance_Portal"
portType="client:Web_Service" operation="process"/>
</sequence>
</process>

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

12

Figure 7. SWeP Service BPEL Diagram

BPEL Diagram Flow Details

The process starts when the client invokes E_Governance_Portal_ep interface. It is shown as
partner link on the left side in the diagram. The remaining process proceeds as a sequence of
steps which are described below.

1) First the input received is assigned to assign input and invokes BPL service
2) The BPL output is assigned to input variable and it invokes IAY service
3) The IAY output is assigned to output variable and it invokes KJY service
4) The KJY output is assigned to the reply output variable
5) The final output is assigned to a variable and is replied

8. SERVICE DEPLOYMENT

In this section we present an implementation prototype of SWeP. This prototype is implemented
using PHP, MySQL, WSDL and SOAP messaging. Different user interfaces are designed for the
prototype. A brief discussion on each service code and related output screen shots are presented
below. The SWeP prototype interacts with different departments of Government of Odisha like
Panchayat Raj, Health, Finance, Women and Child Development and Energy. The portal receives
information from these departments as per users’ requirements, irrespective of their underlying
technology. Using the web services technology, different autonomous web services are developed
for each department and some composite web services depending on different departments and
based on some orchestration rules. The portal provides different Government to
Government(G2G) services and some Government to Citizen(G2C) services. A new service can

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

13

also be developed as and when required, by invoking the available services to meet the user
requirements. In the following sections we provide some screen shots and sample implementation
codes for better understanding.Figure 8 shows the screen shot of administrativelogin ofthe SWeP
portal.

Figure-9 below shows the screen shot for retrieving the BPL status of any citizen through the
BPL service.

The following Table-6 shows the WSDL code for BPL Service.

Figure 9. Checking the BPL Service Status Snapshot

Figure 8. SWePUser Interface Snapshot

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

14

Table 6. The BPL Service WSDL Code

<?xmlversion="1.0"encoding="UTF-8"?>
<wsdl:definitionsname="DeptPanchayat"xmlns:xsd="http://www.w3.org/2001/XMLSchema"targetNamespac
e="DeptPanchayat"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"xmlns:tns="DeptPanchayat"xmlns:wsdl="htt
p://schemas.xmlsoap.org/wsdl/">
 <xsd:documentation></xsd:documentation>
<!—types -->
 <wsdl:types>
<xsd:schemaxmlns:xsd="http://www.w3.org/2001/XMLSchema"targetNamespace="DeptPanchayat">
 <xsd:complexTypename="AllBPL">

 <xsd:sequence><xsd:elementname="BPL_id"type="xsd:string"/><xsd:elementname="AllBPLStr"ty
pe="xsd:string"/></xsd:sequence></xsd:complexType>
 <xsd:complexTypename="DetailsBPL">

 <xsd:sequence><xsd:elementname="BPL_id"type="xsd:string"/><xsd:elementname="BPLObj"type
="tns:BPLObj"/></xsd:sequence></xsd:complexType>
 </xsd:schema>
 </wsdl:types>
<!-- message -->
 <wsdl:messagename="getAllBPLRequest"><wsdl:partname="BPL_id"type="xsd:string"/></wsdl:m
essage>
 <wsdl:messagename="getAllBPLResponse"><wsdl:partname="AllBPLStr"type="xsd:string"/></ws
dl:message>
 <wsdl:messagename="getDetailsBPLRequest"><wsdl:partname="BPL_id"type="xsd:string"/></ws
dl:message>
 <wsdl:messagename="getDetailsBPLResponse"><wsdl:partname="BPLObj"type="tns:BPLObj"/>
</wsdl:message>
<!--portType -->
 <wsdl:portTypename="DeptPanchayat">
 <wsdl:operationname="getAllBPL"><wsdl:inputmessage="xsd:getAllBPLRequest"/><wsdl:outputm
essage="xsd:getAllBPLResponse"/></wsdl:operation>

 <wsdl:operationname="getDetailsBPL"><wsdl:inputmessage="xsd:getDetailsBPLRequest"/><wsdl:
outputmessage="tns:getDetailsBPLResponse"/></wsdl:operation> </wsdl:portType>
<!-- binding -->
 <wsdl:bindingname="DeptPanchayat"type="tns:DeptPanchayat">
 <soap:bindingstyle="rpc"transport="http://schemas.xmlsoap.org/soap/http"/>
<!-- extensibility element for operation details -->
 <wsdl:operationname="getAllBPL"><soap:operationsoapAction="http://localhost/dept_panchayat/b
pl_service.php"/>

 <wsdl:input><soap:bodyuse="literal"namespace="DeptPanchayat"/></wsdl:input>

 <wsdl:output><soap:bodyuse="literal"namespace="DeptPanchayat"/></wsdl:output><!--
extensibility element providing body details -->
 </wsdl:operation>
 <wsdl:operationname="getDetailsBPL"><soap:operationsoapAction="http://localhost/dept_panchay
at/bpl_service.php"/>
 <wsdl:input><soap:bodyuse="literal"namespace="DeptPanchayat"/></wsdl:input>
 <wsdl:output><soap:bodyuse="literal"namespace="DeptPanchayat"/></wsdl:output><!--
extensibility element providing body details -->
 </wsdl:operation> </wsdl:binding>
<!—service
 <wsdl:servicename="DeptPanchayat">
 <wsdl:portbinding="tns:DeptPanchayat"name="Panchayat">
 <soap:addresslocation="http://localhost/dept_panchayat/bpl_service.php"/>
 </wsdl:port>
</wsdl:service>
</wsdl:definitions>

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

15

The above code is used to define the BPL service and to access it. The BPL service is invoked
through a remote procedure call (RPC) model. Two messages are described, the input/request
message, which is sent from the client to the service named “getAllBPL” and the output/response
message, which is sent back to the service “getAllBPLResponse”. The BPL service is invoked
using the statement “<soap:address location="http://localhost/dept_panchayat/bpl_service.php"
/>”.

In the above Code

 targetNamespace:- is the logical namespace for information about this service. As WSDL
documents imports other WSDL documents, hence setting targetNamespace to a unique
value ensurs that the namespaces do not clash.[3]

 xmlns: is the default namespace of the WSDL document, and is always set
tohttp://schemas.xmlsoap.org/wsdl/

 All the WSDL elements, such as <definitions>, <types> and <message> reside in this
namespace.

 xmlns:xsd and xmlns:soap are standard namespace definitions which are used for
specifying SOAP-specific information as well as data types.[3]

 xmlns:tns stands for this namespace.

The types section gives information about any complex data types used in the WSDL document.
The document does not need to have a types sectionwhen simple data types are used.In thesetype
of messages an abstract data definition is communicated.

In the example, the message contains two parts, request, response, which are of type string, where
string is defined by the XML schema.In the prototype an abstract set of operations supported by
one or more endpoints widely known as an interface; operations are defined by exchange of
messages.

The above example defines a portTypenamed DeptPanchayat that consists of two operations:
getAllBPL and getDetailsBPL.The WSDL binding element describes details of using a particular
portType with a given protocol. The binding element contains many extensibility elements and a
WSDL operation element for each operation in the portType. It describes how the operation
isiniatiated by identifying concrete protocol and data format specifications for the operations and
messages. The soap:operation element defines the SOAPAction HTTP header value for each
operation and the soap:body element defines how the message parts appear inside of the SOAP
body element (possible values include literal or encoded).

At services, a collection of related endpoints, where an endpoint is defined as a combination of a
binding and an address (URI).One must give each port a name and assign it a binding. Then,
within the port element, an extensibility element is used to define the address details specific to
the binding. For example, the following sample defines a service called DeptPanchayat that
exposes the tns:DeptPanchayat at the http://localhost/dept_panchayat/bpl_service.php URL.

The following Table-7 shows the PHP code for BPL Service. The bpl_services.php code has two
functions defined as “getdetailsBPL” and “getAllBPL”. “getdetailsBPL” is used to retrieve the
detail information about a single BPL family.The “getALLBPL” is used to retrieve the BPL
holder’s information under a District/Block/Panchayat/Village as required in G2G and G2C
services.

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

16

Table -7 PHP Code for BPL Service

Figure-10 is a screen shot for selecting a particular number of IAY families from a desired
district, which is generally used as a G2G service for providing IAY benefits to the new citizen as
per the suggested list provided by the web service by selecting the most appropriate citizens based

<?php
classBPLClass{
public$HeadName;
public$AddrVill;
public$AddrDist;
public$AddrState;
public$AddrPIN;
public$FamilyIncome;
public$NumMember;
function
__construct($HeadName,$AddrVill,$AddrDist,$AddrState,$AddrPIN,$FamilyIncome,$NumMember
){
$this->HeadName=$HeadName;
$this->AddrVill=$AddrVill;
$this->AddrDist=$AddrDist;
$this->AddrState=$AddrState;
$this->AddrPIN=$AddrPIN;
$this->FamilyIncome=$FamilyIncome;
$this->NumMember=$NumMember;
}
}
include("functions.php");
$db=ConnectDB();
functiongetAllBPL(){
$sql="SELECT `BPL_id` FROM `bplholders` WHERE `BPL_id` NOT LIKE
'Ref_%'";$result=mysql_query($sql);
if(mysql_affected_rows()<=0)returnNULL;
$num_rows=mysql_affected_rows();
for($i=0,$BPL_list="";$i<$num_rows;$i++){
$details=mysql_fetch_array($result);$BPL_list=$BPL_list.", ".$details["BPL_id"];
}
return(trim($BPL_list,", "));
}
functiongetDetailsBPL($BPL_id){if(preg_match('/Ref_/',$BPL_id))returnNULL;
$sql="SELECT * FROM `BPLHolders` WHERE `BPL_id` =
'".$BPL_id."'";$result=mysql_query($sql);
if(mysql_affected_rows()<=0)returnNULL;
$details=mysql_fetch_array($result);
$BPLObj=newBPLClass($details["HeadName"],$details["AddrVill"],$details["AddrDist"],$details["
AddrState"],$details["AddrPIN"],$details["FamilyIncome"],$details["NumMember"]);
return$BPLObj;
}

$server=newSoapServer("dept_service.WSDL",array());
$server->addFunction("getDetailsBPL");
$server->addFunction("getAllBPL");
$server->handle();
CloseDB($db);
?>

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

17

on different services already availed by them. The suggested output list of the query given in
Figure-10 is shown below in Figure-11

Figure 10. Checking the BPL Service Status Snapshot

Figure 11. Suggested List of Beneficiaries for IAY

Figure-12is a screen shot for finding different services already availed by a citizen, given his
BPL_ID. This is a Government to Citizen(G2C) service which crawls all the six department

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

18

databases through the corresponding web services to find out the status of all the services availed
by the BPL citizen. This helps the citizen to apply for the rest of the eligible services which are
marked as not-registered.

Figure-13 is a screen shot for getting the list of beneficiaries of a desired district/block/panchayat
with the list of different services already availed by them. This is a Government to
Government(G2G) service, which helps the administration to provide new services to the most
eligible person of that area, as per the suggested list generated by the web service. To get this list,
it crawls all the six department databases through the corresponding web services to find out the
status of all the services availed by the BPL citizens of that area with name and BPL_ID.

Figure 13. List of beneficiaries with status of different services

Due to space constraint we have not included details of other services like IAY, AAY, Mamata,
NREGA, RSBY and KJYin this paper.

9. SERVICE MONITORING

The ability to set up a Service Based System (SBS) monitoring framework has been increasingly
recognized as one of the essential preconditions for deployment of an
e-Governancesystem. This is because the government organizations involved in the

Figure 12. Snapshot for Checking the individual services availed status

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

19

e-Governanceservice are running independently. Such organization’s services are developed and
managed autonomously and can change without notification leading to run-time problems. As and
when such deviations are detected those must be captured and analysed so as to take appropriate
action. For instance a citizen to get KJY Service, the process involves Panchayat Raj Department,
Energy Department and the designated bank for payment. The citizen may want to know why the
process got delayed. The occurrence of significant delay of this process has to be reported as soon
as possible so that the responsible authority can take prompt action.A monitoring framework has
been developed [2] which is independent of any business logic and service composition platform.
The monitoring engine works in parallel with the SBS and allows for easy adjustment of the
business process. The SBS sends interesting events from the business layer, service layer as well
as from the infrastructure layer and feeds those into an event bus at run-time. The service monitor
observes the events from the event bus and accordingly monitors the functional and non-
functional service composition assumptions and requirements of the SBS. We have also designed
a monitor generator which automatically generates a program for the monitor which is deployed
at run-time, thus reducing the design and implementation efforts.

10. CONCLUSIONS

Developing e-Governance applications has been a daunting task because of the inherent
complexity, dynamic requirements and need for interoperability. The service oriented approach
has emerged as a viable alternative to address the intriguing issues in the implementation of e-
Governance systems. In this work, we have defined a Service Oriented e-Governance (SOeGov)
approach and discussed each step in detail. We have also described the functionality of each of
the service layers, namely, Citizen Access layer, Service Interface Layer, Application Layer,
Shared Services Layer and Data Layer.The proposed layered approach can help in building an
effective service delivery infrastructure for any e-Governance system.

REFERENCES

[1] Das, R. K. and Patra, M. R. (2013). “A Service Oriented Design Approach for e-Governance

Systems”. In International Journal of Information Technology Convergence and Services (IJITCS),
Vol.3, No. 3, pp. 1-11.

[2] Parta, M. R. and Tripathy, A. K., Das, R. K. (2011). “Monitoring of service based e-governance
systems”, 5th International Conference on Theory and Practice of Electronic Governance ICEGOV
2011: September 26–28, 2011, Tallinn, Estonia. ACM Publication, pp. 353-354. doi:
10.1145/2072069.2072138

[3] Oracle JDeveloper - Official Home Page, available at http://www.oracle.com/ technetwork/developer-
tools/jdev/overview/index.html, last accessed on 14/05/2014.

[4] Palvia, S. C. J. and Sharma, S. S. (2007). “E-Government and E-Governance: Definitions/Domain
Framework and Status around the World”. Foundations of E-Government. ICEG 5th International
Conference on E-Governance.

[5] The Oracle SOA Suite Downloads links, available at http://www.oracle.com/
technetwork/middleware/soasuite/downloads/index.html?ssSourceSiteId=opn, last accessed on
14/05/2014.

Authors

Rama Krushna Das is Technical Director (Scientist-E) working with National
Informatics Centre (NIC), Department of Electronics and Information Technology,
Government of India. His research and professional career spans over twenty six
years of coding, research and capacity building in computing, e-governance and
related subjects. His expertise is primarily in the domains of Electronic Governance,
Implementation Architectures and Strategy, and Software Technology. He is
presently involved in development and implementation of different E-Governance

International Journal of Information Technology Convergence and Services (IJITCS) Vol.4, No.3, June 2014

20

projects of NIC. He has published several peer-reviewed papers as journal articles, book chapters, and
contributions to conference proceedings. His research interests are e-governance, software engineering,
Service Oriented Architecture and Cloud computing. He is a life member of Computer Society of India
(CSI) and a professional member of the Association for Computing Machinery (ACM).

Dr. Manas Ranjan Patraholds a Ph.D.degree in Computer Science from the
Central University of Hyderabad and hasbeen teaching in the Department of
Computer Science, Berhampur University for more than 25 years. Currently he is
also the Director of the University Computer Centre. He has worked in the
International Institute for Software Technology, Macau as a United Nations
visiting Fellow in the year 2000. He is actively engaged in teaching and research in
different areas of computer science. His research interests include Intelligent
agents, Service Oriented and Cloud based Computing, applications of data mining
and Electronic Governance. He has more than 100 publications in International journals and conferences to
his credit. He has extensively travelled abroad for presenting research papers in international conferences
held in U.S.A., Australia, Europe, China, Korea, Bangkok and Egypt. He has served as a member in the
Review and Programme committees of various International journals and conferences.

SujataPatnaikis continuing her Master of Computer Applicationsin Berhampur
University, India. She is a gold medallistin B.Sc. Computer Science(Honours) in the
year 2012 from Berhampur University. Her research interests include Service
Oriented Architecture and Cloud Computing.

