
International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

DOI : 10.5121/ijitcs.2012.2203 23

A COMPARATIVE STUDY OF FREQUENT SUBGRAPH

MINING ALGORITHMS

K.Lakshmi1 and Dr. T. Meyyappan2

1. Department of MCA, Sir M.Visvesvaraya Institute of Technology, Bangalore.
lakshmi_kes@rediffmail.com

2. Department of Computer Science and Engineering, Alagappa University,Karaikudi.
meyslotus@yahoo.com

ABSTRACT

Data mining algorithms are facing the challenge to deal with an increasing number of complex objects.

Graph is a natural data structure used for modeling complex objects. Frequent subgraph mining is

another active research topic in data mining . A graph is a general model to represent data and has been

used in many domains like cheminformatics and bioinformatics. Mining patterns from graph databases is

challenging since graph related operations, such as subgraph testing, generally have higher time

complexity than the corresponding operations on itemsets, sequences, and trees. Many frequent subgraph

Mining algorithms have been proposed. SPIN, SUBDUE, g_Span, FFSM, GREW are a few to mention.

In this paper we present a detailed survey on frequent subgraph mining algorithms, which are used for

knowledge discovery in complex objects and also propose a frame work for classification of these

algorithms. The purpose is to help user to apply the techniques in a task specific manner in various

application domains and to pave wave for further research.

KEYWORDS

Frequent subgraph mining, Isomorphism, Pattern growth, Apriori

1. INTRODUCTION

Knowledge discovery in complex objects involves understanding the relationship between their
components. Examples are the Machine learning in domains such as bioinformatics, drug
discovery, adverse drug events and web data mining. Graphs are natural data structures to model
such relations, with nodes representing objects and edges the relationships between them. In this
context, finding similarity between graphs is important. Simple ways of comparing graphs which
are based on pair wise comparison of nodes or edges, are possible in quadratic time, yet may
neglect information represented by the structure of the graph.

As interaction networks are graphs, where each node represents for example, a protein and each
edge represents the presence of an interaction, Conventionally there are two ways of measuring
similarity between graphs. One approach is to perform a pair wise comparison of the nodes
and/or edges in two networks, and calculate an overall similarity score for the two networks
from the similarity of their components. This approach takes time quadratic in the number of
nodes and edges, and is thus computationally feasible even for large graphs. However, this
strategy is flawed in that it completely neglects the structure of the networks, treating them as
sets of nodes and edges instead of graphs. A more principled alternative would be to deem two
networks similar if they share many common substructures, or more technically, if they share
many common subgraphs. To compute this, however, we would have to solve the so-called

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

24

subgraph isomorphism problem which is known to be NP-complete, i.e., the computational cost
of this problem increases exponentially with problem size, seriously limiting this approach to
very small networks. Many heuristics have been developed to speed up sub graph isomorphism
by using special canonical labelings of the graphs; none of them, however, can avoid an
exponential worst-case computation time.

2. PRIMER ON GRAPH THEORY

A graph G consists of a set of nodes (or vertices) V and edges E. Let n denotes the number of
nodes in a graph and m the number of edges in a graph. An attributed graph is a graph with
labels on nodes and/or edges; we refer to labels as attributes. In our case, attributes will consist
of pairs of the form (attribute-name, value). The unnormalized adjacency matrix A of G is
defined as

where vi and vj are nodes in G. If G is weighted then, A can contain non-negative entries other
than zeroes and ones. i.e Aij e (0,¥) if (vi,vj) e E and zero otherwise. Let D be a nxn diagonal
matrix with entries Dii = Sj Aij. The matrix P := AD-1 is called the normalized adjacency
matrix. Let X be a set of labels which includes the special label e. An edge labeled graph G is
associated with a label matrix L e X nxn , such that Lij = iff (vi,vj) . A walk w of length k − 1 in
a graph is a sequence of nodes v1, v2, · · · ,vk where (vi−1, vi) e E for 1 < i £ k. w is a path if vi
¹ vj iff i ¹ j, j e {1, . . . , k} . Alternatively, walks are often referred to as paths; paths are then
named simple, unique or loopless paths, which may lead to some confusion. To clarify the
difference for the remainder of this article, we define a path to be a walk without repetitions of
nodes. A cycle is a walk with v1 = vk, a simple cycle does not have any repeated nodes except
for v1. A Hamilton path is a path that visits every node in a graph exactly once. An Euler path is
a path that visits every edge in a graph exactly once.If a graph is undirected, and that the
vertices and edges in a graph are labeled. The labels of an edge e and a vertex v are denoted by
l(e) and l(v) respectively. Each vertex (or edge) of a graph is not required to have a unique label
and the same label can be assigned to many vertices (or edges) in the same graph. Given a graph
G = (V, E), a graph Gs = (Vs , Es) is a subgraph of G if Vs Í V and Es ÍE, and is denoted by Gs
ÍG. The sub graph Gs is said to be covered by G. If a sub graph Gs Í G is isomorphic to another
graph H, then Gs is called an embedding of H in G. In this report, a sub graph is often called a
pattern. The total number of embeddings of Gs in a graph G is called the raw frequency of Gs .
Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if they are topologically identical
to each other, that is, there is a vertex mapping from V1 to V2 such that each edge in E1 is
mapped to a single edge in E2 and vice versa. In the case of labeled graphs, this mapping must
also preserve the labels on the vertices and edges. When a set of graphs {Gi } are isomorphic to
each other, they all are said to belong to the same equivalence class. When the equivalence class
of Gi represents an edge, the class is called an edge-type. Given two graphs G1 = (V1, E1) and
G2 = (V2, E2), the problem of sub graph isomorphism is to find an isomorphism between G2
and a sub graph of G1. In other words, the sub graph isomorphism problem is to determine
whether or not G2 is embedded in G1.

Given a sub graph Gs and a graph G, two embeddings of Gs in G are called identical if they use
the same set of edges of G, edge-disjoint if they do not have any edges of G in common, and
vertex-disjoint if no vertices of G in common. Given a set of all embeddings of a particular sub

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

25

graph Gs in a graph G, the overlap graph of Gs is a graph obtained by creating a vertex for each
non-identical embedding and creating an edge for each pair of non-vertex-disjoint embeddings.
Contraction of an edge e = uv of a graph G = (V, E) is to merge two endpoints u and v together
into a new vertex w by removing the edge e, while keeping all the other edges incident to u and
v. The remaining edges that used to be incident to either u or v are connected to w after the
contraction. The newly added vertex w represents the original edge e. Note that, if there are
multiple edges between two vertices u and v, the contraction of e removes only e. The rest of the
multiple edges between u and v become loops around w after the contraction. A subtree of an
undirected graph G is an acyclic connected subgraph of G. A subtree T is a spanning tree of G if
T contains all nodes in G. Given a graph G, there are many spanning trees. A canonical spanning
tree of G is a maximal spanning tree defined on a total order on the trees. A spanning tree is a
tree that has paths connecting each node with every other node of the graph. A trie is a data
structure that stores the information about the contents of each node in the path from the root to
the node, rather than the node itself.

3. OVERVIEW OF FREQUENT SUBGRAPH MINING

This section provides a generic overview of the process of FSM. Any frequent subgraph mining
process involves 3 aspects , i) graph representation ii) subgraph Enumeration and iii) frequency
counting.

3.1 Graph Representations

The simplest mechanism whereby a graph structure can be represented is by employing an
adjacency matrix or adjacency list. Using an adjacency matrix the rows and columns represent
vertexes, and the intersection of row i and column j represents a potential edge connecting the
vertexes vi and vj . The value held at intersection < i, j > typically indicates the number of links
from vi to vj . However, the use of adjacency matrices, although straightforward, does not lend
itself to isomorphism detection, because a graph can be represented in many different ways
depending on how the vertexes (and edges) are enumerated (Washio & Motoda 2003). With
respect to isomorphism testing it is therefore desirable to adopt a consistent labeling strategy that
ensures that any two identical graphs are labeled in the same way regardless of the order in
which vertexes and edges are presented (i.e. a canonical labeling strategy). A canonical labeling
strategy defines a unique code for a given graph.

Canonical labeling facilitates isomorphism checking because it ensures that if a pair of graphs
are isomorphic, then their canonical labeling will be identical [5] (Kuramochi & Karypis 2001).
One simple way of generating a canonical labeling is to flatten the associated adjacency matrix
by concatenating rows or columns to produce a code comprising a list of integers with a
minimum (or maximum) lexicographical ordering imposed. To further reduce the computation
resulting from the permutations of the matrix, canonical labeling are usually compressed, using
what is known as a vertex invariant scheme (Read & Corneil 1977), that allows the content of an
adjacency matrix to be partitioned according to the vertex labels. Various canonical labeling
schemes have been proposed, some of the more significant are described in this subsection.

Minimum DFS Code (M-DFSC): There are a number of variants of DFS encodings, but
essentially each vertex is given a unique identifier generated from a DFS traversal of a graph
(DFS subscripting). Each constituent edge of the graph in the DFS code is then represented by a
5-tuple: (i, j, li, le, lj), where i and j are the vertex identifiers, li and lj are the labels for the

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

26

corresponding vertexes, and le is the label for the edge connecting the vertexes. Based on the
DFS lexicographic order, the M-DFSC of a graph g can be defined as the canonical labeling of g
[11] (Yan & Han 2002).

Canonical Adjacency Matrix (CAM): Given an adjacency matrix M of a graph g, an encoding of
M can be obtained by the sequence obtained from concatenating the lower(or upper) triangular
entries of M, including entries on the diagonal. Since different permutations of the set of
vertexes correspond to different adjacency matrices, the canonical (CAM) form of g is defined as
the maximal (or minimal) encoding. The adjacency matrix from which the canonical form is

generated defines the Canonical Adjacency Matrix or CAM[4][5][8](Inokuchi et al. 2000,2002;
Kuramochi & Karypis 2001; Huan et al. 2003).

3.2 Subgraph Enumeration

The current methods for enumerating all the subgraphs might be classified into two categories:
one is the join operation adopted by FSG[5] and AGM [4] and another one is the extension
operation . The major concerns for the join operation are that a single join might produce
multiple candidates and that a candidate might be redundantly proposed by many join
operations. The concern for the extension operation is to restrict the nodes that a newly
introduced edge may attach to. Equivalence class based extension (Zaki 2002, 2005) is founded
on a DFS-LS representation for trees. Basically, a (k + 1)-subtree is generated by joining two
frequent k-subtrees. The two k subtrees must be in the same equivalence class . An equivalence
class consists of the class prefix encoding, and a list of members. Each member of the class can
be represented as a (l, p) pair, where l is the k-th vertex label and p is the depth-first position of
the k-th vertex’s parent. It is verified, in Zaki (2002), that all potential (k + 1)-subtrees with the
prefix [C] of size (k − 1) can be generated by joining each pair of members of the same
equivalent class [C]. Equivalence classes can be based on either prefix or suffix.

3.3 Frequency Counting

Two Methods are used for graph counting: Embedding lists (EL) and Recomputed embeddings

(RE). For graphs with a single node we store an embedding list of all occurrences of its label in
the database. For other graphs a list is stored of embedding tuples that consist of (1) an index of
an embedding tuple in the embedding list of the predecessor graph and (2) the identifier of a
graph in the database and a node in that graph. The frequency of a structure is determined from
the number of different graphs in its embedding list. Embedding lists are quick, but they do not
scale very well to large databases. The other approach is based on maintaining a set of active"
graphs in which occurrences are repeatedly recomputed.

4 A SURVEY OF FSM ALGORITHMS

The frequent subgraph discovery problem has been addressed from many directions using
various approaches, including a priori strategy and pattern growth approach. Also the
algorithms differ in the type of input graphs, search strategy they use and method of
representation of graphs etc. Hence, there exist many algorithms based on different approaches.
This makes the task of identifying a suitable algorithm for any given application scenario an
involved process. In this paper, we present a survey and propose to establish a framework for
classification of these algorithms to help in understanding and analyzing various properties and
limitations of few of these algorithms. A quick reference of 26 frequent subgraph mining
algorithms is presented in Table 1 and Table 2. Other than that five algorithms which are

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

27

extensions of existing algorithms is also studied in the following sections.

Table 1. Algorithms based on Pattern growth approach

S.N

o

Algorithm Input

type

Graph

represen-

tation

Subgraph

generatio

n

Frequ

ency

counti

ng

Nature of

output

Limitations

1. MOFA
[2002]

Set of
graphs

Adjace-
ncy list

Rightmost
extension

DFS All
frequent
subgraphs

Frequent
graphs not
exactly
frequent.

2. GSpan
[2002]

Set of
graphs

Adjacenc
y list

Rightmost
extension

 DFS frequent
graphs

Not scalable

3. CloseGrap
h [2003]

Set of
graphs

Adjacenc
y list

Rightmost
extension

DFS Closed
Connecte
d frequent
graphs

Failure
detection
takes lot of
time overhead

4. Gaston
[2004]

Set of
graphs

Hash
table

Extension Embed
ding
lists

Maximal
frequent
sugraphs

Interesting
patterns may
be lost

5. SUBDUE
[2005]

Single
large
graph

Adjacenc
y matrix

Level-
wise
search

MDL Complete
set of
frequent
subgraphs

Extremely
small no. of
patterns

6. Gapprox
[2006]

Single
large
graph

Edge
Triplet

Approxim
ation

DFS Frequent
approxim
ate
patterns

7. HybridGM
iner[2006]

Set of
Graphs

Adjacenc
y list

Embeddin
g Lists

DFS Frequent
subgraphs

Extension of
existing
frequent
pattern is
complicated

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

28

and needs
extra memory

8. MSPAN
[2009]

Set of
graphs

Adjace-
ncy list

Rightmost
extension

DFS Frequent
subgraphs

Works on
labelled
graphs only.

9. FCP Miner
[2009]

Set of
graphs

Canonical
Labeling

Rightmost
extension

DFS Frequent
Correlate
d
subgraphs

Works on
labelled
graphs only.

10. RING
[2009]

Set of
graphs

Adjacenc
y Matrix

Invariant
Vectors

DFS Represent
ative
graphs

Needs post
processing

11. SCMiner
[2009]

Set of
partiall
y
labelled
graphs

Canonical
Labeling

Rightmost
extension

DFS Partially
labelled
frequent
subgraphs

Works on
labelled
graphs only.

12. Graphsig
[2009]

Set of
graphs

Feature
Vector

Extension DFS Frequent
significan
t patterns

Needs post
processing

13. JPMiner
[2009]

Set of
graphs

Adjace-
ncy list

Rightmost
extension

DFS Frequent
jump
patterns

Some -times
much smaller
set of jump
patterns.

14. RP-GD
[2010]

Set of
graphs

Adjace-
ncy list

Rightmost
extension

DFS Represen-
tative
graphs

Time for
summari-zing
the patterns is
more than
that for
mining

15. TSP
[2010]

Set of
graphs

Adjacenc
y list

Extension TSP
tree

Closed
Temporal
frequent
subgraphs

Extra
overhead to
check closed
property

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

29

16. RP-FP
[2010]

Set of
graphs

Adjace-
ncy list

Rightmost
extension

DFS Represen-
tative
graphs

Overhead for
summarizing

Table 2. Algorithms based on Apriori approach

S.

N

o

Algorithm Input type Graph

repre-

sentation

Candidate

generation

Frequenc

y

counting

Nature of

output

Limitations

1. FARMER
[1999]

Set of
graphs

Trie
structure

Level-wise
search ILP

Trie data
structure

Frequent
subgraphs

Inefficient

2. HSIGRAM
[1999]

Single
large graph

Adjacenc
y matrix

Iterative
merging

Maximal
indepen-
dent set

Frequent
subgraphs

Ineffecient

3. AGM
[2000]

Graph
database

Adjacenc
y matrix

Vertex
extension

Canonical
labelling

Frequent
subgraphs

Np-
complete

4. FSG
[2001]

Set of
graphs

Adjacenc
y list

One edge
extension

Transactio
n
identifier
(TID) lists

Frequent
connected
subgraphs

Largely
distinct
labels on
edges
needed

5. FFSM
[2003]

Set of
graphs

Adjacenc
y matrix

Merging
and
extension

Sub-
optimal
CAM tree

Frequent
subgraphs

Np-
complete

6. ISG
[2004]

Set of
graphs

Edge
triplet

Edgetriplet
extension

TID lists Maximal
Frequent
subgraphs

Incomplete
set of
Graphs

7. SPIN
[2004]

Set of
graphs

Adjacenc
y matrix

Join
Operation

Canonical
Spanning
Tree

Maximal
frequent
subgraphs

Needs entire
DB scan

8. GREW
[2004]

Single
large graph

Sparse
graph
represent
ation.

Iterative
merging

Maximal
indepen-
dent set

Maximal
frequent
subgraphs

Misses
many
interesting
patterns

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

30

9. Dynamic
GREW
[2005]

Dynamic
graphs

Sparse
graph
represent
ation.

Iterative
merging

Suffix
trees

Dynamic
patterns in
frequent
subgraphs.

Extra
overhead to
identify
dynamic
patterns

10 MUSE
[2009]

Uncertain
set of
graphs

Adjaceny
Matrix

Disjunctive
normal
forms

DFS
coding
scheme

Frequent
subgraphs

Frequent
subgraphs
are not
exact.

4.1 Classification based on Algorithmic approach.

It is widely accepted that FSM techniques can be divided into two categories: (i) Apriori-based
approaches, and (ii) pattern growth-based approach.

4.1.1 Apriori Based Approach

Apriori-based frequent substructure mining algorithms share similar characteristics with Apriori-
based frequent itemset mining algorithms. The search for frequent graphs starts with graphs of
small “size”, and proceeds in a bottom-up manner. At each iteration, the size of newly
discovered frequent substructures is increased by one. These new substructures are first
generated by joining two similar but slightly different frequent subgraphs that were discovered
already. The frequency of the newly formed graphs is then checked. The Apriori-based
algorithms have considerable overhead when two size-k frequent substructures are joined to
generate size-(k+1) graph candidates. Typical Apriori-based frequent substructure mining
algorithms are discussed in the following paragraphs.

The AGM[4] algorithm uses a vertex-based candidate generation method that increases the
substructure size by one vertex at each iteration. Two size-k frequent graphs are joined only
when the two graphs have the same size-(k − 1).

ISG [15] represents graphs in an entirely different manner. It transforms the input set of graphs
into item sets which are then represented using edge triplet. ISG uses a approach known as edge
triplet extension in which a discovered item set is extended by adding one edge triplet in each
iteration. ISG carries out frequent subgraph discovery by transforming graphs into itemsets
followed by frequent itemset discovery, which is also apriori-based. The resultant frequent
itemsets are transformed back to subgraphs. In pattern-growth approach, the subgraph generation
is carried out by extending the previously discovered subgraph by one node or one edge. ISG use
transaction identifier (TID) lists for frequency counting. Each frequent subgraph has a list of
transaction identifiers which support it. For computing frequency of a k subgraph, the
intersection of the TID lists of (k – 1) subgraphs is computed.

FARMER[18] uses trie for graph representation. In level-wise search, the algorithm finds a
subgraph and then enumerates the instances of the subgraph by one adjacent edge in all possible
ways. FARMER follow this mechanism for subgraph generation. FARMER, which has been
developed as an enhancement to WARMR, an earlier developed algorithm which works on the
basis of ILP approach, is based on a combination of a priori and ILP approaches. FARMER uses

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

31

the trie data structure for frequency computation also.

HSIGRAM [22] uses adjacency matrix representation of graph. HSIGRAM use iterative
merging for subgraph generation. In case of HSIGRAM the aim is to find the maximal
independentset of a graph which is constructed out of the embeddings of a frequent subgraph so
as to evaluate its frequency.

Huan, wang and Prince [7] in 2003 proposed a novel subgraph mining algorithm: FFSM, which
employs a vertical search scheme within an algebraic graph framework.It uses a restricted join
operation to generate candidates and stores embeddings to avoid explicit subgraph isomorphism
testing. It uses a sub-optimal canonical adjacency matrix tree for counting the frequency. Their
studies on synthetic and real datasets demonstrated that FFSM achieves a substantial
performance gain over the start-of-the art subgraph mining algorithm gSpan.

One fundamental challenge for mining recurring subgraphs from semi-structured data sets is the
overwhelming abundance of suchpatternsc. In large graph databases, the total number of
frequent subgraphs can become too large to allow a full enumeration using reasonable
computational resources. Jun Huan, Wei WangPrins, Jiong Yang, Jan [8] proposed a new
algorithm, Spin that mines only maximal frequent subgraphs, i.e. subgraphs that are not a part of
any other frequent subgraphs. This may exponentially decrease the size of the output set in the
best-case; in our experiments on practical data sets, mining maximal frequent subgraphs reduces
the total number of mined patterns by two to three orders of magnitude. It first mines all frequent
trees from a general graph database and then reconstructs all maximal subgraphs from the mined
trees. SPIN offered very good scalability to large graph databases and at least an order of
magnitude performance improvement in synthetic graph data sets. The efficiency of the
algorithm is also confirmed by a benchmark chemical data set. This algorithm of compressing
large number of frequent subgraphs to a much smaller set of maximal subgraphs.lt is used to
investigate demanding applications such as finding structure patterns from proteins in the future.

Michihiro Kuramochi and George Karypis [9] in 2004 proposed a heuristic algorithm called
GREW to overcome the limitations of existing complete or heuristic frequent subgraph
discovery algorithms. GREW is designed to operate on a large graph and to find patterns
corresponding to connected subgraphs that have a large number of vertex-disjoint embeddings.
Their experimental evaluation showed that GREW is efficient, can scale to very large graphs,
and find non-trivial patterns that cover large portions of the input graph and the lattice of
frequent patterns.

Karsten M. Borgwardt, Hans-Peter Kriegel, Peter Wackersreuther [28] investigated how pattern
mining on static graphs can be extended to time series of graphs, ie. dynamic graphs. They
proposed a framework into which Existing subgraph mining algorithms can be easily integrated
and handle dynamic graphs. Experimental results on real-world data confirm the practical
feasibility of their approach. In particular, we are looking for subgraphs that are topologically
frequent within a large graph and that show insertions and deletions of edges in the same
temporal order. It might be used to study frequent motifs in protein-protein interaction
dynamics, as well as in social or telecommunication networks.

Lini T Thomas Satyanarayana R ValluriKamalakar Karlapalem [13] in 2006 proposed an
algorithm MARGIN that mines maximal frequent subgraphs. MARGIN- Maximal frequent
mining has triggered much interest since the size of the set of maximal frequent subgraphs is
much smaller to that of the set of frequent subgraphs. The set of candidate subgraphs which are
likely to be maximally frequent are the set of -edge frequent subgraphs that have a z-edge
infrequent supergraph. The Margin algorithm computessuch a candidate set efficiently and finds

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

32

the maximal subgraphs by a post-processing step. They have proved that the performance of the
Margin algorithm is 20 times faster than gSpan for certain datasets.

ZhaonianZou, Jianzhong Li, and Shuo Zhang [17] in 2010 proposed an algorithm for Mining
Frequent Subgraph Patterns from Uncertain Graph Data. In many real applications, graph data is
subject to uncertainties due to incompleteness and imprecision of data. Mining such uncertain
graph data is semantically different from and computationally more challenging than mining
conventional exact graphdata. A novel model of uncertain graphs is presented, and the frequent
subgraph pattern mining problem is formalized by introducing a new measure, called expected
support. An approximate mining algorithm called MUSE (Mining Uncertain Sub graph
pattErns), is proposed to find a set of approximately frequent subgraph patterns by allowing an
error tolerance on expected supports of discovered subgraph patterns. The algorithm uses
efficient methods to determine whether a subgraph pattern can be output or not and new pruning
method to reduce the complexity of examining subgraph patterns. Analytical and experimental
results showed that the algorithm is very efficient, accurate, and scalable for large uncertain
graph databases. This is the first algorithm to investigate the problem of mining frequent sub
graph patterns from uncertain graph data.

4.1.2 Pattern-growth approach

In order to avoid the overhead of apriori algorithms, non-Apriority-based algorithms have been
developed, most of which adopt the pattern-growth methodology, as discussed below. Pattern-
growth-based graph pattern mining algorithms include gSpan by Yan and Han (2002), MoFa by
Borgelt and Berthold (2002), FFSM by Huan et al. (2003), SPIN by Huan et al. (2004), and
Gaston by Nijssen and Kok (2004). These algorithms are inspired by PrefixSpan (Pei et al.
2001), TreeMinerV (Zaki 2002), and FREQT (Asai et al. 2002) at mining sequences and trees,
respectively. The pattern-growth mining algorithm extends a frequent graph by adding a new
edge, in every possible position. A potential problem with the edge extension is that the same
graph can be discovered many times. The gSpan [11] algorithm solves this problem by
introducing a right-most extension technique, where the only extensions take place on the right-
most path. A right-most path is the straight path from the starting vertex v0 to the last vertex vn,
according to a depth-first search on the graph. Typical pattern growth algorithms are discussed in
the following paragraphs.

Frequency counting process for Gaston is carried out with the help of embedding lists, where all
the occurrences of a particular label are stored in the embedding lists.

Borgelt and Berthold [10] in 2002 presented an algorithm Mofa to find fragments in a set of
molecules that help to discriminate between different classes for instance, activity in a drug
discovery context. Yan and Han [11] in 2002 investigated new approaches for frequent graph-
based pattern mining in graph datasets and proposed a novel algorithm called gSpan. gSpan is a
graph-based substructure pattern mining. This discovered frequent substructures without
candidate generation.

Yan and Han [12] in 2003 proposed to mine closed frequent graph patterns. A graph g is closed
in a database if there exists no proper subgraph of g that has the same support as g. A closed
graph pattern mining algorithm, CloseGraph, is developed by exploring several interesting
looping methods. Their performance studies shown that CloseGraph not only dramatically
reduces unnecessary subgraphs to be generated, but also substantially increases the efficiency of
mining, especially in the presence of large graph patterns.

Yong Liu, Jianzhong Li, Hong Gao [23] in 2009 studied the problem of mining frequent jump

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

33

patterns from graph databases. They have showed that Mining frequent jump patterns can
dramatically reduce the number of output graph patterns, and still capture interesting graph
patterns. By integrating the operation of checking jump patterns into the well-known DFS code
tree enumeration framework, they presented an efficient algorithm JPMiner for this new
problem. Their experimental evaluation of JPMiner using both real and synthetic datasets,
showed that the number of frequent jump patterns is much smaller than that of closed frequent
graph patterns, and also JPMiner is efficient and scalable in mining frequent jump patterns.
Chia-HuiChang and Cheng-Tao Ho in 2006 proposed an hybrid algorithm HybridGMiner which
is based on pattern growth approach. It combines the embedding listing and canonical form to
take the advantage of generating new frequent patterns from existing patterns. It is a hybrid of
Mofa and gspan.

Most of existing frequent subgraph mining algorithms are used to deal with undirected unlabeled
marked graph. A few of them aim at directed graph or labeled graph because it is very complex
to consider that. But in the real world, a lot of connections have directions and labels, so directed
labeled graph mining is more meaningful. Yuhua Li Quan Lin and Duan Yanan [25] Bi in 2009
analyzed a financial network by modelling it as a directed weighted graph. They proposed a new
algorithm mSpan for directed labeled graph frequent pattern mining. Based on FP-growth, the
algorithm gets a minimum edge code and an abstract node code sequence to identify a directed
graph pattern uniquely through minimum extension. It also solved the graph pattern isomorphic
problem and the redundant extension problem. Their experiment showed that mSpan can mine
all frequent directed, labeled graph patterns.

Shijie Zhang , Jiong Yang and Shirong Li [31] in 2009 proposed RING an integrated method
for
frequent representative subgraph mining . It involves a two-step process. The first stage is to
compute the pattern distribution. It randomly mine a set of frequent subgraph patterns, cluster
the patterns, and select the centers of the clusters as the initial representative patterns. Based on
this, we will know how the frequent patterns are distributed approximately. In the second stage,
it adopts a depth first searching algorithm to mine representative to a pre-set space limit.

Houqun YANG, Zhongshi HE, Xing WU [32] in 2009 proposed an algorithm based on node
pruning, path pruning and structure pruning that applied pattern-weakening support constraints
in mining partially labeled subgraphs. The main idea is to push forward the check conditions into
the process of mining so that user can interact with the process of mining partially labeled
subgraphs, and reach the final object for improving mining efficiency. The results showed that it
can eliminate effectively subgraph mining search space by pushing forward the constraint into
the process of mining and to a certain extent reduce the mining cost in both space and time.

Cheng-Te Li, Hsun-Ping Hsieh [26] proposed a novel algorithm, TSP-algorithm (Temporal
Subgraph Patterns algorithm) to mine the patterns which contain temporal information and forms
a connective subgraph. The proposed method recursively grows the patterns in a depth-first
search manner. Since the TSP-algorithm only needs to scan the database once and does not
generate unnecessary candidates, the experiment results showed that the TSP-algorithm
outperforms the modified Apriori on time-efficiency and memory usage in both synthetic and
real datasets.

Jianzhong Li, Yong Liu, and Hong GaoWe [27] in 2011 investigated the problem of
summarizing frequent subgraphs by a smaller set of representative patterns. They showed that
some special graph patterns, called _-jump patterns , must be representative patterns. Based on

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

the fact,they devised two algorithms, RP
summarizes frequent subgraphs.
subgraphs, whereas RP-GD mines a representative set from graph databases directly. Three
novel heuristic strategies, Last
Representative-Based-Cover, are proposed to further improve the efficiency of RP
can provide a tight ratio bound but has heavy computation cost. RP
bound guarantee but is more efficient than RP

Sayan Ranu , Ambuj K. Singh [34]
mine significant subgraphs from large graph
feature vectors where each vector represents a region within the graph. Domain
used to select a meaningful feature set.
space, and groups candidate subgraphs into
subgraph mining can be performed on each set with a high frequency
experimentally proved to be scalable.

4.2 Classification based on Search strategy

There are two basic search strategies employed for finding out frequent subgraphs: the breadth
first search (BFS) strategy and the depth first search (DFS) strategy.

4.3 Classification based on Nature of the input

The algorithms are of two types based on the exactness of the input they take. The first type
takes in a exact graph sets as input, whereas the second type takes a uncertain set of graphs as
input. Another possibility is based on the type of the graph. The first type takes in a single large
graph as input, whereas the second type takes a set of small graphs as input. The third
on the correctness of the graph data where it can be accurate or uncerta

4.4 Classification based on Completeness of the output

Based on the set of the frequent subgraphs discovered, the algorithms are of two types. The first
type returns the complete set of frequent subgraphs, whereas the second type returns a partial se
of frequent subgraphs.

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

the fact,they devised two algorithms, RP-FP and RP-GD, to mine a representative set that
summarizes frequent subgraphs. RP-FP derives a representative set from frequent closed

GD mines a representative set from graph databases directly. Three
novel heuristic strategies, Last-Succeed-First-Check, Reverse-Path-Trace, and Nephew

, are proposed to further improve the efficiency of RP
can provide a tight ratio bound but has heavy computation cost. RP-GD cannot provide a ratio

ut is more efficient than RP-FP.

[34] proposed a highly scalable technique, called GraphSig, to
mine significant subgraphs from large graph databases. It converts each graph into a set of

where each vector represents a region within the graph. Domain knowledge is
eature set. It accesses only a small portion of the exponential

space, and groups candidate subgraphs into sets based on their similarity. As a result, frequent
mining can be performed on each set with a high frequency threshold.

rimentally proved to be scalable.

4.2 Classification based on Search strategy

There are two basic search strategies employed for finding out frequent subgraphs: the breadth
first search (BFS) strategy and the depth first search (DFS) strategy.

4.3 Classification based on Nature of the input

The algorithms are of two types based on the exactness of the input they take. The first type
takes in a exact graph sets as input, whereas the second type takes a uncertain set of graphs as

possibility is based on the type of the graph. The first type takes in a single large
graph as input, whereas the second type takes a set of small graphs as input. The third
on the correctness of the graph data where it can be accurate or uncertain.

Completeness of the output

Based on the set of the frequent subgraphs discovered, the algorithms are of two types. The first
type returns the complete set of frequent subgraphs, whereas the second type returns a partial se

 Figure 1. Classification of FSM algorithms

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

34

GD, to mine a representative set that
FP derives a representative set from frequent closed

GD mines a representative set from graph databases directly. Three
Trace, and Nephew-

, are proposed to further improve the efficiency of RP-GD. RP-FP
GD cannot provide a ratio

called GraphSig, to
each graph into a set of

knowledge is
ccesses only a small portion of the exponential search

sets based on their similarity. As a result, frequent
threshold. It is

There are two basic search strategies employed for finding out frequent subgraphs: the breadth

The algorithms are of two types based on the exactness of the input they take. The first type
takes in a exact graph sets as input, whereas the second type takes a uncertain set of graphs as

possibility is based on the type of the graph. The first type takes in a single large
graph as input, whereas the second type takes a set of small graphs as input. The third is based

Based on the set of the frequent subgraphs discovered, the algorithms are of two types. The first
type returns the complete set of frequent subgraphs, whereas the second type returns a partial set

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

35

4.5 Extension of Existing algorithms

Many algorithms have been proposed, which are either extensions of the existing algorithms or a
hybrid of two or more existing algorithms. FCP-Miner[29], is one such a fast approximate
algorithm, which uses a very effective skipping mechanism that eliminates the processing of
majority of graphs during the mining. It is shown that the missing pairs of frequent correlated
sub graphs due to approximation are only a small set of marginally correlated pairs. Extensive
experiments verified that the algorithm is both efficient and effective.

A Hybrid fragment mining algorithm[30] which is a combination of Mofa and FSG is proposed
in 2004. It uses a search strategy which is a combination of BFS and DFS. It is proved to be
more efficient than both Mofa and FSG.

Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han[33], investigated the problem of mining
frequent approximate patterns from a massive network and proposed a method called gApprox.
gApprox not only finds approximate network patterns, which is the key for many knowledge
discovery applications on structural data, but also enriches the library of graph mining
methodologies by introducing several novel techniques.

A new general framework, called gPrune, is proposed by Feida Zhuy Xifeng Yany Jiawei Hany

Philip S. Yuz [35] to incorporate all the constraints in such a way that they recursively reinforce
each other through the entire mining process. A new concept, Pattern-inseparable Data-
antimonotonicity, is proposed to handle the structural constraints unique in the context of graph,
which, combined with known pruning properties, provides a comprehensive and unified
classification framework for structural constraints. The exploration of these anti - monotonicities
in the context of graph pattern mining is a significant extension to the known classification of
constraints, and deepens our understanding of the pruning properties of structural graph
constraint. The major advantage of this algorithm is it can be applied to both apriori and pattern
growth approach.

5. APPLICATION DOMAINS

Graph mining is useful in the areas of chemo-informatics, Bio-informatics, study of biological
networks, Web analysis, Traffic analysis in telecommunication networks, social human behavior
analysis, financial network analysis and wireless networks. In this paper we present a
classification of algorithms based on their suitability to specific application domains.

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

 Figure 2. Classification of FSM algorithms

6. RESEARCH DIRECTIONS

We have abundant literature published in research into frequent pattern mining. But still there
are several critical research problems that need to be solved before frequent pattern mining can
become a cornerstone approach in data mining applications. First, the most focus
extensively studied topic in frequent pattern mining is perhaps scalable mining methods. Second
is the efficiency of the frequent subgraph mining algorithms. Third is not on whether we can
derive the complete set of frequent patterns under certain c
we can derive a compact but high quality set of patterns that are most useful in applications and
whether we can mine such patterns directly and efficiently. Fourth, to make frequent pattern
mining an essential task in data mining. Classification is an essential task in data mining. We can
generate frequent patterns in such a way that, they can become input for classification or
clustering models.

7. CONCLUSION

In this paper, we present a brief overview of the current status and future directions of frequent
pattern mining. There are various
bioinformatics etc. where mining
required. Due to increasing size and complexity of patterns in the
mining algorithm. With over a decade of extensive research, there have been hundreds of
research publications and tremendous research,
domain. Many algorithms for frequent subgraph mining have been proposed so far. Most of the
algorithms, they focus only on a static set of graphs. Very few algorithms are for mining patterns
from dynamic set of graphs. Also all the algorithms proposed so far, outperform each other,
either in terms of memory requirements or in terms of few orders of magnitude of computation
time. None of them completely address the issue of NP
problem. Also the algorithms mine either a specific set of patterns or

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

. Classification of FSM algorithms based on Application Domains

ESEARCH DIRECTIONS

iterature published in research into frequent pattern mining. But still there
are several critical research problems that need to be solved before frequent pattern mining can
become a cornerstone approach in data mining applications. First, the most focus
extensively studied topic in frequent pattern mining is perhaps scalable mining methods. Second
is the efficiency of the frequent subgraph mining algorithms. Third is not on whether we can
derive the complete set of frequent patterns under certain constraints efficiently but on whether
we can derive a compact but high quality set of patterns that are most useful in applications and
whether we can mine such patterns directly and efficiently. Fourth, to make frequent pattern

data mining. Classification is an essential task in data mining. We can
generate frequent patterns in such a way that, they can become input for classification or

In this paper, we present a brief overview of the current status and future directions of frequent
There are various inter-disciplinary domains like chemo informatics

mining of recurrent patterns across large collection of networks
. Due to increasing size and complexity of patterns in there is a need for efficient graph

With over a decade of extensive research, there have been hundreds of
research publications and tremendous research, development and application activities in this
domain. Many algorithms for frequent subgraph mining have been proposed so far. Most of the
algorithms, they focus only on a static set of graphs. Very few algorithms are for mining patterns

of graphs. Also all the algorithms proposed so far, outperform each other,
either in terms of memory requirements or in terms of few orders of magnitude of computation
time. None of them completely address the issue of NP-completeness of the subgraph mini
problem. Also the algorithms mine either a specific set of patterns or a complete set of patterns

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

36

Application Domains

iterature published in research into frequent pattern mining. But still there
are several critical research problems that need to be solved before frequent pattern mining can
become a cornerstone approach in data mining applications. First, the most focused and
extensively studied topic in frequent pattern mining is perhaps scalable mining methods. Second
is the efficiency of the frequent subgraph mining algorithms. Third is not on whether we can

onstraints efficiently but on whether
we can derive a compact but high quality set of patterns that are most useful in applications and
whether we can mine such patterns directly and efficiently. Fourth, to make frequent pattern

data mining. Classification is an essential task in data mining. We can
generate frequent patterns in such a way that, they can become input for classification or

In this paper, we present a brief overview of the current status and future directions of frequent
domains like chemo informatics,

lection of networks is
need for efficient graph

With over a decade of extensive research, there have been hundreds of
development and application activities in this

domain. Many algorithms for frequent subgraph mining have been proposed so far. Most of the
algorithms, they focus only on a static set of graphs. Very few algorithms are for mining patterns

of graphs. Also all the algorithms proposed so far, outperform each other,
either in terms of memory requirements or in terms of few orders of magnitude of computation

completeness of the subgraph mining
a complete set of patterns

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

37

which may not be significant. So there is a need for an efficient algorithm which can mine
significant patterns specific to the application, both from a static or dynamic set of graphs in less
than polynomial time. Also the mined interesting patterns can used as input to other data mining
tasks such as for classification or clustering for further knowledge discovery. Hence lot of
research is required towards the improvements suggested.

8. REFERENCES

[1] D. J. Cook and L. B. Holder, “Substructure discovery using minimum description length and
background knowledge” Journal of Artificial intelligence Research, 1, 1994, 231-255.

[2] S. Fortin. The graph isomorphism problem. Technical Report TR96-20, Department of
Computing Science, University of Alberta, 1996.

[3] L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in chemical
compounds. In R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, editors, Proc. of the 4th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-98), pages
30–36. AAAI Press, 1998.

[4] A. Inokuchi, T.Washio, and H. Motoda. An apriori-based algorithm for mining frequent
substructures from graph data. In PKDD’00.

[5] M.Kuramochi and G. Karypis . Frequent Subgraph Discovery. In ICDM’01.

[6] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-structure based approaches for
classifying chemical compounds. In Proc. of 2003 IEEE International Conference on Data
Mining (ICDM), 2003.

[7] J. Huan, W.Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of
isomorphism. UNC computer science technique report TR03-021, 2003.

[8] J. Huan, W. Wang, J. Prins, and J. Yang. Spin: Mining maximal frequent subgraphs from graph
databases. UNC Technical Report TR04-018, 2004.

[9] M. Kuramochi and G. Karypis. GREW A Scalable frequent subgraph discovery algorithm.
Technical Report 04-024, University of Minnesota, Department of Computer Science, 2004.

[10] C. Borgelt and M. R. Berhold. Mining molecular fragments: Finding relevant substructures of
molecules. Proc. 2nd IEEE Int’l Conf. Data Mining (ICDM ’02), pp. 51-58, 2002.

[11] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. Proc. 2nd IEEE Int’l Conf.
Data Mining (ICDM ’02), pp. 721-724, 2002.

[12] X. Yan and J. Han. CloseGraph: Mining closed frequentgraph patterns. Proc. 9th ACM SIGKDD
Int’l Conf. Knowledge Discov-ery and Data Mining (KDD ’03), pp. 286-295, 2003.(closegraph)

[13] L. T. Thomas, S. R. Valluri, and K. Karlapalem. Margin:Maximal frequent subgraph mining.
Proc. 6th IEEE Int’l Conf. Data mining (ICDM ’06), pp. 1097-1101, 2006.

 [14] M. Kuramochi and G. Karypis. Grew-a scalable frequent subgraph discovery algorithm. In
ICDM, pages 439–442,2004.

[15]. Thomas, L., Valluri, S. and Karlapalem, K., Isg: Itemset based subgraph mining. Technical
Report, IIIT, Hyderabad, December2009.

[16] Kuramochi, M. and Karypis, G., Finding frequent patterns in alarge sparse graph. Data Min.
Knowledge Discovery, 2005, (3),243–271.

[17] ZhaonianZou, Jianzhong Li, Hong Gao, and Shuo Zhang : Frequent Subgraph Patterns from
Uncertain Graph Data. IEEE Transactions On Knowledge And Data Engineering, Vol. 22, No. 9,
September 2010.

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

38

[18] Nijssen, S. and Kok, J., Faster association rules for multiple relations. In IJCAI’01: Seventeenth
International Joint Conference on Artificial Intelligence, 2001, vol. 2, pp. 891–896.

[19] Nijssen, S. and Kok, J., A quickstart in frequent structure mining can make a difference. In
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM, 2004, pp. 647–652.

[20] Chang Hun You, Lawrence B. Holder and Diane J. Cook :Graph-based Data Mining in Dynamic
Networks: Empirical Comparison of Compression-based and Frequency-based Subgraph Mining
in IEEE International Conference on Data Mining Workshops , 2004.

[21] Cordella, L.P., Foggia, P., Sansone, C. and Vento, M. 2001. An Improved Algorithm for
Matching Large Graphs, In Proceedings of the 3rd IAPR-TC15 Workshop on Graph-based
Representation in Pattern Recognition, 149–159.

[22] Chuntao Jiang, Frans Coenen and Michele Zito, A Survey of Frequent Subgraph Mining
Algorithms:The Knowledge Engineering Review, Vol. 00:0, 1–31.c 2004.

[23] Yong Liu, Jianzhong Li, Hong Gao, JPMiner: Mining Frequent Jump Patterns From Graph
Databases. In the proceedings of Sixth International Conference on Fuzzy Systems and
Knowledge Discovery 2009.

[24] Varun Krishna, N. N. R. Ranga Suri and G. Athithan,A comparative survey of algorithms for
frequent subgraph discovery, Current Science, Vol. 100, No. 2, 25 January 2011

[25] Yuhua Li Quan Lin Gang Zhong Dongsheng Duan Yanan Jin Wei Bi, A Directed Labeled Graph
Frequent Pattern Mining Algorithm based on Minimum Code. In the proceedings of Third
International Conference on Multimedia and Ubiquitous Engineering 2009.

[26] Hsun-Ping Hsieh, Cheng-Te Li, Mining Temporal Subgraph Patterns in Heterogeneous
Information Networks: In the proceedings of IEEE International Conference on Social
Computing / IEEE International Conference on Privacy, Security, Risk and Trust.

[27] Jianzhong Li, Yong Liu, and Hong Gao, Efficient Algorithms for Summarizing Graph Patterns:
IEEE Transactions On Knowledge And Data Engineering, Vol. 23, No. 9, September 2011.

[28] Bianca Wackersreuther, Peter Wackersreuther, Annahita Oswald : Frequent Subgraph Discovery
in Dynamic Networks, ACM 978-1-4503-0214-2 2010.

[29] Yiping Ke, James Cheng, Jeffrey Xu Yu Efficient Discovery of Frequent Correlated Subgraph
Pairs: In the proceedings of Ninth IEEE International Conference on Data Mining 2009.

[30] Thorsten Meinl, Michael R. Berthold, Hybrid fragment miining with MoFa and FSG: In the
proceedings of IEEE International Conference on Systems, Man and Cybernetics 2004.

[31] Shijie Zhang , Jiong Yang , Shirong Li RING: An Integrated Method for Frequent Representative
Subgraph Mining: In the proceedings of Ninth IEEE International Conference on Data Mining
2009.

[32] Houqun YANG, Zhongshi HE, Xing WU, Mining Partially Labeled Subgraphs Using Support
Constraints: In the proceedings of Sixth International Conference on Fuzzy Systems and
Knowledge Discovery 2009.

[33] Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, gApprox: Mining Frequent Approximate
Patterns from a Massive Network.

[34] Sayan Ranu , Ambuj K. Singh, GraphSig: A Scalable Approach to Mining Significant Subgraphs
in Large Graph Databases, In the proceedings IEEE International Conference on Data
Engineering 2009.

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

39

Authors

1. K.Lakshmi, Asst. Prof /Dept of MCA, Sir M.Visvesvaraya Institute of Technology,

Bangalore.

2. Dr. T. Meyyappan, M.Sc., M.Phil., M.B.A., Ph.D.,
 Associate Professor,
 Department of Computer Science and Engineering, Alagappa University,Karaikudi,
 Tamilnadu.

