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ABSTRACT 

Data mining algorithms are facing the challenge to deal with an increasing number of complex objects. 

Graph is a natural data structure used for modeling complex objects. Frequent subgraph mining is 

another active research topic in data mining . A graph is a general model to represent data and has been 

used in many domains like cheminformatics and bioinformatics. Mining patterns from graph databases is 

challenging since graph related operations, such as subgraph testing, generally have higher time 

complexity than the corresponding operations on   itemsets, sequences, and trees. Many frequent subgraph 

Mining algorithms have been proposed. SPIN,  SUBDUE,  g_Span, FFSM, GREW are a few to mention. 

In this paper we  present a  detailed survey on frequent subgraph mining algorithms, which are used for 

knowledge discovery in complex objects and also propose a frame work for classification of these 

algorithms. The purpose is to help user to apply the techniques in a task specific manner in various 

application domains and to pave wave for further research. 

 

KEYWORDS 

Frequent subgraph mining,  Isomorphism,  Pattern growth,  Apriori  

1. INTRODUCTION 

Knowledge discovery in complex objects involves understanding the relationship between their 
components. Examples are the  Machine learning in domains such as bioinformatics, drug 
discovery, adverse drug events and web data mining. Graphs are natural data structures to model 
such relations, with nodes representing objects and edges the relationships between them. In this 
context, finding similarity between graphs is important. Simple ways of comparing graphs which 
are based on pair wise comparison of nodes or edges, are possible in quadratic time, yet may 
neglect information represented by the structure of the graph. 

As interaction networks are graphs, where each node represents for example, a protein and each 
edge represents the presence of an interaction, Conventionally there are two ways of measuring 
similarity between graphs. One approach is to perform a pair wise comparison of the nodes 
and/or edges in two networks, and calculate an overall similarity score for the two networks 
from the similarity of their components. This approach takes time quadratic in the number of 
nodes and edges, and is thus computationally feasible even for large graphs. However, this 
strategy is flawed in that it completely neglects the structure of the networks, treating them as 
sets of nodes and edges instead of graphs. A more principled alternative would be to deem two 
networks similar if they share many common substructures, or more technically, if they share 
many common subgraphs. To compute this, however, we would have to solve the so-called 
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subgraph isomorphism problem which is known to be NP-complete, i.e., the computational cost 
of this problem increases exponentially with problem size, seriously limiting this approach to 
very small networks. Many heuristics have been developed to speed up sub graph isomorphism 
by using special canonical labelings of the graphs; none of them, however, can avoid an 
exponential worst-case computation time. 

2. PRIMER ON GRAPH THEORY 

A graph G consists of a set of nodes (or vertices) V and edges E. Let  n denotes the number of 
nodes in a graph and m the number of edges in a graph. An attributed graph is a graph with 
labels on nodes and/or edges; we refer to labels as attributes.  In our case, attributes will consist 
of pairs of the form (attribute-name, value). The unnormalized  adjacency matrix A of G is 
defined as  

  

where vi and vj are nodes in G. If G is weighted then, A can contain non-negative entries other 
than zeroes and ones.  i.e Aij e (0,¥) if (vi,vj) e E and zero otherwise. Let D be a nxn diagonal 
matrix with entries Dii = Sj Aij.  The matrix P :=  AD-1 is called the normalized adjacency 
matrix. Let X be a set of labels which includes the special label  e. An edge labeled graph G is 
associated with a label matrix L e X nxn , such that Lij =  iff (vi,vj) . A walk w of length k − 1 in 
a graph is a sequence of nodes v1, v2, · · · ,vk where (vi−1, vi) e E for 1 < i £  k. w is a path if vi 
¹ vj iff i ¹  j,  j e {1, . . . , k} . Alternatively, walks are often referred to as paths; paths are then 
named simple, unique or loopless paths, which may lead to some confusion. To clarify the 
difference for the remainder of this article, we define a path to be a walk without repetitions of 
nodes. A cycle is a walk with v1 = vk, a simple cycle does not have any repeated nodes except 
for v1. A Hamilton path is a path that visits every node in a graph exactly once. An Euler path is 
a path that visits every edge in a graph exactly once.If  a graph is undirected, and that the 
vertices and edges in a graph are labeled. The labels of an edge e and a vertex v are denoted by 
l(e) and l(v) respectively. Each vertex (or edge) of a graph is not required to have a unique label 
and the same label can be assigned to many vertices (or edges) in the same graph. Given a graph 
G = (V, E), a graph Gs = (Vs , Es ) is a subgraph of G if Vs Í V and Es ÍE, and is denoted by Gs 
ÍG. The sub graph Gs is said to be covered by G. If a sub graph Gs Í G is isomorphic to another 
graph H, then Gs is called an embedding of H in G. In this report, a sub graph is often called a 
pattern. The total number of embeddings of Gs in a graph G is called the raw frequency of Gs . 
Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic  if they are topologically identical 
to each other, that is, there is a vertex mapping from V1 to V2 such that each edge in E1 is 
mapped to a single edge in E2 and vice versa. In the case of labeled graphs, this mapping must 
also preserve the labels on the vertices and edges. When a set of graphs {Gi } are isomorphic to 
each other, they all are said to belong to the same equivalence class. When the equivalence class 
of Gi represents an edge, the class is called an edge-type. Given two graphs G1 = (V1, E1) and 
G2 = (V2, E2), the problem of sub graph isomorphism is to find an isomorphism between G2 
and a sub graph of G1. In other words, the sub graph isomorphism problem is to determine 
whether or not G2 is embedded in G1. 

Given a sub graph Gs and a graph G, two embeddings of Gs in G are called identical if they use 
the same set of edges of G, edge-disjoint if they do not have any edges of G in common, and 
vertex-disjoint if no vertices of G in common. Given a set of all embeddings of a particular sub 
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graph Gs in a graph G, the overlap graph of Gs is a graph obtained by creating a vertex for each 
non-identical embedding and creating an edge for each pair of non-vertex-disjoint embeddings. 
Contraction of an edge e = uv of a graph G = (V, E) is to merge two endpoints u and v together 
into a new vertex w by removing the edge e, while keeping all the other edges incident to u and 
v. The remaining edges that used to be incident to either u or v are connected to w after the 
contraction. The newly added vertex w represents the original edge e. Note that, if there are 
multiple edges between two vertices u and v, the contraction of e removes only e. The rest of the 
multiple edges between u and v become loops around w after the contraction. A subtree of an 
undirected graph G is an acyclic connected subgraph of G. A subtree T is a spanning tree of G if 
T contains all nodes in G. Given a graph G, there are many spanning trees. A canonical spanning 
tree of G is a maximal spanning tree defined on a total order on the trees. A spanning tree is a 
tree that has paths connecting each node with every other node of the graph. A trie is a data 
structure that stores the information about the contents of each node in the path from the root to 
the node, rather than the node itself.  

3. OVERVIEW OF  FREQUENT SUBGRAPH MINING 

This section provides a generic overview of the process of FSM. Any frequent subgraph mining 
process involves 3 aspects , i) graph representation ii) subgraph Enumeration  and iii) frequency 
counting. 
 
3.1 Graph Representations 

The simplest mechanism whereby a graph structure can be represented is by employing an 
adjacency matrix or adjacency list. Using an adjacency matrix the rows and columns represent 
vertexes, and the intersection of row i and column j represents a potential edge connecting the 
vertexes vi and vj . The value held at intersection < i, j > typically indicates the number of links 
from vi to vj . However, the use of adjacency matrices, although straightforward, does not lend 
itself to isomorphism detection, because a graph can be represented in many different ways 
depending on how the vertexes (and edges) are enumerated (Washio & Motoda 2003). With 
respect to isomorphism testing it is therefore desirable to adopt a consistent labeling strategy that 
ensures that any two identical graphs are labeled in the same way regardless of the order in 
which vertexes and edges are presented (i.e. a canonical labeling strategy). A canonical labeling 
strategy defines a unique code for a given graph. 

Canonical labeling facilitates isomorphism checking because it ensures that if a pair of graphs 
are isomorphic, then their canonical labeling will be identical [5] (Kuramochi & Karypis 2001). 
One simple way of generating a canonical labeling is to flatten the associated adjacency matrix 
by concatenating rows or columns to produce a code comprising a list of integers with a 
minimum (or maximum) lexicographical ordering imposed. To further reduce the computation 
resulting from the permutations of the matrix, canonical labeling are usually compressed, using 
what is known as a vertex invariant scheme (Read & Corneil 1977), that allows the content of an 
adjacency matrix to be partitioned according to the vertex labels. Various canonical labeling 
schemes have been proposed, some of the more significant are described in this subsection.  

Minimum DFS Code (M-DFSC): There are a number of variants of DFS encodings, but 
essentially each vertex is given a unique identifier generated from a DFS traversal of a graph 
(DFS subscripting). Each constituent edge of the graph in the DFS code is then represented by a 
5-tuple: (i, j, li, le, lj), where i and j are the vertex identifiers, li and lj are the labels for the 
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corresponding vertexes, and le is the label for the edge connecting the vertexes. Based on the 
DFS lexicographic order, the M-DFSC of a graph g can be defined as the canonical labeling of g 
[11] (Yan & Han 2002).  

Canonical Adjacency Matrix (CAM): Given an adjacency matrix M of a graph g, an encoding of 
M can be obtained by the sequence obtained from concatenating the lower(or upper) triangular 
entries of M, including entries on the diagonal. Since different permutations of the set of 
vertexes correspond to different adjacency matrices, the canonical (CAM) form of g is defined as 
the maximal (or minimal) encoding. The adjacency matrix from which the canonical form is 

generated defines the Canonical Adjacency Matrix or CAM[4][5][8](Inokuchi et al. 2000,2002; 
Kuramochi & Karypis 2001; Huan et al. 2003).  

3.2  Subgraph Enumeration 

The current methods for enumerating all the subgraphs might be classified into two categories: 
one is the join operation adopted by FSG[5] and AGM [4] and another one is the extension 
operation . The major concerns for the join operation are that a single join might produce 
multiple candidates and that a candidate might be redundantly proposed by many join 
operations. The concern for the extension operation is to restrict the nodes that a newly 
introduced edge may attach to. Equivalence class based extension (Zaki 2002, 2005) is founded 
on a DFS-LS representation for trees.  Basically, a (k + 1)-subtree is generated by joining two 
frequent k-subtrees.  The two k subtrees must be in the same equivalence class . An equivalence 
class consists of the class prefix encoding, and a list of members. Each member of the class can 
be represented as a (l, p) pair, where l is the k-th vertex label and p is the depth-first position of 
the k-th vertex’s parent.  It is verified, in Zaki (2002), that all potential (k + 1)-subtrees with the 
prefix [C] of size (k − 1) can be generated by joining each pair of members of the same 
equivalent class [C].  Equivalence classes can be based on either prefix or suffix. 

3.3  Frequency Counting 

Two Methods are used for graph counting: Embedding lists (EL) and Recomputed embeddings 

(RE). For graphs with a single node we store an embedding list of all occurrences of its label in 
the database. For other graphs a list is stored of embedding tuples that consist of  (1) an index of 
an embedding tuple in the embedding list of the predecessor graph and (2) the identifier of a 
graph in the database and a node in that graph. The frequency of a structure is determined from 
the number of different graphs in its embedding list.   Embedding lists are quick, but they do not 
scale very well to large databases. The other approach is based on maintaining a set of  active" 
graphs in which occurrences are repeatedly recomputed. 

4  A SURVEY OF FSM ALGORITHMS  

The frequent subgraph discovery problem has been addressed from many directions using 
various approaches, including a priori strategy  and pattern growth approach. Also the  
algorithms differ in the type of input graphs, search strategy they use and method of 
representation of graphs etc.  Hence, there exist many algorithms based on different approaches. 
This makes the task of identifying a suitable algorithm for any given application scenario an 
involved process.  In this paper, we present a survey and propose to establish a framework for 
classification of these algorithms to help in understanding and analyzing various properties and 
limitations of few of these algorithms. A quick reference of 26 frequent subgraph mining  
algorithms is presented in Table 1 and Table 2. Other than that five algorithms which are 
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extensions of existing algorithms is also studied in the following sections. 
 
 

Table 1.  Algorithms based on Pattern growth approach 

S.N

o 

Algorithm Input 

type 

Graph 

represen-

tation 

Subgraph 

generatio

n 

Frequ

ency 

counti

ng 

Nature of 

output 

Limitations 

1. MOFA 
[2002] 

Set of 
graphs 

Adjace-
ncy list 

Rightmost 
extension 

DFS  All 
frequent 
subgraphs 

Frequent 
graphs not 
exactly 
frequent. 

2. GSpan 
[2002] 

Set of 
graphs 

Adjacenc
y list 

 

Rightmost 
extension 

 DFS frequent 
graphs 

Not scalable 

3. CloseGrap
h [2003] 

Set of 
graphs 

Adjacenc
y list 

Rightmost 
extension 

DFS  Closed 
Connecte
d frequent 
graphs 

Failure 
detection 
takes lot of 
time overhead 

4. Gaston 
[2004] 

 

Set of 
graphs 

Hash 
table 

Extension Embed
ding 
lists 

Maximal 
frequent 
sugraphs 

Interesting 
patterns may 
be lost 

5. SUBDUE 
[2005] 

Single 
large 
graph 

Adjacenc
y matrix 

Level-
wise 
search 

MDL Complete 
set of 
frequent 
subgraphs 

Extremely 
small no. of  
patterns 

6. Gapprox 
[2006] 

Single 
large 
graph 

Edge 
Triplet 

Approxim
ation 

DFS Frequent 
approxim
ate 
patterns 

 

7. HybridGM
iner[2006] 

Set of  
Graphs 

Adjacenc
y list 

Embeddin
g Lists 

DFS Frequent 
subgraphs 

Extension of 
existing 
frequent 
pattern is 
complicated 
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and needs 
extra memory 

8. MSPAN 
[2009] 

Set of 
graphs 

Adjace-
ncy list 

Rightmost 
extension 

DFS  Frequent 
subgraphs 

Works on 
labelled 
graphs only. 

9. FCP Miner 
[2009] 

Set of 
graphs 

Canonical 
Labeling 

Rightmost 
extension 

DFS Frequent
Correlate
d 
subgraphs 

Works on 
labelled 
graphs only. 

10. RING 
[2009] 

Set of 
graphs 

Adjacenc
y Matrix 

Invariant 
Vectors 

DFS Represent
ative 
graphs 

Needs post 
processing 

11. SCMiner 
[2009] 

Set of 
partiall
y 
labelled 
graphs 

Canonical 
Labeling 

Rightmost 
extension 

DFS Partially 
labelled 
frequent 
subgraphs 

Works on 
labelled 
graphs only. 

12. Graphsig 
[2009] 

Set of 
graphs 

Feature 
Vector 

Extension DFS Frequent 
significan
t patterns 

Needs post 
processing 

13. JPMiner 
[2009] 

Set of 
graphs 

Adjace-
ncy list 

Rightmost 
extension 

DFS  Frequent 
jump 
patterns 

Some -times 
much smaller 
set of  jump 
patterns. 

14. RP-GD 
[2010] 

Set of 
graphs 

Adjace-
ncy list 

Rightmost 
extension 

DFS  Represen-
tative 
graphs 

Time for 
summari-zing 
the patterns is 
more than 
that for 
mining 

15. TSP 
[2010] 

Set of 
graphs 

Adjacenc
y list 

Extension TSP 
tree 

Closed 
Temporal 
frequent 
subgraphs 

Extra 
overhead to 
check closed 
property 
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16. RP-FP 
[2010] 

Set of 
graphs 

Adjace-
ncy list 

Rightmost 
extension 

DFS  Represen-
tative 
graphs 

Overhead for 
summarizing 

 
 

 

Table 2.  Algorithms based on Apriori approach 

S.

N

o 

Algorithm Input type Graph 

repre-

sentation 

Candidate 

generation 

Frequenc

y 

counting 

Nature of 

output 

Limitations 

1. FARMER 
[1999] 

Set of 
graphs 

Trie 
structure 

Level-wise 
search ILP 

Trie data 
structure 

Frequent 
subgraphs 

Inefficient 

2. HSIGRAM 
[1999] 
 

Single 
large graph 

Adjacenc
y matrix 

Iterative 
merging 

Maximal 
indepen-
dent set 

Frequent 
subgraphs 

Ineffecient 

3. AGM 
[2000] 

Graph 
database 

Adjacenc
y matrix 

Vertex 
extension 

Canonical 
labelling 

Frequent 
subgraphs 

Np-
complete 

4. FSG 
[2001] 

Set of 
graphs 

Adjacenc
y list 

One edge 
extension 

Transactio
n 
identifier 
(TID) lists 

Frequent 
connected 
subgraphs 

Largely 
distinct 
labels on 
edges 
needed 

5. FFSM 
[2003] 

Set of 
graphs 

Adjacenc
y matrix 

Merging 
and 
extension 

Sub-
optimal 
CAM tree 

Frequent 
subgraphs 

Np-
complete 

6. ISG  
[2004] 

Set of 
graphs 

Edge 
triplet 

Edgetriplet 
extension 

TID lists Maximal 
Frequent 
subgraphs 

Incomplete 
set  of 
Graphs 

7. SPIN 
[2004] 

Set of 
graphs 

Adjacenc
y matrix 

Join 
Operation 

Canonical 
Spanning 
Tree 

Maximal 
frequent 
subgraphs 

Needs entire 
DB scan 

8. GREW 
[2004] 
 

Single 
large graph 

Sparse 
graph 
represent
ation. 

Iterative 
merging 

Maximal 
indepen-
dent set 

Maximal 
frequent 
subgraphs 

Misses 
many 
interesting 
patterns 
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9. Dynamic 
GREW 
[2005] 

Dynamic 
graphs 

Sparse 
graph 
represent
ation. 

Iterative 
merging 

Suffix 
trees 

Dynamic 
patterns in 
frequent 
subgraphs. 

Extra 
overhead to 
identify 
dynamic 
patterns 

10 MUSE 
[2009] 

Uncertain 
set of 
graphs 

Adjaceny 
Matrix 

Disjunctive 
normal 
forms 

DFS 
coding 
scheme 

Frequent 
subgraphs 

Frequent 
subgraphs 
are not 
exact. 

 

4.1 Classification based on Algorithmic approach. 

It is widely accepted that FSM techniques can be divided into two categories: (i) Apriori-based 
approaches, and (ii) pattern growth-based approach. 
 

4.1.1 Apriori Based Approach 

Apriori-based frequent substructure mining algorithms share similar characteristics with Apriori-
based frequent itemset mining algorithms. The search for frequent graphs starts with graphs of 
small “size”, and proceeds in a bottom-up manner. At each iteration, the size of newly 
discovered frequent substructures is increased by one. These new substructures are first 
generated by joining two similar but slightly different frequent subgraphs that were discovered 
already. The frequency of the newly formed graphs is then checked. The Apriori-based 
algorithms have considerable overhead when two size-k frequent substructures are joined to 
generate size-(k+1) graph candidates. Typical Apriori-based frequent substructure mining 
algorithms are discussed in the following paragraphs.  

The AGM[4] algorithm uses a vertex-based candidate generation method that increases the 
substructure size by one vertex at each iteration. Two size-k frequent graphs are joined only 
when the two graphs have the same size-(k − 1). 

ISG [ 15 ] represents graphs in an entirely different manner. It transforms the input set of graphs 
into item sets which are then represented using edge triplet. ISG uses a  approach known as edge 
triplet extension in which a discovered item set is extended by adding one edge triplet in each  
iteration. ISG carries out frequent subgraph discovery by transforming graphs into itemsets 
followed by frequent itemset discovery, which is also apriori-based. The resultant frequent 
itemsets are transformed back to subgraphs. In pattern-growth approach, the subgraph generation 
is carried out by extending the previously discovered subgraph by one node or one edge. ISG use 
transaction identifier (TID) lists for frequency counting. Each frequent subgraph has a list of 
transaction identifiers which support it. For computing frequency of a k subgraph, the 
intersection of the TID lists of (k – 1) subgraphs is computed. 

FARMER[18] uses trie for graph representation. In level-wise search, the algorithm finds a 
subgraph and then enumerates the instances of the subgraph by one adjacent edge in all possible 
ways. FARMER follow this mechanism for subgraph generation. FARMER, which has been 
developed as an enhancement to WARMR, an earlier developed algorithm which works on the 
basis of ILP approach, is based on a combination of a priori and ILP approaches. FARMER uses 



International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012 

31 
 
 

 

the trie data structure for frequency computation also. 

HSIGRAM [22]  uses adjacency matrix representation of graph. HSIGRAM use iterative 
merging for subgraph generation. In case of HSIGRAM the aim is to find the maximal 
independentset of a graph which is constructed out of the embeddings of a frequent subgraph so 
as to evaluate its frequency. 

Huan, wang and Prince [7]  in 2003 proposed a novel subgraph mining algorithm: FFSM, which 
employs a vertical search scheme within an algebraic graph framework.It uses a restricted join 
operation to generate candidates and stores embeddings to avoid explicit subgraph isomorphism 
testing. It uses a sub-optimal canonical adjacency matrix tree for counting the frequency. Their 
studies on synthetic and real datasets demonstrated that FFSM achieves a substantial 
performance gain over the  start-of-the art subgraph mining algorithm gSpan. 

One fundamental challenge for mining recurring subgraphs from semi-structured data sets is the 
overwhelming abundance of suchpatternsc. In large graph databases, the total number of 
frequent subgraphs can become too large to allow a full enumeration using reasonable 
computational resources.  Jun Huan, Wei WangPrins, Jiong Yang, Jan [8] proposed  a new 
algorithm, Spin that mines only maximal frequent subgraphs, i.e. subgraphs that are not a part of 
any other frequent subgraphs. This may exponentially decrease the size of the output set in the 
best-case; in our experiments on practical data sets, mining maximal frequent subgraphs reduces 
the total number of mined patterns by two to three orders of magnitude. It first mines all frequent 
trees from a general graph database and then reconstructs all maximal subgraphs from the mined 
trees.  SPIN offered very good scalability to large graph databases and at least an order of 
magnitude performance improvement in synthetic graph data sets. The efficiency of the 
algorithm is also confirmed by a benchmark chemical data set. This algorithm of compressing 
large number of frequent subgraphs to a much smaller set of maximal subgraphs.lt is used to 
investigate demanding applications such as finding structure patterns from proteins in the future. 

Michihiro Kuramochi and George Karypis [9] in 2004 proposed a heuristic algorithm called 
GREW to overcome the limitations of existing complete or heuristic frequent subgraph 
discovery algorithms. GREW is designed to operate on a large graph and to find patterns 
corresponding to connected subgraphs that have a large number of vertex-disjoint embeddings. 
Their experimental evaluation showed that GREW is efficient, can scale to very large graphs, 
and find non-trivial patterns that cover large  portions of the input graph and the lattice of 
frequent patterns. 

Karsten M. Borgwardt, Hans-Peter Kriegel, Peter Wackersreuther [28] investigated how pattern 
mining on static graphs can be extended to time series of graphs, ie. dynamic graphs. They 
proposed a framework into which  Existing subgraph mining algorithms can be easily integrated 
and handle dynamic graphs. Experimental results on real-world data confirm the practical 
feasibility of their approach. In particular, we are looking for subgraphs that are topologically 
frequent within a large graph and that show insertions and deletions of edges in the same 
temporal order.  It might be used to study frequent motifs in protein-protein interaction 
dynamics, as well as in social or    telecommunication networks. 

Lini T Thomas Satyanarayana R ValluriKamalakar Karlapalem [13] in 2006 proposed an 
algorithm MARGIN that mines maximal frequent subgraphs. MARGIN- Maximal frequent 
mining has triggered much interest since the size of the set of maximal frequent subgraphs is 
much smaller to that of the set of frequent subgraphs. The set of candidate subgraphs which are 
likely to be maximally frequent are the set of -edge frequent subgraphs that have a z-edge 
infrequent supergraph. The Margin algorithm computessuch a candidate set efficiently and finds 
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the maximal subgraphs by a post-processing step. They have proved that  the performance of the 
Margin algorithm is 20 times faster than gSpan for certain datasets. 

ZhaonianZou, Jianzhong Li,  and Shuo Zhang  [17]  in 2010 proposed an algorithm for Mining 
Frequent Subgraph Patterns from Uncertain Graph Data. In many real applications, graph data is 
subject to uncertainties due to incompleteness and imprecision of data. Mining such uncertain 
graph data is semantically different from and computationally more challenging than mining 
conventional exact graphdata. A novel model of uncertain graphs is presented, and the frequent 
subgraph pattern mining problem is formalized by introducing a new measure, called expected 
support.  An approximate mining algorithm called MUSE (Mining Uncertain Sub graph 
pattErns),  is proposed to find a set of approximately frequent subgraph patterns by allowing an 
error tolerance on expected supports of discovered subgraph patterns. The algorithm uses 
efficient methods to determine whether a subgraph pattern can be output or not and new pruning 
method to reduce the complexity of examining subgraph patterns. Analytical and experimental 
results showed that the algorithm is very efficient, accurate, and scalable for large uncertain 
graph databases. This is the first algorithm to investigate the problem of mining frequent sub 
graph patterns from uncertain graph data. 

4.1.2 Pattern-growth approach 

In order to avoid the overhead of apriori algorithms, non-Apriority-based algorithms have been 
developed, most of which adopt the pattern-growth methodology, as discussed below. Pattern-
growth-based graph pattern mining algorithms include gSpan by Yan and Han (2002), MoFa by 
Borgelt and Berthold (2002), FFSM by Huan et al. (2003), SPIN by Huan et al. (2004), and 
Gaston by Nijssen and Kok (2004). These algorithms are inspired by PrefixSpan (Pei et al. 
2001), TreeMinerV (Zaki 2002), and FREQT (Asai et al. 2002) at mining sequences and trees, 
respectively. The pattern-growth mining algorithm extends a frequent graph by adding a new 
edge, in every possible position. A potential problem with the edge extension is that the same 
graph can be discovered many times. The gSpan [11] algorithm solves this problem by 
introducing a right-most extension technique, where the only extensions take place on the right-
most path. A right-most path is the straight path from the starting vertex v0 to the last vertex vn, 
according to a depth-first search on the graph. Typical pattern growth algorithms are discussed in 
the following paragraphs. 

Frequency counting process for Gaston is carried out with the help of embedding lists, where all 
the occurrences of a particular label are stored in the embedding lists. 

Borgelt and Berthold [10] in 2002 presented an algorithm  Mofa to find fragments in a set of 
molecules that help to discriminate between different classes for instance, activity in a drug 
discovery context. Yan and Han [11] in 2002 investigated new approaches for frequent graph-
based pattern mining in graph datasets and proposed a novel algorithm called gSpan. gSpan is a 
graph-based substructure pattern mining. This discovered frequent substructures without 
candidate generation.  

Yan and Han [12] in 2003 proposed to mine closed frequent graph patterns. A graph g is closed 
in a database if there exists no proper subgraph of g that has the same support as g. A closed 
graph pattern mining algorithm, CloseGraph, is developed by exploring several interesting 
looping methods. Their performance studies shown that CloseGraph not only dramatically 
reduces unnecessary subgraphs to be generated, but also substantially increases the efficiency of 
mining, especially in the presence of  large graph patterns.   

Yong Liu, Jianzhong Li, Hong Gao [23] in 2009 studied the  problem of mining frequent jump 
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patterns from graph databases. They have showed that Mining frequent jump patterns can 
dramatically reduce the number of output graph patterns, and still capture interesting graph 
patterns. By integrating the operation of  checking jump patterns into the well-known DFS code 
tree enumeration framework, they presented  an efficient algorithm JPMiner for this new 
problem. Their  experimental evaluation of JPMiner using both real and synthetic datasets, 
showed that the number of frequent jump patterns is much smaller than that of closed frequent 
graph patterns, and also JPMiner is efficient and scalable in mining frequent jump patterns. 
Chia-HuiChang and Cheng-Tao Ho in 2006 proposed an hybrid algorithm HybridGMiner which 
is based on pattern growth approach. It combines the embedding listing and canonical form to 
take the advantage of generating new frequent patterns from existing patterns. It is a hybrid of 
Mofa and gspan. 

Most of existing frequent subgraph mining algorithms are used to deal with undirected unlabeled 
marked graph. A few of them aim at directed graph or labeled graph because it is very complex 
to consider that. But in the real world, a lot of connections have directions and labels, so directed 
labeled graph mining is more meaningful. Yuhua Li Quan Lin and Duan Yanan [25] Bi in 2009 
analyzed a financial network by modelling it as a directed weighted graph. They proposed a new 
algorithm mSpan for directed labeled graph frequent pattern mining. Based on FP-growth, the 
algorithm gets a minimum edge code and an abstract node code sequence to identify a directed 
graph pattern uniquely through minimum extension. It also solved  the graph pattern isomorphic 
problem and the redundant extension problem. Their experiment showed that mSpan can mine 
all frequent directed, labeled graph patterns. 

Shijie Zhang , Jiong Yang and Shirong Li [31]   in 2009 proposed RING an integrated method 
for 
frequent representative subgraph mining . It involves a two-step process. The first stage is to 
compute the pattern distribution. It randomly mine a set of frequent subgraph patterns, cluster 
the patterns, and select the centers of the clusters as the initial representative patterns. Based on 
this, we will know how the frequent patterns are distributed approximately. In the second stage, 
it adopts a depth first searching algorithm to mine representative to a pre-set space limit. 
 
Houqun YANG, Zhongshi HE, Xing WU [32] in 2009  proposed an algorithm based on node 
pruning,  path pruning and structure pruning that applied  pattern-weakening support constraints  
in mining partially labeled subgraphs. The main idea is to push forward the check conditions into 
the process of mining so that user can interact with the process of mining partially labeled 
subgraphs, and reach the final object for improving mining efficiency. The results showed that it 
can eliminate effectively subgraph mining search space by pushing forward the constraint into 
the process of mining and to a certain extent reduce the mining cost in both space and time. 
 
Cheng-Te Li, Hsun-Ping Hsieh [26] proposed a novel algorithm, TSP-algorithm (Temporal 
Subgraph Patterns algorithm) to mine the patterns which contain temporal information and forms 
a connective subgraph. The proposed method recursively grows the patterns in a depth-first 
search manner. Since the TSP-algorithm only needs to scan the database once and does not 
generate unnecessary candidates, the experiment results showed that the TSP-algorithm 
outperforms the modified Apriori on time-efficiency and memory usage in both synthetic and 
real datasets. 

Jianzhong Li, Yong Liu, and Hong GaoWe [27] in 2011 investigated  the problem of 
summarizing frequent subgraphs by a smaller set of representative patterns. They showed  that 
some special graph patterns, called _-jump patterns , must be representative patterns. Based on 
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the fact,they  devised two algorithms, RP
summarizes frequent subgraphs. 
subgraphs, whereas RP-GD mines a representative set from graph databases directly. Three 
novel heuristic strategies, Last
Representative-Based-Cover, are proposed to further improve the efficiency of RP
can provide a tight ratio bound but has heavy computation cost. RP
bound guarantee but is more efficient than RP

Sayan Ranu , Ambuj K. Singh [34]
mine significant subgraphs from large graph
feature vectors where each vector represents a region within the graph. Domain
used to select a meaningful feature set.
space, and groups candidate subgraphs into
subgraph mining can be performed on each set with a high frequency
experimentally proved to be scalable.
 
4.2 Classification based on  Search strategy 

There are two basic search strategies employed for finding out frequent subgraphs: the breadth 
first search (BFS) strategy and the depth first search (DFS) strategy.

4.3 Classification based on Nature of the input 

The algorithms are of two types based on the exactness of the input they take.  The first type 
takes in a exact graph sets as input, whereas the second type takes a uncertain set of  graphs as 
input. Another possibility is based on the type of the graph. The first type takes in a single large 
graph as input, whereas the second type takes a set of small graphs as input. The third 
on the correctness of the graph data where it can be accurate or uncerta

4.4 Classification based on Completeness of the output 

Based on the set of the frequent subgraphs discovered, the algorithms are of two types. The first 
type returns the complete set of  frequent subgraphs, whereas the second type returns a partial se
of frequent subgraphs. 
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4.5 Extension of Existing algorithms 

Many algorithms have been proposed, which are either extensions of the existing algorithms or a 
hybrid of two or more existing algorithms.  FCP-Miner[ 29 ], is one such a fast approximate 
algorithm, which uses a very effective skipping mechanism that eliminates the processing of 
majority of graphs during the mining. It  is  shown that the missing pairs of frequent correlated 
sub graphs due to approximation are only a small set of marginally correlated pairs. Extensive 
experiments verified that the algorithm is  both efficient and effective.  
 
A Hybrid fragment mining algorithm[30 ] which is a combination of  Mofa and FSG is proposed 
in 2004. It uses a search strategy which is a combination of BFS and DFS. It is proved to be 
more  efficient than both Mofa and FSG. 
 
Chen Chen, Xifeng Yan,  Feida Zhu,  Jiawei Han[33],  investigated  the problem of mining 
frequent approximate patterns from a massive network and proposed a method called gApprox.  
gApprox  not only finds approximate network patterns, which is the key for many knowledge 
discovery applications on structural data, but also enriches the library of graph mining 
methodologies by introducing several novel techniques. 
 
A new general framework, called gPrune, is proposed by Feida Zhuy Xifeng Yany  Jiawei Hany 

Philip S. Yuz [35]  to incorporate all the constraints in such a way that they recursively reinforce 
each other through the entire mining process. A new concept, Pattern-inseparable Data-
antimonotonicity, is proposed to handle the structural constraints unique in the context of graph, 
which, combined with known pruning properties, provides a comprehensive and unified 
classification framework for structural constraints. The exploration of these anti - monotonicities 
in the context of graph pattern mining is a significant extension to the known classification of 
constraints, and deepens our understanding of the pruning properties of structural graph 
constraint. The major advantage of this algorithm is it can be applied to both apriori and pattern 
growth approach. 
 

5. APPLICATION DOMAINS 

Graph mining is useful in the areas of chemo-informatics, Bio-informatics, study of biological 
networks, Web analysis, Traffic analysis in telecommunication networks, social human behavior 
analysis, financial network analysis and wireless networks. In this paper we present a 
classification of algorithms based on their suitability to specific application domains. 
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6. RESEARCH DIRECTIONS

We have  abundant literature published in research into frequent pattern mining.  But still there 
are several critical research problems that need to be solved before frequent pattern mining can 
become a cornerstone approach in data mining applications. First, the most focus
extensively studied topic in frequent pattern mining is perhaps scalable mining methods. Second 
is the efficiency of the frequent subgraph mining algorithms. Third is not on whether we can 
derive the complete set of frequent patterns under certain c
we can derive a compact but high quality set of patterns that are most useful in applications and 
whether we can mine such patterns directly and efficiently. Fourth, to make frequent pattern 
mining an essential task in data mining. Classification is an essential task in data mining. We can 
generate frequent patterns in such a way that, they can become input for classification or 
clustering models. 

7. CONCLUSION 

In this paper, we present a brief overview of the current status and future directions  of frequent 
pattern mining. There are various 
bioinformatics etc. where mining 
required. Due to increasing size and complexity of patterns in the
mining algorithm. With over a decade of extensive research, there have been hundreds of 
research publications and tremendous research,
domain. Many algorithms for frequent subgraph mining have been proposed so far. Most of the 
algorithms, they focus only on a static set of graphs. Very few algorithms are for mining patterns 
from dynamic set of graphs. Also all the algorithms proposed so far, outperform each other, 
either in terms of memory requirements or in terms of few orders of magnitude of  computation 
time. None of them completely address the issue of NP
problem. Also the algorithms mine either a specific set of patterns or 
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generate frequent patterns in such a way that, they can become input for classification or 

In this paper, we present a brief overview of the current status and future directions  of frequent 
There are various inter-disciplinary domains like chemo informatics

mining of recurrent patterns across large collection of networks
. Due to increasing size and complexity of patterns in there is a need for efficient graph 

With over a decade of extensive research, there have been hundreds of 
research publications and tremendous research, development and application activities in this 
domain. Many algorithms for frequent subgraph mining have been proposed so far. Most of the 
algorithms, they focus only on a static set of graphs. Very few algorithms are for mining patterns 

of graphs. Also all the algorithms proposed so far, outperform each other, 
either in terms of memory requirements or in terms of few orders of magnitude of  computation 
time. None of them completely address the issue of NP-completeness of the subgraph mini
problem. Also the algorithms mine either a specific set of patterns or  a complete set of patterns 
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which may not be significant. So there is a need for an efficient algorithm which can mine 
significant patterns specific to the application, both from a static or dynamic set of graphs in less 
than polynomial time.  Also the mined interesting patterns can used as input to other data mining 
tasks such as for classification or clustering for further knowledge discovery. Hence lot of 
research is required towards the improvements suggested. 
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