
International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

DOI : 10.5121/ijitcs.2012.2202 11

Improved Deadline Monotonic Scheduling With
Dynamic and Intelligent Time Slice for Real-time

Systems

H. S. Behera, Sushree Sangita Panda and Jana Chakraborty

Department of Computer Science and Engineering, Veer Surendra Sai University of

Technology (VSSUT), Burla, Sambalpur, Orissa, India.
hsbehera_india@yahoo.com, sushreesangita@rocketmail.com ,

jana.chakraborty@gmail.com

ABSTRACT

In this paper the deadline-monotonic scheduling algorithm is improved to schedule processes in real-time

systems. In real-time systems each task should have deadline that is greater than execution time and less

than time period. Failure to meet the deadline in real-time systems degrades the system’s performance.

The proposed algorithm ensures that the processes meet their deadlines using iterative calculations using

the exact schedulability test to determine which processes are schedulable. After finding the schedulable

processes, they are scheduled using a suitable scheduling algorithm. Simple Round Robin scheduling

algorithm shows high context switching and higher waiting time and response time. An improved-RR

algorithm is proposed which calculates intelligent time slice for individual processes and taking dynamic

time quantum into account. A comparative study is made to observe the interference due to higher

priority processes and it was found that the proposed algorithm performs better than [1].

KEYWORDS

 Real-time systems, Deadline monotonic scheduling (DM), Schedulability test, Round Robin scheduling

algorithm Turnaround time and Waiting time

1. INTRODUCTION

A real-time system must produce the result in a specified time frame. If a process does not

complete within the time frame it leads to system failure for hard real-time system. In case of

soft real-time systems it does not lead to such disastrous results; however the system

performance is degraded. Thus the main concern should be on the issue of meeting deadline of a

process before its time period gets over. The development of appropriate scheduling algorithm

has been isolated as one of the crucial challenges for the next generation of real-time systems

[7]. Some of the applications of real-time systems are space research, weather forecast, seismic

detection, audio and video conferencing, railway and flight reservation etc.

A real-time system is often considered as a finite collection of independent recurrent tasks, each

of which generates a potentially finite sequence of jobs. Every job is characterised by an arrival

time, execution requirement and deadline and a job completes execution between its arrival time

and deadline. One of the scheduling method that is used is rate monotonic algorithm that assigns

priorities based on their time periods, shorter the time period higher the priority. The constraint

that rate monotonic priority assignment policy imposes on the process set is that it must be

periodic, independent and have deadline equal to time period. Deadline monotonic priority

assignment is a priority assignment policy used with fixed priority pre-emptive scheduling.

With deadline monotonic priority assignment, tasks are assigned priorities according to their

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

12

deadlines; task with shortest deadline is assigned highest priority. Thus by devitalizing the

constraint deadline = time period, we would provide a more flexible condition where deadline ≤

time period. In the task model each recurrent task τi is characterized by three parameters i.e. τi=

(Ci, Di, Ti), where

 Ti= time period for sequence of successive jobs.

 Ci= execution requirement and

 Di= deadline

By taking the given specifications for a set of tasks, the DM schedulability test is performed

to determine whether the set is scheduled, such that all jobs complete by their deadline. This

paper outlines deadline monotonic scheduling approach for a collection of processes. The

schedulability test is performed to determine which processes in the process set are schedulable.

N.C. Audsley et.al [1] has proposed an algorithm which is valid only for hard real time

systems whereas the proposed approach in this paper works for real-time systems. In addition to

that in this paper all the schedulable processes were scheduled using improved RR algorithm

with intelligent time slice and dynamic time quantum and the performance metrics were

obtained and analysed.

A. RELATED WORK.

The priority assignment scheme that caters for processes with the relationship:

Computation time <= deadline <= time period was defined by Leung et.al [9]. It proposed an

algorithm for deadline monotonic scheduling in which priority assigned to processes are

inversely proportional to the length of their deadline. To generate a schedulability constraint for

deadline monotonic scheduling the behaviour of processes released at a critical instant is

fundamental if all processes are proved to meet their deadlines during executions beginning

at a critical instant these processes will always meet their deadlines [8]. The deadline monotonic

approach for hard real-time systems was proposed by N. C. Audsley et.al [1] and [3]. According

to [6] fixed priority scheduling with deadline prior to completion for real-time systems is

considered. With reference to [7] misconception about real time computing which is a serious

problem for next generation computers was considered.

2. DEADLINE MONOTONIC SCHEDULING

The deadline monotonic scheduling algorithm is a priority driven scheduling algorithm that

assigns priority to tasks according to their deadlines: the smaller the deadline greater the

priority.

The schedulable processes should have the following relationship:

Computation time <= deadline <= time period

 For the ith process (if we have n processes then process 1 has the highest priority and

process n has the lowest priority in the system).

 Ci <= Di <= Ti

Deadline monotonic priority assignment is an optimal static priority scheme which implies

that by using an algorithm deadline monotonic priority ordering for processes that will schedule

the process set where process deadlines are unequal to their time period.

 A simple DM schedulability test that has runtime linear in the number of tasks in the system

was proposed by Liu and Layland, that proves any collection of tasks satisfies:

Where the utilization Ui of process τi is given by:

Ui = Ci

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

13

2.1 SCHEDULABILITY TEST

The basis for schedulability test is that all processes are released simultaneously and check,

the execution of all processes for a single execution. The schedulability test is given by:

∀i : 1 ≤ i ≤ n : Ci/Di + Ii/Di ≤ 1

Where Ii is the interference due to higher priority processes with the execution of τ1 is given

by:

 The schedulability test suggests that for a process τi to be schedulable, the sum of its

computation time and the interference that is imposed by higher priority processes should not be

greater than Di. This schedulability test is sufficient but not necessary.

In order to build a test which is sufficient and necessary the exact values of Ii are required.

For this the schedule has to be evaluated in order to find out the exact interleaving of higher

priority processes, which is costly as it require the solution of Di equations per process τi.

Ii
d is the interference to process τi by higher priority process between the release of τi and

time t, where t lies in the interval [0,Di].

Condition for the schedulability of process τi is

Where

The above equations require a lot of Di calculations. For n-process system maximum number of

equations required is:

Since the value of ti assumes that only one release of each process occurs in (0,d0) the constraint

will fail if there had been any release of higher priority process within the interval (0,d0).

Therefore, the next point time at which τi may complete execution is:

 d1 = Ii
d
 + Ci

The schedulability is given by:

Again the constraint will fail if releases have occurred in the interval (t0 , d1). Therefore we have

to build a series of equations in order to prove the schedulability. The equations terminate if tk >

Di for process τi and equation k. So here τi is unschedulable.

2.2 PROPOSED APPROACH.

In the proposed algorithm deadline monotonic scheduling for a set of processes in a system

using exact schedulability test is performed. Using schedulability for many processes if a

process in a process set is unschedulable it remains unschedulable [1]. But by using the

proposed approach unschedulable processes can also be scheduled by performing iterative

calculations.

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

14

Finally all the schedulable processes are scheduled using the improved Round Robin scheduling

algorithm with intelligent and dynamic time quantum. For the purpose of scheduling Intelligent

Time Slice is calculated which allocates the frame for each task based on their priority and the

time quantum is the lower of the two adjacent intelligent time slice. Let the original time slice

(OTS) is the time slice to be given to any process. Priority Component (PC) is assigned

depending on the priority which is inversely proportional to the priority number, process having

highest priority is assigned 1 and rest 0. Shortness Component (SC) is the difference between

the burst time of current process and the previous process, if the difference is less than 0, then

SC=1 else 0. For calculating Context Switch Component, first PC, SC and OTS are added and

then subtracted from the burst time, if difference is less than OTS, then it will be considered as

CSC. Finally ITS=OTS + PC + SC + CSC.

A. Pseudo code (conjunction of deadline

 monotonic scheduling with priority

based RR scheduling).
 Let n: no. of processes.

 Cj: execution time for j
th
 process.

 Ii
d
: interference on process j by i higher

 priority processes at time t.

 Ci: execution time for i
th
 process.

 Di: deadline for process i.

 d: summation of execution time of all processes

 till process j.

 ITS: Intelligent Time Slice.

 TS: Original Time Slice.

 PN: priority number.

 PC: priority component.

 SC: shortness component.

 CSC: context switch component.

 int PN= 1…N

Initialize: Ci= 0, Di=0, Ti=0

foreach τi do

value= TRUE

while (value) do

if()

value = FALSE

the process τi is schedulable

else

d1 is calculated using:

d1 = Ii
d
 + Ci

endif

if (d > Di)
exit

the process τi is unschedulable

endif

 endwhile

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

15

if(burst time of current process-burst time of previous

 process < 0)

SC=1;

else SC=0;

endif

if(burst time - (PC + SC + OTS) < 0)

CSC=1;

else CSC=0;

endif

ITS = OTS + PC + SC + CSC

Check two adjacent jobs. The one which has the

lower ITS

 let, L=job with lower ITS. TQ=L

endfor

Fig-1: pseudo code for schedulability of many processes in conjunction with improved Round

Robin algorithm with dynamic and Intelligent Time Slice

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

16

 No

 Yes

 No

 Yes

 Fig-I Flowchart for the proposed algorithm

2.3 ILLUSTRATION

7 jobs J1, J2, J3, J4, J5, J6, J7 are present in a process set along with Ci computation time 1, 2, 2,

2, 4, 3, 5, time period Ti 6, 10, 14, 18, 25, 28, 37 and deadline Di 5, 8, 11, 15, 20, 27,35,

respectively in a system. Then for τ1 , t0 is calculated and Ii
d
 is evaluated , and τ1 is

schedulable. If Ii
d is greater than 1 then iterations are performed, here d1 = Ii

d + Ci and the

value of t1 is put in the equation Ii
d
/d + Ci/d till the value is less than or equal to 1. After all the

Stop

Burst time (current

processes – previous

process)

Is Difference
< 0 ?

SC=

0

SC=1

Burst time – (PC + SC +

OTS)

Is Difference

< OTS ?
CSC = 0

CSC = 1

ITS = OTS + PC + SC + OTS

Choose two adjacent jobs.

Lower ITS = L

TQ = L

Calculate Avg TAT, avg

WT, CS

 2

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

17

jobs are found to be schedulable the jobs are put in a ready queue and taking a time quantum

and the arrival time 0 the Round Robin scheduling is performed with Intelligent Time Slice.

The burst sequence and user priority are given as 18,24,25,30,36,43,45 and 1,2,1,3,4,1,5

respectively. Original time slice is taken as 10. The PC, SC, CSC is calculated according to the

algorithm. Two adjacent processes are then taken and the lower of the two ITS is taken as the

time quantum for those two processes.

2.4 EXPERIMENTAL ANALYSIS

A.Assumptions
All the processes were processed in the real-time systems with single processor environment

and all the processes are independent. The time period is more than the deadline and deadline is

greater than the computation time. All the attributes like burst time, numbers of processes,

priority, Intelligent Time Slice are known before submitting the processes to the processor. The

arrival time is assumed to be 0. All the processes are CPU bound.

B.Experimental Frame Work
The experiment consists of several input and output parameters. The input parameters consist

of deadline, computation time, time period, burst time, time quantum, priority and number of

processes. The output parameters consist of interference on a process by other higher priority

processes, average waiting time, average turnaround time and number of context switches.

C.Data Set
Several experiments have been performed in order to evaluate the performance of the

proposed algorithm. Particular set of processes are taken to examine schedulability. The data set

are the processes with burst time increasing, decreasing and random to perform scheduling.

D.Performance Metrics
For the experimental analysis the significance of performance metrics is as follows:

1. Interference: for the better performance of the algorithm, interference due to higher

priority processes should be less.

2. Turnaround time(TAT):for the better performance of the algorithm, average

turnaround time should be less.

3. Waiting time(WT): for the better performance of the algorithm, average waiting time

should be less.

4. Number of Context Switches (CS): for the better performance of the algorithm,

number of context switches should be less.

E.Experiments Performed
 To evaluate the performance of the proposed algorithm, a set of 7 processes was taken for

simplicity. The algorithm works effectively even if it is used with a very large number of

processes. In this the schedulability for many processes is compared with exact schedulability

test. After finding the jobs that are schedulable Round Robin scheduling algorithm was applied

where the arrival time of processes is 0 and time quantum is the lower of the Intelligent Time

Slice for two adjacent processes.

Case 1: 7 processes are taken and their schedulability is determined by using deadline

monotonic scheduling.

Jobs Ci Ti Di

J1 1 6 5

J2 2 10 8

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

18

J3 2 14 11

J4 2 18 15

J5 4 25 20

J6 3 28 27

J7 5 37 35

Table 1: it gives the values of computation time, time period and deadlines for a set of 7

processes.

Fig-2: Interference plot for jobs in the process set to distinguish between schedulability for

many processes and exact schedulability test.

After executing the proposed algorithm all the processes are found schedulable. But when

schedulability for many processes was applied only jobs J1, J2, J3, J4, J5 and J7 are schedulable

and J6 are unschedulable.

Case 2: 7 processes are taken with arrival time= 0, and increasing burst time and priority.

JOBS BURST

TIME

PRIORITY

NO.

PC SC CSC ITS

J1 18 1 1 0 1 12

J2 24 2 0 0 0 10

J3 25 1 1 0 0 11

J4 30 3 0 0 0 10

J5 36 4 0 0 0 10

J6 43 1 1 0 0 11

J7 45 5 0 0 0 10

Table 2(a): it is the output using the proposed scheduling algorithm for increasing burst time.

 TQ=10 TQ=10 TQ=10 10 TQ=1 1

J1 J2 J3 J4 J5 J6 J7 J1 J3 J6

0 10 20 30 40 50 60 70 71 72

 TQ=1

 J1

73 74

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

19

Fig-3: Gantt chart for algorithm as proposed in table 2(a).

ALGORITHM AVG

TAT.

AVG WT CS

Proposed

Algorithm.

57 30 11

Table 2(b): performance metrics for increasing burst time.

Case 3: 7 processes are taken with arrival time=0, and decreasing burst time and priority.

Table 3(a):output using the proposed scheduling algorithm for decreasing burst time.

 TQ=10 TQ=11 TQ=11 13 TQ=1 1

J1 J2 J3 J4 J5 J6 J7 J1 J2 J3

0 10 20 31 42 53 64 77 78 79 80

Fig-4: Gantt chart for algorithm as proposed in table 3(a).

ALGORITHM AVG

TAT.

AVG WT CS

Proposed

Algorithm.

54.71 31.4 10

Table 3(b): performance metrics for decreasing burst time.

Case 4: 7 processes are taken with arrival time=0, and random burst time and priority.

JOBS BURST

TIME

PRIORITY

NO.

PC SC CSC ITS

J1 30 3 0 0 0 10

J2 25 1 1 1 0 12

J3 36 4 0 0 0 10

J4 43 1 1 0 0 11

J5 45 5 0 0 0 10

J6 18 1 1 1 1 13

J7 24 2 0 0 0 10

Table 4(a): it is the output using the proposed scheduling algorithm for random burst time.

TQ=10 TQ=10 TQ=10 10 TQ=1 3

J1 J2 J3 J4 J5 J6 J7 J2 J4 J6

0 10 20 30 40 50 60 70 71 72

 TQ=1

 J2

75 76

Fig-5: Gantt chart for algorithm as proposed in table 4(a).

JOBS BURST

TIME

PRIORITY

NO.

PC SC CSC ITS

J1 45 5 0 0 0 10

J2 43 1 1 1 0 12

J3 36 4 0 1 0 11

J4 30 3 0 1 0 11

J5 25 1 1 1 0 12

J6 24 2 0 1 0 11

J7 18 1 1 1 1 13

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

20

ALGORITHM AVG TAT. AVG WT CS

Proposed

Algorithm.

54.17 30 11

Table 4(b): performance metrics for random burst time.

Fig-6: Average turnaround time, Average waiting time and context switch time of the proposed

algorithm for increasing, decreasing and random burst time.

3. CONCLUSION AND FUTURE WORK.

 A comparative study was made between the interference of processes using exact

schedulability and schedulability for many processes and we found that the interference of

processes due to higher priority processes is less in case of exact schedulability test. Moreover a

process J6 is found to be unschedulable using schedulability for many processes whereas using

exact schedulability all the processes were found to be schedulable.

 In this paper, schedulability tests have been presented for deadline-monotonic scheduling

algorithm, and schedulable processes were scheduled using Round Robin algorithm. All the

processes were assumed to have a critical instant. This is ensured as all the processes have an

initial release at time 0. When execution of higher priority processes does not overlap, the

deadline of τi, then Ii will be exact. However when executions of higher priority processes do

overlap, this test does not pass many processes.

 An exact value of Ii must therefore be known, so that exact interleaving of higher priority

processes is known. The proposed approach provides schedulability test using exact

schedulability test, where the complexity is related to the periods and computation time of

processes in the system. Finally the round robin scheduling algorithm was applied to

schedulable processes.

 This algorithm can be used to see the effect upon system utilization. Further this algorithm

can be investigated to prove more and more useful for task oriented results. Besides, some

research work could be done to synchronize and vary the timing characteristics of the processes

in the process set.

International Journal of Information Technology Convergence and Services (IJITCS) Vol.2, No.2, April 2012

21

4. REFERENCES.

[1]. N.C. Audsley, A. Burns, M.F. Richardson, A.J. Wellings “Hard Real-Time Scheduling: The

Deadline-Monotonic Approach” Dept of Computer Science, University of York, York, YO1 5DD,

England.

[2]. Yaashuwanth .C & R. Ramesh “Intelligent Time Slice for Round Robin in Real Time Operating

Systems” Dept of electrical and electronics engineering, Anna University Chennai, Chennai 600 025

[3]. Audsley, N.C. (1990), Deadline Monotonic Scheduling, YCS 146, Dept. of Comp. Sci., Univ. of York.

[4]. Barbara Korousic –Seljak (1994) “Task scheduling policies for real- time Systems” Journal on

MICROPROCESSOR AND MICROSYSTEMS, VOL 18 NO. 9, pg501-512.

[5]. Bur89a. A. Burns and A. J. Wellings, Real time Systems And Their Programming Languages,

Addison Wesley (1989).

[6]. Burns. A (1994) “Fixed priority scheduling with deadline prior to completion” Real time systems

Research Group Department of computer science university of York, UK.

[7]. Sta88a. J. A. Stankovic, Misconceptions About Real Time Computing: A serious problem for next

generation systems, IEEE Computer21 (10), pp. 10-19(Oct 1988).

[8]. Liu, C.L. and J. W. Layland (1973) scheduling algorithms for multiprogramming in a hard real time

environment

 J. ACM, 20, pp.40-61

[9]. Leung, J., and Whitehead, J. On the complexity of fixed priority scheduling of periodic, real time

tasks.

Authors’ Biodata

1. Dr. H. S. Behera is currently working as a faculty in Dept. of Computer Science and

Engineering, Veer Surendra Sai University of Technology (VSSUT), Burla, Orissa, India. His

areas of interest include Distributed Systems, Data Mining and Soft Computing.

2. Sushree Sangita Panda is a final year B.Tech student in Dept. of Computer Science and

Engineering, Veer Surendra Sai University of Technology (VSSUT), Burla, Orissa, India.

3. Jana Chakraborty is a final year B.Tech student in Dept. of Computer Science and Engineering,

Veer Surendra Sai University of Technology (VSSUT), Burla, Orissa, India.

