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Abstract: 

Spark plays a great role in studying uniqueness of sparse solutions of the underdetermined linear 

equations. In this article, we  derive a new lower bound of spark. As an application, we obtain a 

new criterion for the uniqueness of sparse solutions of linear equations. 
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1.Introduction 

 

Recent theoretical developments have generated a great deal of interest in sparse signal 

representation. The setup assumes a given dictionary of “elementary” signals, and models an 

input signal as a linear combination of dictionary elements, with the provision that the 

representation is sparse, i.e., involves only a few of the dictionary elements. Finding sparse 

representations ultimately requires solving for the sparsest solution of an underdetermined 

system of linear equations. Such models arise often in signal processing, image processing, and 

digital communications. 

Given an � � ���� �	 
 �� full-rank matrix with no zero columns 
n

Rb∈ , the linear system 

bAx = has infinitely many solutions when the system is underdetermined. Depending on the 

nature of source problems, we are often interested in finding a particular solution, and thus 

optimization methods come into a play through certain merit functions that measure the desired 

special structure of the solution. One of the recent interests is to find the sparsest solution of an 

underdetermined linear system, which has found many applications in signal and image 

processing [1-3]. To find a sparsest solution of bAx = , perhaps the ideal merit function is the 

cardinality of a vector, denoted by 
0

x i.e., the number of nonzero components of x . Clearly, 

the set of the sparsest solutions of bAx =  coincides with the set of solutions to the cardinality 

minimization problem: 

 },:min{
0

bAxx =  (1.1) 

 which is an NP-hard discrete optimization problem [4]. The recent study in the field of 

compressed sensing nevertheless shows that not all cardinality minimization problems are 

equally hard, and there does exist a class of matrices A such that the problem (1.1) is 

computationally tractable. These matrices can be characterized by such concepts as the spark 
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which was formally defined by Donoho and Elad [5], restricted isometry property (RIP) 

introduced by Cand`es and Tao [6], mutual coherence (MC) [7-9], and null space property 
(NSP) [9, 12]. 

Problem (1.1) is not easy to solve in general. From a convex analysis point of view, a natural 

methodology is to minimize the convex envelope of
0

x . It is well-known that norm−1l  is 

the convex envelope of 
0

x over the region }1:{ ≤
∞

xx . One of the main approaches to 

attack (1.1) is through   

},:min{
1

bAxx =  (1.2) 

which is identical to a linear program (LP) and hence can be solved very efficiently. Using 

norm−1l as a merit function for sparsity can be traced back several decades in a wide range of 

areas from seismic traces [13], sparse-signal recovery[14], sparse-model selection (LASSO 

algorithm) in statistics [15] to image processing [16], and continues its growth in other areas 

[17- 19].  

Let A � R��� �n 
 �� be any full-rank matrix with no zero columns. The definition of spark 

was first introduced by Donoho and Elad [5] as follow: 

 

Definition 1.1 ([3, 5]). The spark of a given matrix �, denoted by ��������, is the 

smallest number of columns from � that are linearly dependent. 

Clearly,  1 � �������� � 	 � 1. In general, it is difficult to calculate the spark. Actually, to 

obtain it, a combinatorial search over all possible subsets of columns from � is required. 

Nevertheless, the spark can be easily lower bounded by using the term ’mutual 

coherence’. 

 

Definition 1.2 ([3, 5, 7]). The mutual coherence of a given matrix � is the largest absolute 

normalized inner product between different columns from �. Denoting the k-th column in � by a�, the mutual coherence is given by 

 

  

 

���� �
mjk ≤<≤1

max
� ���� � �  ��   ! " �� " ! (1.3) 

 

Notice that µ���  #  0 under the assumption  	 
  �. 

Theorem 1.1 ([3, 5]).  For any matrix  � � ���� �	 
 �� with no zero columns, the 

following relationship holds: 

�������� % 1 � 1���� (1.4) 

 

In this article, we first derive a new lower bound of �������� as an improvement of 

Theorem 1.1, illustrated by an example. As a direct application, we obtain a new criterion 

for uniqueness of sparse solutions of linear equations. Finally, we extend the definition of 

spark and the related result for the general matrix �. 

imizationmin1 −l
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The rest of our paper is structured as follows: In Section 2, we give the motivation of our 

discussed problem. In Section 3, we develop a new lower bound for the sparse supported with 

theorems and example. In Section 4, we set an application by considering the problem of 

finding the sparse solutions of linear equations. In Section 5, we extend the definition of the 

spark to the general matrix A � R��� with no zero columns. Conclusion is given in Section 6. 

 

2.    Motivation: Signal and Image Compression        

Generally, solving the sparse solution of underdetermined systems of linear equations has many 

applications in wide areas such as signal processing and image compression, Compressed 

Sensing, Error Correcting Codes, Recovery of Loss Data, and in Cryptography. Here, we 

explain the most direct and natural application; Signal and Image Compression. 

Suppose that a signal or an image b is represented by using a tight frame A  of size nm × with 

nm ≤ . We look for a sparse approximation x satisfying 

},,:min{
0

θ≤−∈ bAxRxx
n

 (2.1) 

where 0>θ is a tolerance. In particular, for lossless compression, i.e., 0=θ , the above 

described problem (2.1) is the same problem (1.1). 

3.  A New Lower Bound 

Denote by �� & 0 the k-th column in �. For each index pair ��, (� �1 �  � 
  ( � ��, define 

��� � � ����� �  ��  ! " ��  "! (3.1) 

 

Where  .  ! is the standard *2 , 	-��. Rearrange ��,� by sorting them in non-increasing 

order : 

 �. % �! % / % � 0��1.�!  (3.2) 

Lemma 3.1. For any matrix � � ���� �	 
 �� with no zero columns, it holds that 

2�3 % 1.�
34.   

Proof: First we modify the matrix � by normalizing  its columns to unit  *2 , 	-��,  

obtaining �5. This operation preserves all µ6 . The entries of the resulting Gram matrix  7 � �5��5 satisfy the following properties: 

 87�,� � 1: 1 � � � �:,    8�7�,�� � ��,�: 1 � � 
 ( � �:, 8�7�,�� � ��,�: 1 � ( 
 � � �:. (3.3) 

 

We also have that ��	��7�  �  	. 
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Consider 7�;., an arbitrary minor from 7 of size �	 � 1� � �	 � 1�, built by choosing a 

subgroup of 	 � 1 columns from �5 and computing their sub-gram matrix.  

Suppose ∑ �3 
 1�34. , then for every i, we have 

2��7�;.�3,���=3 � 2�3 
 1�
34. � �7�;.�3,3,  

i.e., 7�;. is diagonally dominant according to the Gershgorin disk theorem [19], 7�;.  is 

positive definite and hence ��	� �7�;.�  �  	 � 1, which contradicts the fact that ��	� �7�;.�  �  ��	��7� � 	. 
Definition 3.1.  For  any matrix  � � ���� �	 
 �� with no zero columns, define the 

coherence index of � as the minimum  index � such that   ∑ �3 % 1,>34.   denoted by ?���. 
 

According to Lemma 2.1, the coherence index, γ�A�, is well defined. Furthermore, one 

can write the formulation as follows: 

 ?��� � min  �                                                         

(3.4) 

             �. B.  ∑ �3 % 1,>34.                                        (3.5)                         � � C1,2,… , 	E.                                  (3.6) 

 

 

Theorem 3.1. For any matrix � � ���� �	 
 �� with no zero columns, it holds that �������� % 1 � ?��� % 1����.     (3.7) 

 

Proof. Similarly to the proof of Lemma 2.1, we normalize � to AF which preserves both the 

spark and all �6. Let G �  AFHAF whose entries satisfy the properties (2.3), as stated above. 

Consider 7I, an arbitrary minor from 7 of size           � � � �� � C2, 3,K K K , 	 � 1E�, built by 

choosing a subgroup of p columns from AF and computing their sub-Gram matrix. From the 

Gershgorin disk theorem [1], if this minor 7I is diagonally dominant, i.e. ∑ LM7>N3,�L�=3 
�7I�3,3  for every 6, then GO is positive definite, and so those � columns from AF are linearly 

independent. The condition ∑ �3 
 1>1.34.  implies positive definiteness of every � � � 7I. Thus, 

the condition ∑ �3 % 1>1.34.  is necessary for 7I to be singular. (By Lemma 2.1, this condition is 

surely satisfied when  � �  	 �  1.) Therefore, �������� is greater than or equal to the 

minimal � such that   ∑ �3 % 1>1.34.    i.e.   �������� % �6	∑ PQR.STUQVU  � � 1 � ?���.  By the 

definition of  �3, we notice that 

2�3 � ��.,>
34.  

Then we have 
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?��� �  
∑ =

≥
p

i i1
1

min
µ

 � %
1

1

min
≥µp
 �                                   

                                                               � .PU �  1/������ (3.8) 

 

The proof is completed. 

 

Below we use a trivial example to illustrate the possible improvement. 

 

Example 3.1. Let 	 % 2 and 

� �
X
YZ
1 00 1 // 0 0.80 \.]√�1._ _ ` _           _0 0 / 1 \.]√�1.a

bc
����;.�

 
  (3.9) 

 

 

Then �������� � 	 � 1                                                                  (3.10) 

1 � ?��� � 2 � d√	 , 13 e ,                                                                  (3.11) 

1 � 1���� � 2.25 ,                                                                  (3.12) 

 
Where [x] returns the smallest integer value which is greater than or equal to x. 

 

4. Application 
 
In this section, we consider the problem finding the sparse solutions of linear equations, which 

is nowadays very popular, see [5] and references therein. The formulation of this problem can 

be written as follow: 

 min g \ (4.1) 

 �. B.  �g � h,  

(4.2) 

 

Where A � R���  and  x \ the so-called *\ , ’	-��’, denotes the number of nonnegative 

elements  

of x, i.e.,  x \ � # Ci: xk & 0E. 
 

In general, Problem (4.1)-(4.2) is NP-hard [13, 14]. It is significant to study the uniqueness of 

the sparsest solution, which can be regarded as a sufficient condition for global optimality. The 

first surprising result is crucially based on the term ’spark’.  

 

Theorem 4.1 (Uniqueness-spark [5, 8]). If a system of linear equations �g �  h has a solution g obeying  g \ 
  ��������/2, this solution is necessarily the sparsest possible.  

Notice that the spark is also difficult to obtain.  

Following Theorem 1.1 and Theorem 4.1, one has  
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Theorem 4.2 (Uniqueness-mutual coherence [5, 8]). If a system of linear equations �g �  h 

has a solution g  

obeying  x \ 
 .!  l1 � .m�n�o, this solution is necessarily  

the sparsest possible. 

Combining Theorem 3.1 with Theorem 4.1, we obtain the following result, which improves 

Theorem 4.2. 

Theorem 4.3 (Uniqueness-coherence index). If a system of linear equations �g �  h has a 

solution g obeying  x \ 
 .!  �1 � γ�A��, this solution is necessarily the sparsest possible. 

5. Extension 

In this section, we extend the definition of spark to the general matrix A � R��� with no zero 

columns. The difference to the above assumption 	 
  � is that now it may happen that ��	����  �  �. In this case, we set �������� � �∞  as it may happen that  ����  �  0, 

otherwise, Theorem 1.1 does not make sense. 

Lemma 5.1. Let �., . . . , ��1. be defined in (2.2). If  ∑ �3 
 1�1.34.  then ��	����  �  �. 

Proof.  Similarly to the proof of Lemma 2.1, we normalize � to AF which preserves both the 

spark and all µk. Let  G �  AFHAF whose entries satisfy the properties (3.3), as stated above. Then 

for every 6, we have 

2�Gk,p�p=k � 2 µk 
 1�1.
k4. � Gk,k, 

  i.e., 7 is diagonally dominant. According to the Gershgorin disk theorem [19], 7 is positive 

definite and so the � columns from  AF are linearly independent. 

Theorem 5.1. For any matrix A � R��� with no zero columns, it holds that: 

�������� q� �∞,                  6s 2 �3 
 1,�1.
34.% 1 � ?���,              otherwise, { (5.1) 

 

Where ?��� � min  � 
 

(5.2) 

�. B.2�3 % 1,>
34.  

 

(5.3) 

� � C1,2,… . ,� , 1E. (5.4) 

 

Proof. Following Lemma 3.1, we only need to consider the case ∑ �3 % 1�1.34.  similarly to the 

proof of Lemma 3.1, we normalize � to AF, which preserves both the spark and all µk.  Let  G �  AFHAF whose entries satisfy the properties (3.3), as stated above. 
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Consider an arbitrary minor from 7 of size � �  � �� �  C2, 3, … ,�E�, built by choosing a 

subgroup of � columns from AF  computing their sub-Gram matrix. From the Gershgorin disk 

theorem [19], if this minor is diagonally dominant, i.e. ∑ �73,�� 
�=3 73,3 for every 6, then this 

sub-matrix of 7 is positive definite, and so those � columns from AF are linearly 

independent. 

The condition ∑ �3 
 1>1.34.  implies positive definiteness of every � � � minor, and so                   ∑ �3 % 1>1.34.   is a necessary condition for the � �  � minor to be singular. Therefore, �������� 
is greater than or equal to the minimal � such that ∑ �3 % 1>1.34.  i. e., 
 �������� % �6	∑ PQR.STUQVU  � � 1 � ?���.  
Notice that the latter is well defined since  ∑ �3 % 1�1.34. . 
6. Conclusion 

Non-negative linear systems of equations come up often in many applications in signal 

processing and image compression, compressed sensing, error correcting codes, recovery of 

loss data, to name just a few. Solving such systems is usually done by adding conditions such as 

maximal entropy, maximal sparsity, and so on. 

In this work, we developed a new lower bound of spark supported by theorems and 

applications. We also have obtained a new criterion for the uniqueness of spark solutions of 

linear equations. In addition, we have extended the definition of the spark to a general matrix 

with no zero columns. 

The obtained results generalize some of the previous- known facts about the spark and open the 

way to develop more potential stronger optimized bounds and solutions.    
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