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 Abstract 

Noise is the major problem while working with wireless LAN. In this paper we analyze the noise by 

using  active receiving antenna and also propose the detection mechanism based on RF energy 

duration. The standard back off mechanism of 802.11 wireless LAN (WLAN) increases the contention 

window when a transmission failure occurs in order to alleviate contentions in a WLAN. In addition, 

many proposed schemes for 802.11 WLAN behave adaptively to transmission failures. Transmission 

failures in WLANs occur mostly by two causes: collision and channel noise. However, in 802.11 WLAN, 

a station cannot know the cause of a transmission failure, thus the adaptive schemes assume the ideal 

situation in which all transmission failures occur by only one of two causes. For this reason, they may 

behave erroneously in a real world where transmission failures occur by both causes. In this paper, we 

propose a novel scheme to detect collision, which utilizes transmission time information and RF energy 

duration on the channel. By detecting collisions, a station can differentiate the causes of transmission 

failures and the adaptive schemes can operate correctly by using the detection information. 

1. INTRODUCTION 

 With science and technology developed quickly. The active antenna has been getting more 

and more important. By the word “active antenna “, we mean that the conducting wire of an 

antenna is combined with an active device to form a non-separated unit. Its advantage is small 

size wide frequency band, and so on. The reason of its miniaturization is that the gain 

decrement due to the reduction in the size of the antenna wire is compensated by the gain of 

the active network. As soon as the impedance of the antenna wire is level-matched with the 

one of the active network, the antenna impedance is extremely non-sensitive to the frequency, 

which leads to a wire frequency band. Increasing active network bring about the extra noise, 

which limits decreasing the size of the antenna and extending its frequency band. Therefore, 

the noise suppression becomes the bottleneck in technique. Thus, measuring the noise figure is 

very important. So far, as we know, the norm to measure noise figure of an active antenna has 

not been suggested. For some active antennas, the noise figure of the active network is only 

given. In this paper, the noise of the active antenna and its noise figure are analyzed. A method 

to measure the noise figure of active antennas is developed which benefits the research and 

making of the active antennas. 

As the demand for high-speed wireless communication increases, wireless local area network 

(WLAN) is emerging as a promising solution. Especially, IEEE 802.11 [1] is the most popular 

WLAN technology, which supports high data rates up to 54 Mbps in the ISM bands such as 

2.4 GHz and 5 GHz. The IEEE 802.11 standard specifies two Medium Access Control (MAC) 

schemes: a mandatory Distributed Coordination Function (DCF) and an optional Point 

Coordination Function (PCF). Currently, most of WLAN devices implement DCF only due to 
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its simplicity and efficient best-effort service provisioning. DCF is based on carrier sense 

multiple access with collision avoidance (CSMA/CA), in which a station transmits its frame 

only if the medium is determined to be empty, i.e., no other stations transmit. The collision 

avoidance mechanism utilizes the random back off prior to each frame transmission attempt.  

Transmission failures in the IEEE 802.11 WLAN occur mostly by two causes: collision and 

channel noise. While the random back off can reduce the collision probability, it cannot 

completely eliminate the collisions since two or more stations can finish their back off 

procedures simultaneously. A transmission attempt can also fail without a collision since the 

wireless channel I error-prone due to path loss, interference, etc.. We refer to such 

transmission failures as a channel error to differentiate it from a collision. Although 

transmission failures occur by two causes, wireless station cannot realize the causes since, 

unlike wiredLANs, the collision detection mechanism cannot be implemented in WLANs. 

Instead, the stations know only whether the transmitted frame has been received successfully 

by acknowledgement (ACK). For this reason, many operation principles of 802.11 WLAN and 

other proposed schemes for 802.11 which behave adaptively to transmission failures assume 

the ideal situation in which all transmission failures occur by only one cause: collision or 

channel error. Therefore, the adaptive schemes may behave erroneously and in an undesired 

manner in the real world where transmission failures result from both causes. Some of them 

(e.g. [2][3]) assume that all transmission failures are due to collisions. As an example, in the 

back off mechanism of 802.11 MAC, a station doubles its contention window (CW) value to 

reduce collision when a transmission failure occurs. This behavior is based on the assumption 

that transmission failures result from collisions. However, transmission failures can occur also 

by channel errors. Therefore, for channel errors, the back off mechanism wastes the bandwidth 

and increases transmission delay unnecessarily. Others (e.g. [4] [5]) assume that all 

transmission failures are caused by channel errors. One of the examples is the Automatic Rate 

Fallback (ARF) algorithm [4] used in WaveLAN-I1 products from Lucent, which is a simple 

link adaptation algorithm. In ARF, a station lowers its transmission bit rate when the certain 

number of transmission failures occurs consecutively assuming that transmission failures are 

originated from channel errors. Therefore, if collisions occur frequently due to many 

contending stations, the stations even in a good channel quality may transmit data frames in an 

unnecessarily low rate. In order that the adaptive schemes can behave correctly and the 

performance of 802.11 MAC can be optimized further, a station should be able to differentiate 

collisions and channel errors. Collision detection is one of the possible approaches to 

differentiate collisions and channel errors. There has been a notable attempt to detect collisions 

in sensor networks [6].  

This scheme considers two types of collisions in the presence of capture: stronger-first and 

stronger-last in which the packet with the stronger power comes first and last, respectively. In 

stronger-first collisions, a receiving node can detect a collision by finding a new extra 

termination symbol, while, in stronger-last collisions, a receiving nod can detect a collision by 

finding a new preamble, during the reception of another packet. However, for successful 

detection, the transmissions which result in a collision should have enough differences I 

transmission start time and receiving power. Therefore, this scheme can be only applied to 

restricted collision situations to enable collision detection in various situations of 802.11 

WLAN; we propose a novel collision detection scheme in this paper. 

 

2. THE NOISE ANALYSIS OF ACTIVE RECEIVING ANTENNA 
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The antenna system of a receiver is degraded by various noises in its practical applications. 

The key parameter of a receiver system is its noise figure that is measurement of the 

degradation in SNR. For an active receiving antenna, the receiver system can be shown as Fig. 

1. Its output SNR is  
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is the noise power propagated by the ambient noise into the output of the receiver; 
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Where F

S 
is the noise figure of the receiver system when source temperature is the ambient 

noise temperature T
A, 

F
A 

is the ambient noise figure, F
a 

is the one of the active antenna when 

the source temperature is room-temperature 290K, F
r 

is the one of receiver when the noise 

temperature is also room-temperature 290K, and G
a 
is power gain of the active antennas. F

A
,F

a 

and F
r 
are all called as the normal noise figure. Eq. 4 represents the relationship of the noise 
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figure of receiver system to the ambient noise figure, the noise figure of the active antenna and 

the noise figure of the receiver from which it is seen that the ambient noise figure plays an 

important rule in the noise figure of the receiver system. The ambient noise figure includes the 

cosmic noise figure generalized by the radio-sources in the cosmic space, the radiations from 

sun spots, the Milky Way, and the cosmic rays, the atmosphere noise mainly resulted from the 

lightning radiation and the thunder-gust, and artificial noise, e.g., the mechanical and electrical 

interference, and ambient thermal radiation etc. It is well know that the cosmic noise and 

atmosphere noise are violently changed with the season, and the place, and also with the 

frequency. The noise somewhere and its functional relation to the frequency are mainly 

referred to Report 332 of CCIR. The distribution of the ambient noise and its relation to the 

frequency in the discussed frequency range are shown in the following figure. 

 
 
The design of an active antenna is traditionally based on the way in which the characteristic 

curve of D to E that is inherently a statistically average one is the start of the sensitivity 

design. Of course, when it is used in a specific range, the specific curve should be applied as 

the design basis. In short wave band, the ambient noise is more severe. In the case, we request 

the system noise figure is mainly dependent on the ambient noise figure, that is, F
S 

≤ 2 We 

know that  

   
This is just the request for the noise figure of active receiving antennas. From Eq. (5), it is 

known that the G
a 
should be as large as possible. But, considering the nonlinear distortion, G

a 

cannot be increased unlimited. The working characteristic curve requested by the noise figure 

of an active receiving antenna in short wave band is shown in Fig.3. The curve is referred to 

the minimum of the ambient noise level at 30 MHz, and provided that the noises figure of the 

receiver is 10 dB. Generally, the noise figure of a receiver is not the same, when the used 

receiver is not the same. Normally, F
r 
is in the range of 9 to 16 dB. From Fig.3it is also seen 

that when F
r 
is constant, G

a 
has little effect on F

a 
that is mainly due to that in short wave band 

F
a 
is much larger  
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than F

r 
so that the effect of the noise figure of the receiver on the noise figure of the receiving 

system is negligible in general. So, when the noise figure of the active antenna system is 

substituted into the noise figure of the receiving system, the latter is changed to 
 

 
Practically, the noise figure of the active antenna receiving system is just the noise figure of 

the active antennas that really maps the relation of the output SNR of the active antennas to its 

input SNR. The word “system” is increased to the term to be discriminated from the 

traditionally termed noise figure of the active antennas when the source temperature is the 

room temperature. Eq. (6) gives us the formula evaluating the noise performance of an active 

antenna.  

In an active antenna, increasing an active network in which the noise is basically resulted from 

its active devices brings about the extra noise. In order to reduce the noise, everything possible 

must be done to noise-match the conducting wire of the antennas to the active network But, it 

is impossible to noise-match the monopole antenna work in a wide frequency band even 

through the exciting network is arbitrarily sophisticated. In order to realize wide frequency 

band, the impedance-level-match is wildly applied between the antenna wire and the active 

network, which is obtained from impedance-off-matching and noise-off-matching. The more 

the off-matching is, the wider the frequency is for a monopole electric-short active antenna, an 

FET is used as the input stage at most time in active network. In this case, the inherent noise of 

the FET is less. But, in the electric-short antenna wire that is a source with low resistance and 

high capacitive reactance, the effective power gain is generally less than 1. Thus, the noise of 

the second stage must be carefully considered. Everything must be done to noise-match as 

possible. In order for the noise of the active network to be basically dependent on the first 

stage, the device with low noise high cutoff frequency and high gain should be selected. 

Furthermore, the connection mode should also be correctly selected. As far as the noise is only 

concerned, the common source connection comes into favor,. But, consider the nonlinear 

distortion and the noise-match of the 2
nd 

stage; the common drain connection is more optimal. 

In a word, a well-done design requests that the noise of the active network should be basically 

determined by stage 1. 

3. COLLISION DETECTION BASED ON RF ENERGY TIME 
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In this section, we describe the collision detection scheme based on RF energy time, named 

CD-ET. Before description, we define two time values to specify an event in a time axis: ST 

and DT. 

. ST (Start Time): the time point when the event starts to occur. 

. DT (Duration Time): the duration for which the event lasts. 

Using this two tuple, we can specify transmission attempts of stations and RF energies on the 

channel in a time axis. We refer to the two tuple of (ST, DT) of a transmission attempt as TT 

(Transmission Time information). Especially for a RF energy, we refer to its ST and DT as 

EST and EDT, respectively, and the two tuple of (EST, EDT) as ET (Energy Time 

information). First, we briefly explain the key idea of CD-ET. When stations start to transmit 

their frames simultaneously in an infrastructure BSS, a collision occurs and the AP of the BSS 

sees a merged RF energy caused by the collided frames. If the DTs of the collided frames are 

different from each other, the EDT of the merged RF energy is longer than the DT(s) of the 

original frame(s) except the longest frame(s). Therefore, if the sending stations can know the 

EDT of the RF energy, they can detect the collision by comparing the EDT with the DT of 

their own transmission attempt. When the STs of the collided frames are different from each 

other, the stations can detect the collision in the same manner. To enable CD-ET in 802.11 

WLAN, we assume that the V/LAN Network Interface Card (NIC) can measure the duration 

of a RF energy on the channel and report it to the MAC layer.  

The measurement of RF energies on the channel is being used by some 802.11 V/LAN NICs 

to check whether the channel is busy or to check interference in the channel [7]. Since the 

ambient channel noise changes depending on the environment, the outlier detection algorithm 

[8] can be used for the accurate measurement of the valid RF energies which are caused by 

frame transmissions. We also assume that each station stores the TTs of its transmission 

attempts in a queue TQ' based on its local clock so that it can compare an EDT with DTs of its 

previous transmission attempts. Fig. 1 shows the detailed operation of CD-ET when a collision 

occurs by the simultaneous transmission starts of the two stations A and B in an infrastructure 

BSS. In this figure, we assume that the DT of the collided frame from the station B is longer 

than that from the station A. With the collision, the AP of the BSS can detect a RF energy on 

the channel without the successful reception. Then, the AP broadcasts an ET frame, which is a 

management frame newly define in CDET, in SIFS (Short Inter-Frame Space) after the end of 

the energy. The ET frame has the same frame format as the beacon frame except that it 

contains an ET. Before the transmission of the ET frame, the EST is recalculated to EST' 

based on 

 

                        EST'= EDT + SIFS + T[ET] 

 

Where T[ET] is the transmission time of the ET frame. From the equation above, EST' is the 

time from the start of the RF energy to the end of the transmission of the ET frame. Then, the 

stations A and B can obtain the start time of the RF energy based on their own local clock by 

subtracting the received EST' from their local clock time. As shown in Fig.1, the station A can 

obtain ESTA, which is the start time of the RF energy based on A's local clock, by subtracting 

the received EST' from its local clock t' (tl is A's local clock time when it receives the ET 

frame). In this manner, stations in the BSS can share EST without global time synchronization. 

When the stations receive the ET from the AP, they check the ET against TTs in their TQ. If 
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the EDT is larger than the DT of the transmission attempt which overlaps the ET, the station 

(A) detects the collision because it comes to know that there was another transmission 

attempt(s). Here, ET= (EST, EDT) and TT= (ST, DT) are defined to overlap with each other 

when they satisfy the below condition: 

 

 (EST < ST < EST+EDT) OR (ST < EST < ST+EDT), 

 Which means the RF energy is (possibly partly) caused by the corresponding transmission 

attempt. This is the end of the first detection phase. The time required for the first detection 

phase is bounded to the time below: 

          (max {STj + DTi} -min{STJ}) + SIFS + T[ET] 

                                

Where STi and DTi is the ST and DT of the i-th overlapping transmission, respectively. At the 

end of the first detection phase, the station B cannot know the collision yet since the EDT has 

the same value as the DT of the collided frame from the station B. To notify All the queues 

considered in this paper are First-In First-Out (FIFO) queues. 

 
 

 

The station B of the collision, the station A piggybacks the collision notification (CN) on its 

next data frame (Data+CN frame), which contains the STA and DT of its collided frame. 

Before transmission, the STA of CN should be also recalculated to ST' in the same manner for 

the ET frame as below: 

 

    ST' = t -STA + T[Data + CN] + SIFS + T[ACK + CN] 

 

Where t2 is A's local clock time when A starts to send the Data+CN frame, and T[Data+CN] 

and T[ACK+CN] are the transmission times of the corresponding frames. Then, the AP sends 

the ACK frame with that CN (ACK+CN frame) for the station B since the station B can be 

hidden from the CN sending station. When B overhears the ACK+CN frame, B calculate STB, 

which is the start time of the A's frame based on B's local clock, by subtracting the received 

ST' from its local clock tB (tB is B's local clock time when B receives the ACK+CN frame). If 

the TT of the received CN and one of the transmission attempts in TQ overlap with each other, 

the station B considers it a collision since those two transmission attempts interfere with each 

other. The definition of the overlap of two TTs is the same as that of ET and TT. This is the 

end of the second detection phase and, at this time; all the collided stations come to know the 
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collision. A collision between more than two stations can be detected in the same manner. CN 

can be also transmitted by a separate frame, but piggybacking is more efficient because inter 

frame space and back off duration is a big overhead in 802.11 WLAN. In the real 

implementation, CN is buffered in the queue CQ since other collisions can occur before the 

detection finishes. A station piggybacks CN on its data frame whenever its CQ is not empty.  

When a station receives CN, it removes the overlapping entry in CQ because that information 

is already shared by all the stations in the BSS. On the other hand, if the DTs of all the 

collided frames are equal, CD-ET cannot detect the collision (all their STs are assumed to be 

equal). This is especially true when all the stations operate in RTS/CTS mode. For this reason, 

we propose to use Random Bit Padding (RBP) in which each station pads random number of 

bits at the end of a data frame (RTS frame in RTS/CTS mode) before transmission. By doing 

this, the length of data frames has randomness. The unit of padding bits is Wz Unit and Wu, 

it/r should be larger than the minimum time granularity tg which stations can measure (e.g. 

lps). r is the transmission bit rate. Assuming that tg is constant, Wu unit can be configured 

adaptively to r to reduce the overhead (e.g. Wz Unit = [tg r]). The number of Wu unit to pad is 

uniformly chosen in the range of [0, RW-1], where RW is the RBP window. As RW increases, 

it is more probable that transmitted frames have different duration times. Therefore, the 

detection capability is determined by the size of RW.Meanwhile, if a Data+CN frame collides 

with a frame which has the longer DT, the station of the Data+CN frame will have a new CN 

in its CQ. Then, the new CN should wait for the current Data+CN frame to be transmitted 

successfully before its transmission, which results in the increase of the detection delay. To 

alleviate this problem, a station chooses the number of Wunit to pad in the range of [RW, 

2RW - 1] for Data+CN frames2. Then, it is more probable that Data+CN frames have the 

longer DT than normal data frames. Therefore, the station of a normal data frame may have a 

new CN in a collision assuming that many data frames have the same transmission time. In the 

presence of capture, the AP does not broadcast the ET frame since it receives one of the 

collided frames successfully. Therefore, the stations of the non-captured frames cannot detect 

the collision. For this reason, the AP manages the queue RQ which stores TTs of the 

successfully received frames. If a station does not receive either ACK and ET frame after it 

sends a data frame, it piggybacks the failure notification (FN) on the next data frame 

(Data+FN frame) to inform the AP of its transmission failure. The FN contains the TT of the 

failed transmission. Then, the AP checks the FN against TTs in RQ, and sends an ACK+CN 

frame directly if it finds any TT which overlaps with the FN. 

4. CONCLUSIONS           

In this paper, we analyse the noise problem by using active receiving antenna and also we 

proposed the novel collision detection scheme, called CD-ET, for IEEE 802.11 WLAN for this 

noise problem. Our scheme can be used with the wide range of adaptive schemes so that the 

adaptive schemes behave correctly against transmission failures. 
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