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ABSTRACT 

Security of SCADA (supervisory Control and Data Acquisition) has become a challenging issue today 

because of its connectivity with the outside world and remote access to the system. One major challenge 

in the SCADA systems is securing the data over the communication channel. 

PKI (public key infrastructure) is a well known framework for securing the communication. In SCADA 

system, due to limited bandwidth and rare communications among some nodes (Remote Terminal Units), 

there is a need of customization of general PKI which can reduce the openness of Public Key, frequent 

transfer of certificates and reduction in DOS (Denial of Service) attacks at MTUs (Master Terminal 

Units) and other  nodes. 

This paper intends to address the issues of securing data over communication channel in the constrained 

environment and presents the novel solutions pivoted on key distribution and key management schemes. 
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1. INTRODUCTION 

Supervisory Control and Data Acquisition (SCADA) systems means for management, 
supervisory control, and monitoring of process control and automation systems via collecting 
and analyzing the real time data. Initially these systems were not intended to operate within the 
enterprise environment, this lead to inability within SCADA components to deal with the 
exposure to viruses, worms, malware etc. that are commonplace today within the enterprise 
network. 

Due to connectivity of SCADA systems with Internet and the increased risk of cyber attacks, 
security of such systems have become a challenging issue today. Technology become 
vulnerable to attacks and technological vulnerability can cause a sever damage on critical 
infrastructures like electric power grid, oil gas plant and water management system. Protection 
of such Internet connected SCADA systems from intruders is a new challenge for researchers 
and therefore, it is necessary to apply information security principles and processes to these 
systems.  Researchers recognized that these systems need to operate safely, efficiently, and 
securely; and pointed out that its cyber vulnerabilities are substantial and have already caused 
significant impacts including deaths [13]. 

SCADA system consists of a human-machine interface (HMI), a supervisory system (controller 
or MTU), Nodes (remote terminal units), programmable logic controllers (PLCs) and a 
communication infrastructure connecting the supervisory system to the nodes. 

As the SCADA industry developed, vendors began to adopt open standards and the total 
number of SCADA protocols commonly in use was reduced to  smaller number of protocols 
that were popular and were being promoted by industry, including MODBUS, Ethernet/IP,  



 International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.4, July 2011  
 

70 
 

PROFIBUS, ControlNet, InfiNET, Fieldbus, Distributed Network Protocol (DNP), Inter-
Control Center Communications Protocol (ICCP), Telecontrol Application Service Element 
(TASE) etc. The most widely used communication protocols in SCADA system are DNP3 
(Distributed Network Protocol version 3.0), IEC 62351 and Modbus. In the beginning due to 
isolation of SCADA system from rest of the world, cyber security was not an issue when these 
protocols were designed. As the system is becoming more interconnected to the outside world, 
the necessity of securing the system is increased. 

 

 

 

 

  

 

 

 

 
Cryptographic techniques are widely used for providing many security features like higher 
security, reliability, and availability of control systems etc. to the SCADA systems.  There is a 
need of establishment of secure keys before application of cryptographic techniques. 
Specifically designed PKI are much easier to work with in order to address a particular problem, 
rather than using a "onesize-(mis)fits-all PKI design" [15]. 

In this paper first we discuss key distribution and key management issues and then we present 
our Token Based Key Management Scheme for securing the SCADA communication in an 
efficient way; the scheme is designed such that it also fulfils the essential requirement of 
availability along with integrity in the SCADA systems. 

In next section, we discuss key challenges and related work, In Section 3 we present our 
proposed key distribution and key management technique with Protocol Security and Strength 
Testing in section 4, Conclusions in Section 5 and References at the end. 

2. KEY CHALLENGES AND RELATED WORK 

Along with the connectivity of SCADA system to the Internet, many security threats have 
emerged, like unauthorized access of devices, capturing and decoding network packets and 
malicious packet injection in the network. 
For securing the SCADA system from these threats, there are certain security requirements, 
which can be classified as: 
 
1. Authentication: It is very important to ensure that the origin of an object is what it claims to 
be.  
2. Integrity: The manipulation of messages between nodes and insertion of new nodes can be 
hazardous. A malicious attacker could cause physical damage if they have the ability to alter or 
create messages.  
3. Confidentiality: Ensuring that no one can read the message except the intended receiver.  

Figure 1.  SCADA System Architecture 



 International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.4, July 2011  
 

71 
 

4. Availability of resources: Insuring that resources are available for legitimate users. Insuring 
that the information is there when needed by those having authorization to access or view it. 
 
For securing the system, these challenges along with installation and configuration limitations 
of the system need to be considered. Ludovic Piètre-Cambacédès[3] has pointed out the some 
constraints of SCADA system: 

1. Limited computational capacity: The most of the nodes are having low computational 
capabilities. 

2. Limited Space Capacity: Memory available in the most of the nodes is quite low. 
3. Real-time processing: If transmission and processing of data in SCADA systems not become 
timely, then it may cause of latency problems.  
4. Key freshness: In the absence of key freshness entities would keep reusing an ‘old’ key for 
longer time, which might have been compromised, so there is a need of key freshness for 
eliminating the possibility of such new security hole. 
5. Small number of messages: Due to low bandwidth, number of messages exchanged between 
nodes need to be minimum and also length of messages need to be also small.   
 
In the paper "Infrastructure Vulnerability Assessment Model (IVAM)" [11], Barry Charles 
presents a model that quantifies vulnerabilities of critical infrastructure (here, medium-sized 
clean water system) using the Infrastructure Vulnerability Assessment Model (I-VAM). Author 
emphesized on the use of said system to quantify vulnerabilities to other infrastructures, 
Supervisory Control and Data Acquisition Systems (SCADA), and Distributed Control Systems 
(DCS). 

In the paper "Security for Critical Infrastructure SCADA Systems" [24], Andrew Hildick-
Smith, gave a non-technical overview of critical infrastructure SCADA security. It gives 
relevant information of background on SCADA systems and the history of critical infrastructure 
concern. Various SCADA security threats, incidents and vulnerabilities are discussed and a 
broad range of security initiatives, observations and recommendations are provided. 

American Gas Association in its report 12 "Cryptographic Protection of SCADA 
Communications"[14], identifies both the threat agents (entities who might harm the system) 
and the kinds of attacks that might be mounted. This ranges from hacker with spare time whose 
motivation may be fun, challenge or fame, to terrorists with computer skills, spying, money 
whose motivation is to terrorize, finance operations and economic damage. Maintenance 
communication channel protection components are explained for Cryptographic experts to 
understand the special constraints of SCADA systems, and for SCADA engineers and designers 
in order to protect against cyber attack. 

In its SCADApedia pages [12], Digital Bond gives insight of various SCADA protocols 
including DNP3, Secure DNP3, Foundation Fieldbus HSE, Modbus, PROFIBUS/PROFINET. 
It includes the protocol description, its deployment and use in relevant protocol layer(s) with 
changes (if any) required for that particular layer of TCP/IP or OSI model. 

A depth defence and proactive solutions [4] to improve the security of SCADA control systems 
ensures the future of control systems and survivability of critical infrastructure. This paper 
describes the key requirements and features needed to improve the security of the current 
SCADA control systems. For example, in assessing the risk for SCADA systems, use of general 
methods for risk analysis including specific conditions and characteristics of a control system 
need to be applied. 

Wang et al. [7] presents a suite of security protocols optimized for SCADA/DCS systems which 
include: point-to-point secure channels, authenticated broadcast channels, authenticated 
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emergency channels, and revised authenticated emergency channels. These protocols are 
designed to address the specific challenges that SCADA systems have. 

 
In National Communications system (NCS) [8], an overview of SCADA is provided, and 
security concerns are addressed and examined with respect to National Security and Emergency 
Preparedness (NS/EP) communications and Critical Infrastructure Protection (CIP) 
implementation. 

T. Paukatong, in his paper “SCADA Security: A New Concerning Issue of an In-house EGAT-
SCADA” [10], described the measures to ensure security for Electricity Generating Authority of 
Thailand -SCADA. This paper gives an insight of potential attacking techniques from insiders 
and outsiders. They recommended North America Electricity Reliability Council (NERC) 
standard 1300-Cyber Security as an important source of security guidelines. 

There is a need to keep these constraints in mind before building a security mechanism for the 
system. Many efforts have been made in the area of key distribution and key management for 
securing the System but still there is a scope for improvements. 

Sandia National Laboratories [1] proposed a cryptographic key management and Key 
Establishment approach for SCADA (SKE) in 2002. This technique, divides the communication 
into two categories: first is 'controller to subordinate (C-S) communication' and second is 
'subordinate to subordinate (S-S) communication'. The C-S is a master-slave kind of 
communication and is ideal for symmetric key technique. The C-C is a peer-to-peer 
communication and it can use asymmetric key approach. In C-S communication, each controller 
has a Long Term Key (LTK) shared with its subordinate. The controller also has its own 
General Seed Key (GSK), which it sends to each of its subordinates. The General Key (GK) is a 
128 bit hash of GSK. For communication, the sender obtains a Session Key (SK) from GK. And 
this SK is used for encryption/decryption. All keys used are of 128 bit in length. 

Information Security Institute, Queensland University of Technology, Australia [2] proposed 
Key Management Architecture for SCADA systems (SKMA). In this scheme a new entity 'Key 
Distribution Center (KDC)' came into picture, which is used to maintain long term keys for 
every node. Whenever a new node joins the system, a node-KDC key is manually installed in it. 
When two nodes want to communicate then with help of node-KDC key, a long term 'node-
node key' is generated. Again using the node-node key, a session key is generated for data 
communication. 

In 2002, Mingyan Li [5] proposed a key management approach with multicast and broadcast 
facility. This approach specifies the shared keys to be stored in the database of MTU (2n-1 
keys) and nodse (1+log 2n keys) and these keys are used at run time, where 'n' is number of 
nodes. However, this approach provides multicasting in a limited fashion. 

Donghyun Choi[6] also proposed a multicast and broadcast scheme with additional computation 
at run time at MTU side, by doing so the number of keys at MTU is 'n-1' lesser than Mingyan 
approach. Like Mingyan's approach, this approach also provides multicasting in a limited 
fashion. 

Simple Public Key Infrastructure (SPKI) was developed starting in 1995. Simple Distributed 
Security Infrastructure (SDSI) is a new design for a public-key infrastructure, designed by 
Professors Ronald L. Rivest and Butler Lampson of MIT's Laboratory for Computer Science, 
members of LCS's Cryptography and Information Security research group [18]. The SPKI/SDSI 
facilitates to build a secure distributed computing system which may be scalable. SPKI/SDSI 
builds public keys as principals and each public key as a certificate authority itself [17]. Each 
principal can issue certificates. SPKI/SDSI provides two types of certificates; these are “name 
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certificates” and “authorization certificates”. Name certificate defines a local name in the local 
name space of certificate issuer. Authorization certificate grants authorization to the subject of 
the certificate. A single certificate cannot define both i.e. a name and granting an authorization; 
so a certificate is either a name certificate or an authorization certificate, but can not be both. 

 
SCADA system is an interconnected infrastructure, where smooth, reliable and continuous 
operations are desired. Protecting such infrastructures includes a number of challenges, such as 
secure interaction among nodes, resilience and robustness of entire system. The Wireless Sensor 
Networks (WSN) have intelligent distributed control capabilities, and the capability to work 
under severe conditions, so some of the schemes of this area may be useful for securing 
SCADA systems, as µPKI.  

In the paper “Lightweight PKI for WSN µPKI”, Benamar Kadri , Mohammed Feham , and 
Abdallah M’hamed proposed a lightweight implementation of Public Key Infrastructure (PKI) 
[16]. Their proposed protocol called µPKI uses public key encryption only for some specific 
tasks as session key setup between the base station and sensors giving the network an 
acceptable threshold of confidentiality and authentication. µPKI only implements a subset of a 
PKI services. Here all sensors are connected to a Base station, which is having more 
computational and energy power compared to sensors; and each sensor is capable to use both 
symmetric and asymmetric encryption. The public key of the base station is installed at sensor 
node with the help of an off-line dealer. It ensures that only legitimate sensors can authenticate 
base station trough its public key. The public key is used to authenticate the base station by the 
sensors in the network, and private key is used by the base station to the decrypt data sent by 
sensors, which ensures confidentiality. For secure end to end transmission between nodes and 
Base station, µPKI uses two types of handshakes. The first handshake is between the base 
station and sensors where a sensor generates a random key, encrypts it with the public key of 
the base station and sends to Base station, by decrypting it , the base station saves the session 
key in a global table where are saved all the session keys corresponding to each sensor in the 
network. The second handshake is for securing sensor to sensor communication; where one of 
the two sensors sends a request (which contains the identifier of the corresponding node) to the 
base station to establish a secure tunnel with the other sensor. When base station receives this 
request, it decrypts this and generates a random key, then encrypts a copy of this key for each 
sensor using the corresponding session keys, and sends it to each sensor [16].  

Tanveer Ahmad Zia proposed a novel security framework for wireless sensor networks WSNSF 
(Wireless Sensor Networks Security framework) [9] that includes a secure key management 
scheme, secure routing algorithm, secure localization technique and a malicious node detection 
mechanism. 

Several schemes have been proposed in the area of token based key management for the 
security of data & information. The 'hybride scheme' [19] incorporates an electronic token and 
biometric verification. In this scheme the template against which the user’s biometric is 
validated is encrypted and divided into two parts. One is recorded on electronic media as part of 
the user’s token and the other is retained inside the secured system. The key is generated 
independently instead of using user’s biometric. This is also encrypted, split and stored in the 
same two locations. The only drawback of this scheme is, it can not be used in automated 
systems because user interference is required for biometric verification. 

Another hybrid cryptographic technique [20] uses a combination of RSA and elliptic curve 
cryptography (ECC) to achieve efficient mutual authentication and key agreement. Here a 
trusted third party generates the certified tokens and the nodes need to present their credentials 
(Social Security Number SSN of the user, name & address of the user, MAC address of the 
device) in order to get the tokens. In this protocol, there is no prior key distribution and key 
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storage for making protected data transmission in vulnerable wireless link. This technique 
requires reasonable resources in terms of computation and communication overhead and 
provides higher security. 

Gokhan Bal et al. [21] have proposed a key management architecture based on the capabilities 
of Trusted Computing (TC) Technologies. It uses Trusted Software Stack to implement its 
functionality. To achieve a maximum level of universality, the services provided by this 
architecture covers the needs of all applications dealing with privacy sensitive data. An 
application programming interface facilitates the utilization of the services. 
In a ubiquitous security solution proposed by Jiejun Kong et al. [22], the certification authority 
functions are distributed through a threshold secret sharing mechanism, in which each entity 
holds a secret share and multiple entities in a local neighborhood jointly provide complete 
services. 

A large number of security protocols are being developed and deployed in order to provide 
secure communication. The design of any security protocol is an intuitive process which is 
severely error-prone. That’s why a more rigid framework required; within which one can safely 
design protocols. BAN logic is the most important tool to have a formalization analysis of 
authentication protocols [23]. BAN Logic does not properly deal with the issues of certificates 
and the use of Public Key Infrastructure (PKI), in the paper "Extending BAN Logic for 
Reasoning with Modern PKI-based Protocols" [25],  Sufatrio and Roland H.C. Yap proposed an 
extension to BAN Logic that focuses on certificate processing within the PKI setting. Their 
work makes possible to use BAN Logic on PKI-based protocols 

The analysis of security protocols is being difficult for humans, as many protocols were found 
to be awed after deployment. The prior efficient approaches to do the automated falsification or 
verification of such protocols were ProVerif or the Avispa tools. In the paper “The Scyther 
Tool: Verification, Falsification, and Analysis of Security Protocols” [26], Cas Cremers 
presented a push-button tool, called Scyther, for the verification, the falsification, and the 
analysis of security protocols. 
 
Though the use of any such tool eliminates the possibility of human error, but still the selection 
of such automated tool is very important in order to find out the correct results. Only few tools 
explore all possible behaviours, whereas others explore strict subsets. Ignoring these kinds of 
differences leads to completely wrong interpretations of the output of a tool. In their report 
“Comparing State Spaces in Automatic Security Protocol Verification” [27], Cas Cremers and 
Pascal Lafourcade applied study of state space relations in performance comparison of several 
well-known automatic tools for security protocol verification. After the analysis of 
performances of tools over comparable state spaces, they find in their conclusion about the 
efficiency of the tools that Scyther and ProVerif are the fastest, their approximation techniques 
are effective, and both can handle unbounded verification. Scyther tool has the advantage of not 
using approximations. 
 
In this paper, we concentrate on accomplishment of fundamental security goals of 
communications, where secure communication is needed with limited resources. We are 
presenting the Token Based Key Management approach for the constrained environment of 
SCADA communication. The strength and security of the proposed protocol is tested by the 
well known Scyther Tool and also mathematically tested with BAN Logic. 
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3. PROPOSED METHODOLOGY 

Our scheme assumes that messaging takes place among two entities namely MTU and RTU 
(end nodes). Scheme assumes that MTU has high computing capability to take most of the 
computational load in order to provide security in SCADA systems.  
The Scheme uses asymmetric key approach and the Token fields for securing the 
communication. 
 
In actual SCADA network, there are Sub-MTUs associated to MTU which takes care of a 
particular section of nodes. For simplicity, we are taking MTU in place of Sub-MTU, which 
takes care of their corresponding subsection of nodes to provide security. In turn, these 
various subsections communicate with each other with the help of their representative MTUs 
which can communicate with each other by establishment of trust among peer MTUs. Scheme 
assumes that for a sub section, there is an MTU (with high computational power) and n 
number of nodes (with low computational power). MTU and nodes are attached to each other.  
 
Initially long term keys are stored manually at each node, 'n' unique keys stored at MTU 
(corresponding to each NODE), and one at each node which belongs to that corresponding 
node. 

NODE Ri has key Li where i = 1,2,...n. The MTU passes Private Keys pair to the corresponding 
nodes by using the pre shared-keys (Li, where i = 1,2,...'n' ). Also it passes MTU's Public key to 
each node. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
For maintaining key freshness, there is a provision of re-distribution of Private Keys after 
certain period of time using long term keys, and also these long term keys would be replaced 
manually after a long time period. This fixed time can be adjusted depending on the requirement 
of the system. 
In the scheme, Private Key is denoted by K, and Public Key is denoted by PK. 
 
We propose the specific use of Tokens and its fields for securing the communications. A 
token can be generated by an MTU and only MTU can distribute it among participating 
entities. A Token contains the following fields: 
 

� Addresses (both IP and MAC address) of communicating two NODEs. 
� Expiry time of the token. 
� Signed (by KMTU) Hash of all above values; we call it “Token Fingerprint”. 

 

Figure 2.  Initial Key Setup 
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Fig.3.  Token 

 
In rest of the paper,  we represent a Token by T, i.e. token for NODE A & NODE B is 
represented by TAB, token for MTU & NODE B is represented by TMB, token for NODE A & 
MTU is represented by TMA. We also represent the token fingerprint by the ‘$’ sign. 
Whenever a MTU wants to communicate to any node, it can communicate after generating 
and sending a token for itself & that node. When, a NODE wants to communicate to another 
NODE or to MTU, it needs a token from MTU.  

In general PKI  architectures, a CA authenticates any node on the network by issuing certificate 
to that node but in this case, Here the MTU takes the responsibilities of a CA, extra 
computational overhead of certificate might be an issue for some nodes because of their low 
processing power. In this case we have two options, first one is to reduce certificate as much as 
possible by removing unnecessary extra fields from it [3], and second is to replace certificate 
value with a single unique value like “MAC Address” of the corresponding entity. In the 
proposed scheme, node uses Token fingerprint ($), to prove the authenticity.  

For load balancing, and to avoid an MTU to become a single point of failure, scheme also 
recommends the deployment of distributed MTUs. 

Table 1. Notations used in the scheme 

 

 

 

 

 

 

3.1. Proposed scheme categorizes the communication into three categories as 

follows 

                                                                                                                 
1. NODE to NODE communication. 
2. MTU to NODE communication. 
3. NODE to MTU communication. 
 

Long Term Key L 

Public Key PK 

Private Key K 

Token T 

Token 
Fingerprint 

$ 

Nonce N 
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1. NODE to NODE communication  

In some cases, a NODE may be interested in communicating with another NODE, in this case 
NODE will not store Public Keys of all nodes but it will only store Public Key of other NODE 
at run time if it is needed, which it takes from MTU along with a Token that ensures that both 
nodes can communicate with each other for the specified time period. 

If NODE A wants to communicate with NODE B then it checks the Public Key of NODE B in 
its database, if it is there then it shows that NODE A and NODE B already has the Token for 
communication. NODE A encrypts the message and ‘Token Fingerprint ($)’ with Public Key of 
NODE B and sends to NODE B. If Public Key of NODE B is not available in the database of 
NODE A; NODE A then encrypts nonce N and address of NODE B the Private Key of itself 
and again by Public Key of MTU, and finally sends it on open channel to MTU. 
 
When MTU gets this request, it decrypts the encrypted value by its Private Key and by Public 
key of NODE A. MTU fetches the nonce ‘N’ and prepares a Token for both nodes A and B, i.e. 
TAB. It chooses a nonce ‘N1’, encrypt it along with the fetched nonce ‘N’ , Public Key of B and 
Token by public key of NODE A. MTU sends it to the NODE A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After receiving the response from MTU, NODE A decrypts it by its own Private Key and 
fetches the values from it. 
 
NODE A also decrypts hash value of Token Fingerprint ($) of token TAB by the Public Key of 
MTU, and compares hash of Token fields with received hash value, if values match, then only 
NODE A stores the Token Fingerprint ($) in its database. 
 
After this, NODE A stores the Token Fingerprint ($) and Public Key in its database. NODE A 
then matches the nonce N with the stored value, if it matches then it prepares an Acknowledge 
response by encrypting the nonce ‘N1’, and ’Address of A’ by Public Key of  MTU and sends it 
to MTU.  
On receiving proper nonce ‘N1’ from NODE A, MTU recognizes that the NODE A got the 
Token and Public Key of NODE B. Then the MTU takes another nonce ‘N2’ and encrypt it 
along with the Public Key of ‘A’, and the Token by the Public Key of NODE B and sends the 
resulting block to NODE ‘B’. 

After receiving this block from MTU, NODE ‘B’ decrypts it by its own Private Key, and 
fetches the values from it. 
 

 

Fig. 4.  NODE to NODE Token establishment 
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NODE B also decrypts hash value of Token Fingerprint ($) of token TAB by the Public Key of 
MTU, and compares hash of Token fields with received hash value, if values match, then only 
NODE B stores the Token Fingerprint ($) in its database. 
After this, NODE B stores the Token Fingerprint ($) and Public Key in its database. NODE B 
then sends the Acknowledge response by encrypting the nonce ‘N2’, and ’Address of B’ by 
Public Key of  MTU and sends it to MTU. 

On receiving proper nonce ‘N2’ from NODE B, the MTU recognizes that the NODE B got the 
Token and Public Key of NODE A. 

Now NODE A sends message to NODE B by encrypting the message and ‘Token Fingerprint’ 
with Public Key of NODE B. After receiving it, the NODE B starts communication (as the 
NODE B already received the Public Key of NODE A along with the token). 
 
2. MTU to NODE communication 

If MTU wants to communicate to NODE B then it generates a Token for NODE B and MTU, 
i.e. TMB and sends this along with a nonce ‘N’ to NODE B by encrypting it with the Public Key 
of NODE B. 

After getting this type of message of MTU, NODE B decrypts the Block by its own Private 
Key, it fetches the values from it. 
 

 

Fig. 5.  MTU to NODE Token establishment 

 

NODE B also decrypts hash value of Token Fingerprint ($) of token TMB by the Public Key of 
MTU, and compares hash of Token fields with received hash value, if values match, then only 
NODE B stores the Token Fingerprint ($) in its database. 

After storing the Token fingerprint ($), NODE B it prepares an Acknowledge response by 
encrypting the nonce ‘N’, and ’Address of A’ by Public Key of  MTU and sends it to MTU..  
 
On receiving proper nonce ‘N’ from NODE B, MTU recognizes that the NODE B got the 
Token and Public Key of NODE B. Now in order to communicate to NODE B, MTU fetches 
the Public Key of that NODE from its database, then encrypts the message and the ’Token 
Fingerprint ($)’ by the Public Key of NODE B and sends to NODE B.  
As both the MTU and NODE B contain Public Keys of each other and the Tokens, in their 
databases, so they can communicate with each other. 

3. NODE to MTU communication  

 
If NODE A wants to communicate to MTU then it checks the corresponding Token fingerprint 
($) in its database, if it is there then it encrypts the message and ‘Token Fingerprint ($)’ by 
Public Key of MTU and sends to MTU. If the corresponding Token fingerprint ($)  for MTU is 
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not available in the database of NODE A then NODE A encrypts a nonce  ‘N’ by its Private 
Key and again by the Public Key of MTU. NODE A then sends this block to MTU. 
 
 
When MTU gets this request, it decrypts the encrypted value by its Private Key and by Public 
key of NODE A. MTU fetches the nonce ‘N’ and then it generates a Token for NODE A, i.e 
TMA. MTU then encrypts the fetched nonce ‘N’, and Token by public key of NODE A. MTU 
sends it to the NODE A. 
After getting this response from MTU, NODE A decrypts the Block by its own Private Key, it 
fetches the values from it. 
NODE A also decrypts hash value of Token Fingerprint ($) of token TMA by the Public Key of 
MTU, and compares hash of Token fields with received hash value, if values match, then only 
NODE A stores the Token Fingerprint ($) in its database. 

 
 
 
 
 
 
 
 
 
 
 
After storing the Token fingerprint ($), NODE B it prepares an Acknowledge response by 
encrypting the nonce ‘N’, and ’Address of A’ by Public Key of  MTU and sends it to MTU.  
 
In order to communicate to MTU, NODE A, sends a message to MTU along with the ‘Token 
Fingerprint ($)’, by encrypting it by Public Key of MTU. After receiving it, the MTU starts 
communication as it also has the Public Key of that NODE A and the corresponding Token 
fingerprint in its database. 

Note about communications: 
 
Nodes stores Token fingerprints ($) with them, and keep track of the expiry time of the Token 
(T); they store the corresponding Public Keys (which comes along with the Token) in their 
database tables only till the time of Token expiration. After expiry of a token both parties delete 
the Public Keys (PK values), and Token Fingerprints ($) from their databases and shift all the 
rows below it by one to above. After expiry if any request comes then it is simply rejected. 
Also, the MTU can revoke Public Key of any NODE due to many reasons; in this case it sends a 
broadcast request to all nodes to delete that particular Public Key and corresponding Token 
Fingerprint from their databases. 
 

3.2. Dynamic arranged database for optimal key storage 

Due to low memory, MTUs and other NODEs can store a limited number of Public Keys in 
their databases. This limited storage of keys can cause an extra overhead at run time, if required 
key is not available in database of MTU/NODE. 

To overcome this problem, scheme uses ‘dynamic arranged database for optimal key storage’. 
Each NODE/MTU stores Public Key of MTU in first row of database. Always new Public Key 
will be stored in second row of database and all keys will shift downward by one row. Key at 
the bottom row is removed if database is already full. If any Public Key is used by the node 

 

Fig. 6.  NODE to MTU Token establishment 
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from its database then this used key will be shifted to second row and all Public Keys (which 
were above in database from used Public key) will shifted downward by one row. The place of 
Public Keys those are at lower position from used Public keys will be unchanged. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. PROTOCOL STRENGTH AND SECURITY TESTING  

The design of any security protocol is an error-prone intuitive process that requires a more rigid 
framework to safely design protocols. BAN logic is the most important tool to have a 
formalization analysis of authentication protocols [23]. BAN Logic now also works on PKI-
based protocols [25]. In order to test the strength and the security of the proposed protocol, we 
have used the BAN Logic and Scyther Tool as well, as the analysis of security protocols is 
being difficult for humans, and many protocols were found to be awed after deployment. Tools 
like ProVerif, Avispa and Scyther available for the verification, the falsification, and the 
analysis of security protocols. Again, the selection of such automated tool is very important in 
order to find out the correct results. Based on the performance comparison report of several 
such well-known automatic tools “Comparing State Spaces in Automatic Security Protocol 
Verification” [27], by Cas Cremers and Pascal Lafourcade we find that Scyther and ProVerif 

 

Figure 8. Insertion of new Public Key, when database is fully filled 
 

 

Figure 9. Shifting of existing Public Key within the database, with its use 

 

Figure 7.  Insertion of new Public Key, when database is partially filled 
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are good for the getting the correct testing results. We finalized Scyther tool for protocol 
strength and security testing, because of its advantage of not using approximations. We have 
used the BAN Logic for testing Initial Key distribution and Scyther Tool for testing the entire 
scheme. 
 

4.1. Formal Proof of Protocol by Using BAN Logic 

 
We have done formal proof of proposed protocol by using BAN logic. Formal proof 
enhances the belief of security on proposed protocol. Formal proof of proposed protocol 
is given below:  
 

 

 

 

 

 

 

 

 

 

 

 

Verifications of Key-Public Key Distribution (say, for NODE A) 
 
Ι Goal:  NODE A and NODE B want to establish KA, PKA, and PKMTU. 
ΙΙ Share Long Term Symmetric Key La 

 

 

 

Idealizing Protocol 

 

Assumptions: 

 

Soundness of idealized message 1 

 

 

 

Figure 10.  BAN  logic symbols 
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A’s beliefs after message 1: 

 

 
 

M’s beliefs after message 2: 

 

Summary of protocol: 

 

 

A’s guarantees: 

 

 
Result: Initial Key distribution is tested and proved secure. 
 

4.2. Protocol Testing with Scyther Tool 
 
Scyther is a tool for the verification, falsification and the analysis of security protocols, where it 
is assumed that all cryptographic functions are perfect. Scyther provides a number of novel 
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features that include the possibility of unbounded verification with guaranteed termination, 
analysis of infinite sets of traces in terms of patterns and support for multi-protocol analysis. 
Scyther is based on a pattern refinement algorithm, providing concise representations of 
(infinite) sets of traces. This allows the tool to assist in the analysis of classes of attacks and 
possible protocol behaviors, or to prove correctness for an unbounded number of protocol 
sessions. 

1. Verification of Initial Key Distribution, using Scyther 

 

 

 

 

 

 

 

 

 

 
 
The result window shows that the secrecy of Na & ackMsg and the claim for non-injective 
agreement and non-injective synchronization at both nodes are successfully verified, where Na 
is a nonce and ack is the acknowledge message sent by NODE A to MTU to acknowledge the 
receipt of the token. 
 

2. Verification of Token Distribution, using Scyther 

CASE1: Token attainment for Node to Node communication  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Initial Key Distribution 

 

Figure 12. Token attainment for Node to Node communication 
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The result window shows that the secrecy of N and N1 at NODE A and N2 at NODE B is 
successfully verified; where N, N1 and N2 are the nonces. The claim for non-injective 
agreement and non-injective synchronization at both nodes is also verified. 
 
CASE2: Token attainment for MTU to Node communication. 
 

 

 

 

 

 

 

 

 

 
The result window shows that the secrecy of N, ExpTime & ack and the claim for non-injective 
agreement and non-injective synchronization at NODE B are successfully verified, where N is a 
nonce, ExpTime is the expiry time of the token and ack is the acknowledge message sent by 
NODE B to MTU to acknowledge the receipt of the token. 
 

CASE3: Token attainment for Node to MTU communication 

 

The result window shows that the secrecy of N, ExpTime and the claim for non-injective 
agreement and non-injective synchronization at NODEA are successfully verified, where N is a 
nonce, ExpTime is the expiry time of the token. 

3. Verification of Messages exchange between any MTU/NODE to any other 

MTU/NODE after token attainment, using Scyther 

 
 
 
 

 

Figure 13.  Token attainment for MTU to Node communication 

 

Figure 14.  Token attainment for Node to MTU communication 
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The result window shows that the secrecy of nonces N1, N2, Messages msg1, msg2 and the 
claim for non-injective agreement and non-injective synchronization at both nodes are 
successfully verified, where N is a nonce, ExpTime is the expiry time of the Token. 
 

5. CONCLUSIONS 

SCADA system works in constrained environment, and so there is a need of an efficient key 
distribution and management scheme to deal with its issues and challenges (as discussed in the 
above sections). Our attempt is to secure the data over the communication channel in the 
constrained environment. We have devised and proposed a new key distribution and key 
management scheme which works in constrained environment, and also utilizes the strength of 
PKI, by using a token based communication mechanism. The strength and security of the 
proposed protocol is tested by the well known Scyther Tool and also mathematically tested. 
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