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ABSTRACT 
 
Computer program produces an incorrect or unexpected result or behaves in haphazard way then there is 
an error in that computer program. In order to improve the software quality, prediction of faulty modules is 
necessary. Various Metric suites and techniques are available to predict the modules which are critical and 
likely to be fault prone. Genetic Algorithm is a problem solving algorithm. It uses genetics as its model of 
problem solving. It’s a search technique to find approximate solutions to optimization and search 
problems.Genetic algorithm is applied for solving the problem of faulty module prediction and as well as 
for finding the most important attribute for fault occurrence. In order to perform the analysis, performance 
validation of the Genetic Algorithm using open source software jEdit is done. The results are measured in 
terms Accuracy and Error in predicting by calculating probability of detection and probability of false 
Alarms 
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1. INTRODUCTION 

 
A fault prone module is one in which the number of faults are higher than a selected threshold. 
Making any application or software 100% defects free is the need of the hour and the greatest 
challenge being faced by software industry. Fault proneness of software depends on the faults it 
contains and is directly proportional to its measurable attributes and testing. Detection of fault- 
prone modules of software helps the experts to concentrate more on the development work. Fault 
proneness can be predicted by classifying software modules into categories of faulty and non-
faulty modules at an early stage of development. 
 
Abundant research has been done on the software fault prediction techniques and software 
metrics were considered for the classification and evaluation of the data. 
 
Predicting fault prone modules adds up to the software quality assurance. Many algorithms have 
been used to predict the fault proneness including the hierarchical and k-means clustering 
algorithms. Some work has also been done using Bayes Network Classification Algorithm and 
spamfiltering technique for finding fault prone software modules.Support vector machine (SVM) 
and module dependency graphs (MDGs) have also proved helpful for predicting the fault 
proneness. 
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Software metrics has been widely used and has proven to be one of the critical attribute to 
measure the fault proneness of applications and software. Chidamber & Kemerer metrics suite [1] 
includes the various product metrics and a quality oriented extension. Martin's metrics [10] and 
Henderson-Sellers metrics [9] are also there. 
 
In the first section of this paper a brief introduction of the topic is described including the use of 
metrics and the historic methods used in fault findings. Second section of the paper gives the 
literature review. 
 
2. RELATED WORK 

 
Parvinder S. Sandhu et al.[2] presented K-means clustering approach to cluster the modules into 
different categories of faulty and non-faulty modules and thereafter empirically validated them. 
Chidamber & Kemerer metrics suite [1] was used to divide the data into categories. To find the 
attributes that are important for predicting   Chi-squared ranking filter was applied subsequently 
to reduce the data. The reduced attributes is then given as input to the K-means clustering 
algorithm that divides data into two or more clusters depending upon that whether they are fault 
free or fault prone. 
 
Ritika et al. [3]empirically evaluated the performance of SVM technique in predicting fault-prone 
classes using open source software. SVM structure was generated from the faulty data in 
MATLAB environment and then evaluated for the JEdit dataset. The performance of the system 
was evaluated by calculating the accuracy%, the percentage of the predicted values that matches 
with the obtained values. 
 
D. Doval et al. [4]used MDGs to represent the structure of complex software systems in 
understandable form. In MDGs, the system’s modules (e.g., files, classes) are represented as 
nodes and their relationships (e.g., function calls, inheritance relationships) as directed edges that 
connect the nodes. Genetic Algorithm is then used to efficiently partition the modules to form 
MDG and thus clustered and classified the modules as fault prone or fault free. 
 
Dr. Parvinder S. Sandhu [5] evaluated the fault proneness of modules in open source software 
system JEdit using k-NN clustering algorithm based on Chidamber & Kemerer metrics suite [1] 
.The DIT, CBO, RFC, NPM and LOC metrics were selected and the predicted model so 
developed was applied to 274 classes of the dataset. The percentage of Accuracy as 82.84, 
Probability of Detection, Probability of False alarm was recorded for the fault dataset.  
 
Simranjit Kaur et al. [6] investigated the accuracy of the fault prediction of the software modules 
using Hierarchical based clustering. Structural code and design attributes of the software systems 
was found and suitable metric values were selected for representing the dataset. Further the 
metrics values were refined and normalized. Hierarchical Clustering algorithm was then used to 
classify the software components into two categories of faulty and fault-free systems. Both 
agglomerative as well as divisive approach was used for the predicting the accuracy of 85.12 and 
finally confusion metrics was used to predict the outcome. 
 
Aarti Mahajan et al. [7] predicted the software quality by investigating the capabilities of Bayes 
Network Classification Algorithm using open source software JEdit. Structural code and design 
attributes of the software systems was found and suitable metric values were selected for 
representing the dataset. Further the metrics values were refined and normalized. The dataset so 
obtained was given as input to the Bayes Network Classification Approach.Mean Absolute Error 
and Root Mean-Squared Error both were calculated. Finally confusion metrics with an accuracy 
of 70.8 was used to predict the outcome. 
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Osamu Mizuno et al. [8] applied the spam filtering technique for finding fault prone software 
modules. Each software module was considered as an e-mail message and either of fault-prone 
(FP) category or not-fault prone (NFP) category. New modules were classified as FP or NFP by 
studying the characteristics of existing FP and NFP modules using spam filter. Instead of metric 
measure, source code was used and the text classification is made on the basis of the past history 
of the development. FPFinder, prototype tool was used to track bugs. The result of the experiment 
concluded that spam filter approach can classify more than 75% of the modules correctly. 
 

Table 1. Overview of the techniques/methods followed in literature review 
 

Sno. Technique 
Name 

Methodology followed Accuracy 
percentage 

Limitations 

1. K-means 
clustering 
approach [2] 

1. Categorized the dataset into 
metrics. 

2. Used chi-squared to filter 
out the important metrics. 

3. Made two clusters of faulty 
& non-faulty modules using 
k-means 

62.4 Most important 
attributes for 
fault prediction 
was not found. 

2. Support 
vector 
machine 
(SVM) 
technique [3] 

1. SVM structure was 
generated from the faulty 
data in MATLAB 7.4 
environment  

2. Structure evaluated for the 
JEdit dataset.  

78.1022 Most important 
attributes for 
fault prediction 
was not found. 

3. Module 
dependency 
graphs 
(MDGs) [4] 

1. MDGs were used to 
represent the structure of 
complex software systems 
in understandable form. 

2. Genetic Algorithm is then 
used to efficiently partition 
the modules to form MDG 

Not 
calculated 

Does not 
provide a 
mechanism to 
integrate a 
designer’s 
knowledge of a 
system into the 
automatic 
clustering 
process 

4. k-NN 
clustering 
algorithm [5] 

1. Metrics was selected to 
form a model. 

2. Predicted model so 
developed was applied to 
274 classes of the dataset. 

82.84 Similar studies 
were not carried 
out to confirm 
the acceptability 
of the 
prediction. 

5. Hierarchical 
based 
clustering [6] 

1. Hierarchical based 
clustering is used. 

2. Components were divided 
into two categories of faulty 
and fault-free. 

85.12 Most important 
attribute for fault 
prediction was 
not found. 
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6. Bayes 
Network 
classification 
algorithm [7] 

1. Suitable metric values were 
selected for representing the 
dataset. 

2. Bayes network 
classification is used. 

3. Mean absolute error and 
root mean-squared error 
were calculated. 

70.8 Most important 
attribute for fault 
prediction was 
not found. 

7.  Spam filtering 
technique [8] 

1. Each module considered as 
an e-mail message 

2. New modules were 
classified as FP and NFP on 
basis of past history 

3. FPFinder tool was used to 
track bugs. 

Classified 
more than 
75% of 
modules 
correctly. 

1. Some 
modules 
were 
misclassifie
d. 

2. No practical 
advantage. 

 
3. PROPOSED APPROACH 

 
Step 1:Raw data is collected in the form of structural codes, source code of open source system 
and design attributes. 
Step 2: Evaluation of the data obtained in step 1 is done on Chidamber & Kemerer metrics suite 
[1] and out of those some metrics are chosen to illustrate the principal design. They are-  
 Coupling between Objects (CBO), CBO for a class is the count of the total number of other 

classes to which it is coupled and vice versa. 
 Lack of Cohesion (LCOM), it is the measurement of the dissimilarity of methods in a class. 

It is measured by looking at the instance variable or attributes used by methods in a class. 
 Number of Children (NOC), The NOC is the number of immediate subclasses of a class in a 

hierarchy. 
 Depth of inheritance (DOI), the depth of a class within the inheritance hierarchy is the 

maximum number of steps from the class node to the root of the tree and is measured by the 
number of ancestor classes 

 Weighted Methods per Class (WMC), it is the count of sum of complexities of all methods 
in a class. Consider a class P1, with Methods M1…… Mr that are defined in the class. Let. 
C1, C2....Cr be the complexity of the methods 
WMC= ΣCi   where i=1 to r 
If all the methods complexities are considered to be unity, then WMC = r the number of 
methods in the class. 

 Response for a class (RFC), it is defined as set of methods that can be potentially executed 
in response to a message received by an object of that class. 
It is given by RFC= |RS|, where RS, the response set of the class 
RS = Mi U all j{Rij} 

 Number of Public Methods(NPM), it is the count of number of Public methods in a class 
 Lines of Code ( LOC), It is the count of the total number of lines in the text of the source 

code excluding comment lines. 
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Figure 1: Flowchart of methodology followed 
 

Step 3:The data collected in step 2 is now filteredto find the most important metrics for the fault 
prediction.  
Step 4:Further the reduced or selected attributes are given as input to Genetic Algorithm. 
Step5:The performance of the algorithm is evaluated on the basis of confusion matrix. This 
allows us to have more detailed analysis than mere having correct guesses. The following sets of 
attributes are being used to refine our results: 
• Probability of Detection (PD), it is defined as the probability of correct classification of a 
module that contains a fault. 
PD = TP / (TP + FN) 
• Probability of False Alarms (PF) is defined as the ratio of false positives to all non-defect 
modules. PF = FP / (FP + TN) 
 Recall or true positive rate (TP) it is the proportion of faulty modules that are correctly 

identified as faulty. 
 False positive rate (FP)it is the proportion of non-faulty modules that are incorrectly 

classified as faulty. 
 True negative rate (TN)it is defined as the proportion of non-faulty cases that are classified 

correctly as non-faulty. 
 False negative rate (FN) is the proportion of faulty modules that are incorrectly classified as 

non-faulty. 
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Table 2. Confusion matrix of prediction outcomes 

 
 
 
 
 
 
 
 
 
 
It can be clearly concluded as probability of detection or PD should be maximum and probability 
of false alarm or PF should be minimum. 
 
The accuracy (AC) is the proportion of the total number of predictions that were correct. It is 
determined using the equation: 
 

AC = TP+TN /TP+FP+FN+TN 
 

The error in the calculation of the values of PD and PF is calculated as: 
 

Error= FN+FP/ TP+FP+FN+TN 
 

4. RESULTS AND FINDINGS 
 

Step 1: The data for the research is taken as the source code of the open source jEdit project. The 
source code of the two versions of jEdit is collected and analyzed and fed as input into JArchitect, 
static analysis tool for JAVA code. This tool supports a large number of software code metrics. It 
also allows visualization of dependencies using directed graphs and dependency matrix. Code 
base snapshots comparison, validation of architectural and quality rules are also performed by this 
tool.  
Step 2: Using JArchitect_4.0.0.8041 analysis of jEdit version 4.5pre 1 is done and the following 
values are calculated- 

 Public methods on classes give the total number of public methods in the classes of the 
software. 

 Cyclomatic Complexity (CC) is calculated for calculating the Weighted Methods per 
Class (WMC) which is the count of sum of complexities of all methods in a class. 

 Lines of code (LOC) is calculated as the count of number of lines in the text of the source 
code of jEdit version 4.5pre 1 and jEdit version 5.0.1excluding comment lines. 

 Efferent Coupling is calculated both at the method level and at the package level. Efferent 
Coupling for a particular method is the number of methods that method directly depends 
on. Efferent Coupling for a particular package is the number of packages it directly 
depends on. It is used to calculate Coupling between Objects (CBO) metric.  

 Relational Cohesion (H)gives the average number of internal relationships per type. Let R 
be the number of type relationships that are internal to the project and N be the number of 
types within the project then  
H=(R+1)/N Calculating H gives the value of Lack of Cohesion (LCOM) metric. 

 The Depth of Inheritance Tree for a class or a structure is the number of its base classes 
(including the System.Object class thus DIT >= 1) 
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Table 3. Number of occurrences of the property in jEdit version 4.5pre 1 

 
Property Occurrences 
Public methods on classes 1123 classes 
Cyclomatic complexity(cc) 8114 methods 
LOC 54270 
Efferent Coupling 459 
Relational Cohesion 4.47 
Properties on interfaces 63 interfaces 
Methods on interfaces 63 interfaces 
Arguments on methods on interfaces 177 methods 
Public properties on classes 1123 classes 
Arguments on public methods on classes 6594 methods 
BC instructions in non-abstract methods 8114 methods 

 
Table 4. Maximum value of the metrics that exists in jEdit version 4.5pre 1 

 
Property Max 
Public methods on classes 241 public methods 
Cyclomatic complexity(cc) 309 cyclomatic complexity 
LOC NA 
Efferent Coupling NA 
Relational Cohesion NA 
Properties on interfaces 0 properties 
Methods on interfaces 17 methods 
Arguments on methods on interfaces 8 arguments 
Public properties on classes 0 public properties 
Arguments on public methods on classes 12 arguments 
BC instructions in non-abstract methods 1445 BC instructions 

 
Table 5. Average values of the metrics in jEdit version 4.5pre 1 

 
Property Avg 
Public methods on classes 5.87 
Cyclomatic complexity(cc) 3.1 
LOC NA 
Efferent Coupling NA 
Relational Cohesion NA 
Properties on interfaces 0 
Methods on interfaces 2.81 
Arguments on methods on interfaces 1.34 
Public properties on classes 0 
Arguments on public methods on classes 1.14 
BC instructions in non-abstract methods 29.37 
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Table 6. Standard deviation of the metrics values in jEdit version 4.5pre 1 

 
Property StdDev 
Public methods on classes 11.64 
Cyclomatic complexity(cc) 7.56 
LOC NA 
Efferent Coupling NA 
Relational Cohesion NA 
Properties on interfaces 0 
Methods on interfaces 2.56 
Arguments on methods on interfaces 1.53 
Public properties on classes 0 
Arguments on public methods on classes 1.26 
BC instructions in non-abstract methods 56.78 

 
Using JArchitect_4.0.0.8041 analysis of jEdit version 5.0.1 is done and the following values are 
calculated- 
 

Table 7. Number of occurrences of the property in jEdit version 5.0.1 
 

Property Occurrences 
Public methods on classes 46 classes 
Cyclomatic complexity(cc) 299 methods 
LOC 2774 
Efferent Coupling 82 
Relational Cohesion 2.51 
Properties on interfaces 3 interfaces 
Methods on interfaces 3 interfaces 
Arguments on methods on interfaces 9 methods 
Public properties on classes 46 classes 
Arguments on public methods on classes 214 methods 
BC instructions in non-abstract methods 299 methods 

 
Table 8. Maximum value of the metrics that exists in jEdit version 5.0.1 

 
Property Max 
Public methods on classes 32 public methods 
Cyclomatic complexity(cc) 64 cyclomatic complexity 
LOC NA 
Efferent Coupling NA 
Relational Cohesion NA 
Properties on interfaces 0 properties 
Methods on interfaces 5 methods 
Arguments on methods on interfaces 1 arguments 
Public properties on classes 0 public properties 
Arguments on public methods on classes 6 arguments 
BC instructions in non-abstract methods 2052 BC instructions 
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Table 9. Average values of the metrics in jEdit version 5.0.1 

 
Property Avg 
Public methods on classes 4.65 
Cyclomatic complexity(cc) 2.95 
LOC NA 
Efferent Coupling NA 
Relational Cohesion NA 
Properties on interfaces 0 
Methods on interfaces 3 
Arguments on methods on interfaces 0.78 
Public properties on classes 0 
Arguments on public methods on classes 1 
BC instructions in non-abstract methods 51.21 

 
Table 10. Standard deviation of the metrics values in jEdit version 5.0.1 

 
Property StdDev 
Public methods on classes 5.56 
Cyclomatic complexity(cc) 5.41 
LOC NA 
Efferent Coupling NA 
Relational Cohesion NA 
Properties on interfaces 0 
Methods on interfaces 1.63 
Arguments on methods on interfaces 0.42 
Public properties on classes 0 
Arguments on public methods on classes 0.98 
BC instructions in non-abstract methods 155.74 

 
Step 3: The values of the metrics collected in the previous step is converted into binary form. 
This conversion is done on the basis of the threshold value of the metrics available. 
 

 A good range for Relational Cohesion is 1.5 to 4.0. Projects where Relational Cohesion < 
1.5 or Relational Cohesion > 4.0 might be problematic. 

 Methods where CC is higher than 15 are hard to understand and maintain. Methods where 
CC is higher than 30 are extremely complex and should be split in smaller methods 
(except if they are automatically generated by a tool.) 

 Types where Ce > 50 are the types that depends on too many other types. They are 
complex and have more than one responsibility. 

 Methods where BC Instructions is higher than 100 are hard to understand and maintain. 
Methods where BC Instructions is higher than 200 are extremely complex 

 Number of Methods > 20 might be hard to understand and maintain but there might be 
cases where it is relevant to have a high value for Number of Methods.  
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Table 11. Transformed values for jEdit version 4.5pre 1 

 
Property Transformed 

value 
Public methods on classes 1 
Cyclomatic complexity(cc) 1 
LOC 0 
Efferent Coupling 1 
Relational Cohesion 1 
Properties on interfaces 1 
Methods on interfaces 1 
Arguments on methods on 
interfaces 

1 

Public properties on classes 0 
Arguments on public methods 
on classes 

0 

BC instructions in non-
abstract methods 

1 

 
Table 12. Transformed values for jEdit version 5.0.1 

 
Property Transformed 

value 
Public methods on classes 1 
Cyclomatic complexity(cc) 0 
LOC 0 
Efferent Coupling 1 
Relational Cohesion 0 
Properties on interfaces 0 
Methods on interfaces 0 
Arguments on methods on 
interfaces 

1 

Public properties on classes 1 
Arguments on public methods 
on classes 

1 

BC instructions in non-
abstract methods 

1 

 
Step 4. Genetic Algorithm is applied on the above transformed values. Input to the Genetic 
Algorithm is the string of the transformed metric values. The result so obtained after the 
application of the algorithm is thus further analyzed for calculating the most important attribute 
for the fault prediction. 
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Figure 2: Output of the Genetic Algorithm 
 

Genetic Algorithm applied on the metric values gives the public methods on Classes, Efferent 
Coupling, Arguments on methods and interfaces, public properties on classes, arguments on 
public methods on classes and BC instructions in non-abstract methods as the most important 
attributes in the fault prediction. 
 

Step 5: The performance of the algorithm is evaluated using Confusion Matrix. The 
following sets of attributes are calculated as: 

 

Table 13. Recorded Confusion matrix 
 

 
 
The values of Probability of Detection (PD) and Probability of False Alarms (PF) are 0.875 and 
0.44 respectively.The error and accuracy values are calculated and recorded as 0.294 and 0.705 
respectively. 
 

5. CONCLUSION 
 

In this paper Genetic Algorithm is used to find critical classes and metrics that are fault prone.The 
proposed Genetic Algorithm technique shows high value of Probability of Detection (PD) i.e. 
0.875 and low value of Probability of False Alarms (PF) i.e. 0.44.The error and accuracy values 
are calculated and recorded as 0.294 and 0.705 respectively.   
It is therefore concluded that Genetic algorithm can be used for object-oriented systems and is 
useful in predicting the fault prone classes. 
 

The work can be extended by using other evolutionary algorithms for finding the most important 
attribute for fault prediction and finding the critical classes and metrics. 
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