
International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

DOI : 10.5121/ijcses.2012.3207 57

NYMBLE BLOCKING SYSTEM

Anand Joshi1, Arshiya Shaikh2, Aruna Kadam3 , Vasudha Sahu4

 Department of Computer Engineering, MAE Alandi (D), Pune
anandjoshi89@gmail.com

arshiya91shaikh@gmail.com

kadam.aruna@gmail.com

rapunzel.vasudha@gmail.com

Abstract

In order to allow users to access Internet services privately, anonymizing networks like Tor uses a series

of routers to hide the client’s IP address from the server. These networks, however, have been marred by

users employing this anonymity for abusive purposes such as defacing popular web sites. Usually, web

site administrators rely on IP-address blocking in order to disable access to misbehaving users, but it is

impractical if the abuser routes through an anonymizing network. In order to avoid this, administrators

bar all known exit nodes of the anonymizing network, thereby denying anonymous access to all the users

(whether misbehaving or not). To solve this issue, we introduce Nymble, a system where servers blacklist

misbehaving users, thereby blocking users without affecting their anonymity. Nymble is thus agnostic to

varied definitions of misbehavior. Servers can block users for any reason, and the privacy of blacklisted

users is not affected in any case.

Keywords :

Anonymous blacklisting; Privacy; Revocation

1.INTRODUCTION

IN order to hide a client’s IP address anonymizing networks like Tor route traffic through
independent nodes in separate administrative domains. Some users, however, have misused such
networks—under the cover of anonymity, they have repeatedly defaced popular Web sites such
as Wikipedia. As administrators cannot block individual users’ IP addresses, they resort to
blacklisting the entire anonymizing network. However, such methods though eliminate
malicious activity through anonymizing networks but they also deny anonymous access to
behaving users. (A case repeatedly observed with Tor.1). In a pseudonymous credential system,
users log into Web sites using pseudonyms, which can be blocked if in case a user misbehaves.
However, this method may results in pseudonymity for all users, thereby dampening the
anonymity provided by the anonymizing network. Anonymous credential systems employ group
signatures. On the other hand, basic group signatures allow servers to annul a misbehaving
user’s anonymity by complaining about it to a group manager. Servers must contact the group
manager for every authentication, and thus, this method lacks scalability. Traceable signatures
help the group manager, which then release a trapdoor allowing all signatures generated by a
particular user to be traced. Even though, using such an approach does not provide the necessary
backward unlinkability that we desire, a user’s accesses before the complaint always remain
anonymous. Backward unlinkability allows for immanent blacklisting, in which servers can
blacklist users for whatever reason as the privacy of the blacklisted user is not at risk. In
contrast, approaches without backward unlinkability need to pay careful attention to when and

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

58

why a user must have all their connections linked, and users must worry about whether their
behaviors will be judged fairly. Subjective blacklisting is more suited to Wikipedia like servers,
where misbehaviors such as erronous edits to a Webpage, are tough to specify in exact
mathematical terms. In some systems, misbehavior can indeed be defined precisely.
These methods hold true for only a few definitions of misbehavior — it is quite arduous to map
more complex definitions of misbehavior with related approaches. With dynamic accumulators,
a cancelling operation might result in a new accumulator and public parameters for the group,
and making it mandatory to update all other existing users’ credentials, thus making it
impractical. Verifier-local revocation (VLR) overcomes this by requiring the server (“verifier”)
to perform only local updates during revocation. But VLR calls for heavy computation at the
server side that is linear in the size of the blacklist. In contrast, our scheme takes the server
about one millisecond per authentication, which is way faster than VLR. These low overheads
help servers to use a solution when compared against the potential benefits of anonymous
publishing

1.1 Nymble

To solve the given problem, we introduce a system called Nymble, which possesses the
following properties: anonymous authentication, backward unlinkability, subjective blacklisting,
fast authentication speeds, rate-limited anonymous connections, revocation auditability (where
users can verify whether they have been blacklisted), and it also deals with the Sybil attack so as
to make its implementation practical. In Nymble, users acquire a set of nymbles, a unique type
of pseudonym, in order to connect to Web Servers. Lacking any other information, these
nymbles are logically hard to link, and hence, using the collection of nymbles simulates
unidentified access to services. Web sites, nevertheless, can block users by obtaining a seed for
a specific nymble, and thus allowing them to establish a connection with future nymbles from
the user — and those prior to the complaint remain unlinkable and untraceable.
Servers can thus block anonymous users without gaining access to their IP addresses while
allowing legitimate users to connect anonymously. Our system let the users know about their
blacklisted status before they are introduced to a nymble, and are disconnected immediately in
case they are blacklisted. A large number of anonymizing networks can rely on the same
Nymble system, and blacklisting anonymous users regardless of their anonymizing network.

Fig 1. The Nymble system architecture showing the various modes of interaction. Note that

users interact with the NM and servers through the anonymizing network.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

59

2 AN OVERVIEW TO NYMBLE

We now introduce a high-level overview of the Nymble architecture, and divide the entire
protocol description and security analysis to the respective sub-sections.

2.1 Resource-based blocking

To keep a tab on the total number of identities that a user can obtain (popularly known as the
Sybil attack), the Nymble system attaches nymbles to resources which are difficult enough to
obtain in great numbers. For example, here we have used IP addresses as the resource, but our
scheme generalizes to other resources as well such as email addresses or identity certificates.
The issues related with resource-based blocking is discussed further in Section 8, where we
have suggested other alternatives for resources. The Sybil attack problem is faced by any
credential system and we suggest some promising approaches based on resource-based blocking
since we aim to create a real-world deployment.

2.2 The Pseudonym manager

The user initially must connect to Pseudonym Manager (PM) and establish control over a
resource; so as to block the IP-address, the user ought to connect to the Pseudonym Manager
directly, as shown in Fig. 1. We presume that PM has knowledge of Tor routers and can ensure
that users are communicating with it directly. Pseudonyms are chosen based on the controlled
resource, making sure that the very pseudonym is always issued for the same resource. The user
does not disclose what server he wants to connect to, and the PM’s duties are restricted to
mapping IP addresses (or other resources) to pseudonyms. The user connects to the PM only
once per linkability window (e.g., once a day).

2.3 The Nymble Manager

Post gaining a pseudonym from the PM, the user connects to the Nymble Manager via the
anonymizing network, and then request for nymbles to obtain access to a particular server. A
user’s requests to the NM are therefore pseudonymous, and nymbles are generated using the
user’s pseudonym and the server’s identity. Nymbles are thus specific to a particular user-server
pair. As long as the PM and the NM do not collude, the NM knows only the pseudonym-server
pair, and the PM knows only the user identity-pseudonym pair. In order to provide the required
cryptographic protection and security properties, nymbles are encapsulated within nymble
tickets. Servers pack seeds into linking tokens, and therefore, we will speak of linking tokens
being used to link future nymble tickets.

2.4 Time

Nymble tickets are linked with specific time periods. Time is divided into linkability windows
of duration W, each of which is split into L time periods of duration T (i.e., W ¼L _ T) as
shown in Fig.2. Time periods and linkability windows are chronologically referred to as t1; t2; .
. . ; tL and w1; w2; . . . , respectively. While a single user’s access within a time period is
allotted a single nymble ticket, different nymble tickets across time periods provides the user
with anonymity between different time periods. Smaller time periods provide users with higher
rates of anonymous authentication, while longer time periods allow servers to rate-limit the
number of misbehaviors from a particular user before he is blocked. The linkability window
allows for dynamism since resources such as IP addresses can get reassigned and it is not
desirable to blacklist such resources indefinitely, and it ensures forgiving a misbehaving user

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

60

after a certain window linkability period. All entities are time synchronized, and we can thus
calculate the current linkability window and time period.

2.5 Blacklisting a user

In case of a misbehavior, the server may link any future connection from this user within the
same linkability window. Consider Fig. 2: A user misbehaves at a server during time period t_
within linkability window w_. The server then finds this misbehavior and reports it to the NM in
time period tc (t_ < tc _ tL) of the same linkability window. In the complaint, the server presents
the nymble ticket of the misbehaving user and obtains the corresponding seed from the NM. The
server is then able to link future connections by the user in time periods tc; tc þ 1; . . . ; tL of the
same linkability window w_ to the complaint. Therefore, once the server has complained about
a user, that user is blacklisted for that particular linkability window. Even though misbehaving
users can be blocked for the future too, the past connections anyhow remain unlinkable,
providing subjective blacklisting and backward unlinkability.

2.6 Notifying the user of blacklist status

Users using anonymizing networks want their connections to be anonymous. When a server
obtains a seed for that user, it can still link the user’s subsequent connections. It is very
important that users be notified of being blacklisted before presenting a nymble ticket to a
server. The user can thus download the server’s blacklist and verify its status. When blacklisted,
the user immediately gets discontinued.

As the blacklist is cryptographically signed by the NM, the blacklist’s credibility is easily
verified as to if the blacklist was updated in the same time period. Otherwise, the NM provides
servers with “daisies” every time period so that users are able to verify the freshness of the
blacklist. As discussed further, these daisies are elements of a hash chain, providing a
lightweight alternative to digital signatures. Thus, we ensure that race conditions are not
possible in verifying a blacklist’s novelty. A user is guaranteed that he or she will not be linked
if the user verifies the integrity and freshness of the blacklist before sending his or her nymble
ticket.

3 SECURITY MODEL

Nymble aims for four security goals. We provide informaldefinitions here; a detailed formalism
can be found in our technical report , which explains how these goals must also resist coalition
attacks.

3.1 Goals and threats

An entity can be termed as honest when its operations abide by the system’s specification. An
honest entity attempts to infer knowledge from its own information (e.g., its secrets, state, and
protocol communications). An honest entity becomes corrupt when it is compromised by an
attacker, and hence, reveals its information at the time of compromise.

Blacklistability assures that any legitimate server can surely block misbehaving users. Also, if
an honest server complains about a misbehaving user in the present linkability window, it will
be successful and the user will not be able to connect.
Rate-limiting assures that any legitimate server that no user can connect to it more than once
within any single time period.
Nonframeability guarantees that any legitimate user can connect through nymble to that server.
This keeps an attacker from framing a legitimate user, e.g., by getting the user blocked for
someone else’s misbehavior. Here we assume each user has a single unique identity. When IP

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

61

addresses are used, a user can be “framed” as an honest user who later obtains the same IP
address. Nonframeability holds true only against attackers with different IP addresses. A user is
considered legitimate by a server only if he has not been blacklisted, and has not exceeded the
rate limit. Honest servers are able to distingish between honest and dishonest users.

Fig 2. The life cycle of a misbehaving user. If the server complains in time period tc about a
user’s connection in t*.the user becomes linkable starting in tc. The complain in tc. can include
nimble tickets from onlu tc-1 and earlier

Anonymity protects the anonymity of honest users, regardless of their legitimacy according to
the (possibly corrupt) server; the server cannot learn any more information beyond whether the
user behind (an attempt to make) a nymble connection is legitimate or illegitimate.

4 PREREQUISITES

4.1 Notation

The notation a€ R S represents an element drawn uniformly at random from a nonempty
set S.№ is the set of nonnegative integers, and N is the set №\{0}. S[i] is the ith
element of list s||t is the concatenation of (the unambiguous encoding of) List s and t.
The empty list is denoted by Ø. Lists of tuples are sometimes counted as dictionaries.
For example, if L is the list ((alice, 1234), (Bob,5678)), then L[Bob] denotes the tuple
(Bob,5678). If A is an (possibly probabilistic) algorithm, then A(x) denotes the output
when A is executed given the input x.a :=b means that b is assigned to a.

4.2 Data structures and Modules

Nymble uses several important data structures, and we divide them into the following 4
modules:

4.2.1 Module 1: Generation of pseudonym

The PM issues pseudonyms to users. A pseudonym pnym

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

62

has two components nym and mac: nym is a pseudorandom

Fig 4. Evolution of seeds and nymbles. Given seedsi,., it is easy to
Compute nymblei, nymblei+1………..nymbleL, but not nymble

*,
nymblei……., nymblei-1.

mapping of the user’s identity (e.g., IP address),7 the linkability window w for which the

pseudonym is valid, and the PM’s secret key nymKeyP ; mac is a MAC that the NM uses to

verify the integrity of the pseudonym.

Algorithms 1 and 2 describe the procedures of creating and verifying pseudonyms.

Algorithm 1. PMCreatePseudonym

Input: (uid,w) € H * №

Persistent state: pmState € Sp

Output: pnym € P

1: Extract nymKeyP ; macKeyNP from pmState

2: nym :¼ MA:Mac(uid||w, nymKeyP)

3: mac :¼ MA:Mac(nym||w, macKeyNP)

4: return pnym :¼ (nym, mac)

Algorithm 2. NMVerifyPseudonym

Input: (pnym;w) € P * №

Persistent state: nmState 2 SN

Output: b € (true; false)

1: Extract macKeyNP from nmState

2: (nym; mac) := pnym

3: return mac = ? MA:Mac(nym||w,macKeyNP)

The NM executes NMInitState and initializes nmState in order to generate the algorithm’s
output. The NM extracts macKeyNP from nmState and sends it to the PM over a type-Auth
channel. macKeyNP is a shared anonymously between the NM and the PM, so that the NM can
verify the authenticity of pseudonyms issued by the PM. (Refer algorithm 3)

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

63

Algorithm 3. NMInitState

Output: nmState € SN

1: macKeyNP := Mac:KeyGen()

2: macKeyN := Mac:KeyGen()

3: seedKeyN := Mac:KeyGen()

4: (encKeyN; decKeyN) := Enc:KeyGen()

5: (signKeyN; verKeyN) := Sig:KeyGen()

6: keys :=(macKeyNP ; macKeyN; seedKeyN, encKeyN; decKeyN; signKeyN; verKeyN)

8: nmEntries := ¢;

9: return nmState :=(keys;nmEntries)

4.2.2 Module 2: Generation of nymble

Nymble, a pseudorandom number, plays the role of an identifier for a particular time period.
Nymbles (presented by a user) across periods are unlinkable unless a server has blacklisted that
user. Nymbles are presented as part of a nymble ticket, as described next. As shown in Fig. 4,
seeds evolve throughout a linkability window using a seed-evolution function f; the seed for the
next time period (seednext) is computed from the seed for the current time period (seedcur) as
seednext ¼ f(seedcur):
The nymble (nymblet) for a time period t is evaluated by applying the nymble evaluation
function g to its corresponding seed (seedt), i.e., nymblet ¼ g(seedt): The NM sets seed0 to a
pseudorandom mapping of the user’s pseudonym pnym, the (encoded) identity sid of the server
(e.g., domain name), the linkability window w for which the seed is valid, and the NM’s secret
key seedKeyN. User-server-window combinations are therefore specifically linked to seeds. As
a consequence, a seed is useful only for a particular server to link a particular user during a
particular linkability window.
In our Nymble construction, f and g are two distinct cryptographic hash functions. Hence, it is
easy to compute future nymbles starting from a particular seed by applying f and g
appropriately, but infeasible to compute nymbles otherwise. Without a seed, the sequence of
nymbles appears unlinkable, and honest users can enjoy anonymity. Even when a seed for a
particular time period is obtained, all the nymbles prior to that time period remain unlinkable.
A credential contains all the nymble tickets for a particular linkability window that a user can
present to a particular server. Algorithm 4 has a procedure that generates a credential when
requested: A ticket contains a server specific nymble, linkability window and time period. ctxt is
scrambled data that NM uses during a nymble ticket complaint. In particular, ctxt contains the
first nymble (nymble_) in the user’s sequence of nymbles, and the seed used to generate that
nymble. Upon a complaint, the NM extracts the user’s seed and issues it to the server by
evolving the seed, and nymble helps the NM to recognize whether the user has already been
blacklisted.

Algorithm 4. NMCreateCredential

Input: (pnym; sid;w) € P * H* №

Persistent state: nmState € SN

Output: cred € D

1: Extract macKeyNS; macKeyN; seedKeyN; encKeyN from

keys in nmState

2: seed0 := f(Mac(pnym||sidk||w,seedKeyN)

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

64

3: nymble* := (seed0)

4: for t from 1 to L do

5: seedt := f(seedt_1)

6: nymblet := g(seedt)

7: ctxtt := Enc:Encrypt(nymble*||seedt; encKeyN)

8: tickett := sid||t||wknymblet||ctxtt

9: macN,t := MA:Mac(tickett; macKeyN)

10: macNS;t := MA:Mac(ticket0||macN,t; macKeyNS)

11: tickets[t]:= (t, nymblet, ctxtt, macN,t; macNS,t)

12: return cred := (nimble*, tickets)

The MACs macN and macNS are used by the NM and the server, respectively, to verify the
integrity of the nymble ticket, as described in Algorithms 5 and 6(Under next module). As will
be explained later, the NM will need to verify the ticket’s integrity upon a complaint from the
server.

Algorithm 5. NMVerifyTicket

Input: (sid, t, w,ticket) € H * №2 * T

Persistent state: svrState

Output: b € (true; false)

1: Extract macKeyN from keys in nmState

2: (. , nymble, ctxt, macN, macNS) := ticket

3: content := sid||t||w||nymble||ctxt

4: return macN =? MA:Mac(content, macKeyN)

4.3.3 Connection to website using nymble and seed

Here in this module, the algorithm performs the task of checking if the linkability of the ticket
(using Algorithm no. 6) . If the nymble is linked to the server then we can conclude that the user
has misbehaved and thus the status of the user is updated.

Algorithm 5. ServerVerifyTicket

Input: (t, w, ticket) € №2 * T

Persistent state: svrState

Output: b € (true; false)

1: Extract sid; macKeyNS from svrState

2: (. , nymble, ctxt, macN; macNS) := ticket

3: content := sid||t||w||nimble||ctxt||macN

4: return macNS = ? MA:Mac(content, macKeyNS).

Algorithm 6. ServerLinkTicket

Input: ticket € T

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

65

Persistent state: svrState € SS

Output: b € (true; false)

1: Extract lnkng-tokens from svrState

2: (.; nymble; …) := ticket

3: for all i = 1 to | lnkng-tokens | do

4: if (.; nymble) = | lnkng-tokens[i] then

5: return true

6: return false

Algorithm 7. ServerUpdateState

Persistent state: svrState 2 Ss

1: Extract lnkng-tokens from svrState

2: for all i = 1 to | lnkng-tokens | do

3: (seed; nymble) := lnkng-tokens[i]

4: seed’ := f(seed); nymble’ := g(seed’)

5: tokens’[i] := (seed’; nymble’)

6: Replace lnkng-tokens in svrState with tokens’

7: Replace seen-tickets in svrState with ¢

4.3.4 Blacklisting Misbehaved User

A server’s blacklist is a list of nymble s corresponding to all the nymbles that the
server has complained about. Users can quickly check their blacklisting status at a
server by checking to see whether their nymble appears in the server’s
blacklist (see Algorithm 8).

Algorithm 8. UserCheckIfBlacklisted

Input: (sid; blist) € H*Bn, n; l € N0

Persistent state: usrState € Su

Output: b € (true; false)

1: Extract nymble_ from cred in usrEntries[sid] in usrState

2: return (nymble*€?blist)

Algorithms 9 describe how users and the NM can verify the integrity and

freshness of blacklists.

Algorithm 9. NMVerifyBL

Input: (sid; t; w; blist; cert) € H*N2 *Bn * C, n € N0

Persistent state: nmState 2 SN

Output: b € (true; false)

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

66

1-6: Same as lines 1-6 in VerifyBL

7: Extract macKeyN from keys in nmState

8: return mac = ? MA:Mac(content; macKeyN)

NMComputeBLUpdate (see Algorithm10) creates new entries to be appended to the
server’s blacklist. Each entry is either the actual nymble of the user being omplained
about if the user has not been blacklisted already, or a random nymble otherwise. This
way, the server cannot learn if two complaints are about the same user, and thus, cannot
link the Nymble connections to the same user.

Algorithm 10. NMComputeBLUpdate

Input: (sid; t; w; blist; cmplnt-tickets) € H*N2 *Bn * T m

Persistent state: nmState € SN

Output: (blist’; cert’) € Bm * C

1: (keys;nmEntries) := nmState

2(. ; macKeyN; seedKeyN; encKeyN; _; signKeyN; .) := keys

3: for i = 1 to m do

4: (.; .; ctxt; .; .) := cmplnt-tickets[i]

5: nymble*||seed := Decrypt(ctxt; decKeyN)

6: if nymble_ € blist then

7: blist’[i] € R H

8: else

9: blist’[i] := nymble*

10: daisyL € R H

11: target’ := h(L-t+1)(daisy’L)

12: cert’ := NMSignBL(sid; t; w; target’; blistkblist’)

13: Replace daisyL and tlastUpd in nmEntries[sid] in nmState with daisy0 L and by t,

respectively

14: return (blist’; cert’)

5. ADDITIONAL FEATURES

5.1 Enterprisal E-mail Server

Enterprises these days are facing a unique problem i.e. loss of confidential information. Any
firm’s one of the most valued asset is its data, which it somehow plans to keep out of bounds for
any outsider. Thereby, most firms restrict the use of data storage devices like pen drives or
recordable disks in the office premises, in order to put a check on the loss of secret company
information. However, it is found that data can be e-mailed to servers which can be accessed
even from outside the company bounds. That way, any ominous person can e-mail the
documents to someone who might use them for ill purposes.
Hereby, we present a system for an enterprise e-mail server. We will design an e-mail server (or
rent an e-mail domain i.e. name@company.com from Gmail or any other domain selling
websites) which will forbid the loss of sensitive information. The e-mail server apart from

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

67

searching all the communicated e-mails for any abusive content, also restricts the transfer of
mails to outbound servers, in order to prevent leak of secret information.

5.2 User based content hosting websites

User based content hosting websites such as Wikipedia etc. are currently unable to restrict a user
from making abusive comments. These websites despite having a large user base are often
marred by abusive contents posted on their website by anonymous users. They, given the large
number of comments posted per second, do not have a server side mechanism and usually rely
on existing users in order to post a content as abusive. As inefficient as that may be, it is the
only reliable way currently available to handle the issue.
Here we present Nymble, a system to detect an abusive post by itself, thereby eliminating the
need to rely on users for the same. The system, detects any abusive behavior from a user and if
found guilty, blocks him from accessing the website for a stipulated amount of time. However,
after the time is over, the user is forgiven, and he can access the website again until he
misbehaves again.

6 SECURITY ANALYSIS

Our Nymble construction has Blacklistability, Rate-limiting, Nonframeability, and Anonymity
provided that the trust assumptions in Section 3.2 hold true, and the cryptographic primitives
used are secure.

6.1 Blacklistability

An honest PM and NM will issue a coalition of c unique users at most c valid credentials for a
given server. Due to the security of HMAC, only Nymble Manager can issue valid tickets, and
for any given time period, the coalition has at most c valid tickets, thus making at most c
connections in any time period irrespective of server’s blacklisting. It is sufficient to show that
if each of the c users has been blacklisted in some previous time period, the coalition cannot
authenticate in the time period k_. Assume the contrary that connection establishment k_ using
one of the coalition members’ ticket_ was successful even though the user was blacklisted in a
previous time period k0. Since connection establishments k0 and k_ were successful, the
corresponding tickets ticket0 and ticket_ must be valid. Assuming the security of digital
signatures and HMAC, an honest server can always contact an honest NM with a valid ticket
and the NM will successfully terminate ehost running Ubuntu.

6.2 Nonframeability

Assume the contrary that the adversary successfully framed honest user i_ with respect to an
honest server in time period t_, and thus, user i_ was unable to connect in time period t_ using
ticket_ even though none of his tickets were previously blacklisted. Because of the security of
HMAC, and since the PM and NM are honest, the adversary cannot forge tickets for user i_, and
the server cannot already have seen ticket_; it must be that ticket_ was linked to an entry in the
linking list. Thus, there exists an entry (seed_; nymble_) in the server’s linking list, such that the
nymble in ticket_ equals nymble_. The server must have obtained this entry in a successful
blacklist update for some valid ticketb, implying the NM had created this ticket for some user
~i.
If ~i 6¼ i_, then user ~i’s seed is different from user i_’s seed as long as the PM is legitimate,
and yet the two seed’s evolve to the same seed_, which belies the collision resistance attribute

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

68

of the evolution function. Thus, we have ~i ¼ i_. But, as already argued, the adversary cannot
forge i_’s ticketb, and it must be the case that i_’s ticketb was blacklisted before t_, which
contradicts our assumption that i_ was a legitimate user in time t_.

6.3 Anonymity

We show that an adversary learns only that some legitimate user connected or that some
illegitimate user’s connection failed, i.e., there are two anonymity sets of legitimate and
illegitimate users. Distinguishing between two illegitimate users. We argue that any two chosen
illegitimate users out of the control of the adversary will react indistinguishably. Since all
honest users execute the Nymble connection Establishment protocol in exactly the same manner
up until the end of the Blacklist validation stage , it suffices to show that every illegitimate user
will evaluate safe to false, and hence, terminate the protocol with failure at the end of the
Privacy check stage .
For an illegitimate user (attempting a new connection) who has already disclosed a ticket during
a connection establishment earlier in the same time period, ticket Disclosed for the server will
have been set to true and safe is evaluated to false during establishment k_.
An illegitimate user who has not disclosed a ticket during the same time period must already be
blacklisted.
Thus, the server complained about some previous ticket_ of the user. Since the NM is honest,
the user’s nymble appears in some previous blacklist of the server. Since a Nymble Manager
never erases entries from a blacklist, it will be visible in all the subsequent blacklists, and safe is
calculated to be false for the current blacklist. Servers cannot forge blacklists or present
blacklists for earlier time periods (as, otherwise, the digital signature would be forgeable, or the
hash in the daisy chain could be inverted).
Distinguishing between two legitimate users. The authenticity of the channel implies that a
legitimate user knows the correct identity of the server, and thus, Boolean ticket Disclosed for
the server remains false. Furthermore, User Check If Blacklisted returns false (assuming the
security of digital signatures) and safe is evaluated to true for the legitimate user. Now, in the
ticket presented by the user, only nymble and ctxt are functions of the user’s identity. Since the
adversary does not know the decryption key, the CCA2 security of the encryption implies that
ctxt reveals no information about the user’s identity to the adversary. Finally, since the server
has not obtained any seeds for the user, under the Random Oracle model, the nymble presented
by the user is indistinguishable from random and cannot be linked with other nymbles presented
by the user.
Furthermore, if and when the server complains about a user’s tickets in the future, the NM
ensures that only one real seed is issued (subsequent seeds corresponding to the same user are
random values), and thus, the server cannot distinguish between legitimate users for a particular
time period by issuing complaints in a future time period.

6.4 Across Multiple Linkability Windows

With multiple linkability windows, our Nymble construction still has Accountability and
Nonframeability because each ticket is valid for and only for a specific linkability window; it
still has Anonymity because pseudonyms are an output of a collision-resistant function that
takes the linkability window as input.

7 DISCUSSION

IP-address blocking. Using IP addresses as a resource for limiting the Sybil attack, the current
implementation uses IP-address blocking used by Internet services. In either case, there are
some predefined limitations of using IP addresses as the rare resource. If a user can obtain

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

69

multiple addresses, he can get through both nymble-based and regular IP-address blocking.
Subnetbased blocking eases this problem, and while it is possible to modify our system to
support subnet-based blocking, new security problems might surface.

Other resources. Users of anonymizing networks would be reluctant to use resources that
directly reveal their identity . Email addresses could provide more privacy, but provide weak
blacklistability guarantees because users can easily create new email addresses. Other possible
resources include client puzzles and e-cash, where users are required to perform a certain
amount of computation or pay money to acquire a credential. These approaches would limit the
number of credentials obtained by a single individual by raising the cost of acquiring
credentials.
Server-specific linkability windows. An enhancement would be to provide support to vary T
and L for different servers. As described, our system does not support varying linkability
windows, but does support varying time periods. This is due to the fact that the PM is unaware
of the server that the user intends to connect to, yet it must issue pnyms bound to a linkability
window. We do note that the use of resources such as client puzzles or e-cash would eliminate
the need for a PM, and users could obtain Nymbles directly from the NM. In that case, server-
specific linkability windows could be used.
Side-channel attacks. While our current implementation does not fully protect against side-
channel attacks, we mitigate the risks. We have implemented various algorithms in a way that
their execution time leaks little information that cannot already be inferred from the algorithm’s
output. Also, since a confidential channel does not hide the size of the communication, we have
constructed the protocols so that each kind of protocol message is of the same size regardless of
the identity or current legitimacy of the user.

8 CONCLUSION

The existing sytem, however efficient as it may appear, largely depends on human users to
classify a post into an act of misbehavior. The misbehaving post, even when flagged as abusive,
is usually not immediately removed from the website. Anonymizing networks as Tor, thus far,
has been completely blocked by several web services because of users who abuse their
anonymity.
Thereby in our paper titled “Nymble Blocking System“, we introduce a system which
algorithmically flags a post as an act of misbehavior, and thereby eradicating the necessity to
depend on the existing users for the same. Our system allows websites to selectively block users
of anonymizing networks. Using it, websites can blacklist users without hindering their
anonymity.

REFERENCE

[1] C. Cornelius, A. Kapadia, P.P. Tsang, and S.W. Smith, “Nymble: Blocking Misbehaving Users in
Anonymizing Networks,” Technical Report TR2008-637, Dartmouth College, Computer Science, Dec.
2008.

[2] G. Ateniese, D.X. Song, and G. Tsudik, “Quasi-Efficient Revocation in Group Signatures,” Proc.
Conf. Financial Cryptography, Springer, pp. 183-197, 2002.

[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A Concrete Security Treatment of Symmetric
Encryption,” Proc. Ann. Symp. Foundations in Computer Science (FOCS), pp. 394-403, 1997.

 [4] M. Bellare, H. Shi, and C. Zhang, “Foundations of Group Signatures: The Case of Dynamic Groups,”
Proc. Cryptographer’s Track at RSA Conf. (CT-RSA), Springer, pp. 136-153, 2005.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

70

[5] D. Boneh and H. Shacham, “Group Signatures with Verifier-Local Revocation,” Proc. ACM Conf.
Computer and Comm. Security, pp. 168-177, 2004.

[6] J. Camenisch and A. Lysyanskaya, “An Efficient System for Non- Transferable Anonymous
Credentials with Optional Anonymity Revocation,” Proc. Int’l Conf. Theory and Application of
Cryptographic Techniques (EUROCRYPT), Springer, pp. 93-118, 2001.

[7] J. Camenisch and A. Lysyanskaya, “Dynamic Accumulators and Application to Efficient Revocation
of Anonymous Credentials,” Proc. Ann. Int’l Cryptology Conf. (CRYPTO), Springer, pp. 61-76, 2002.

[8] J. Camenisch and A. Lysyanskaya, “Signature Schemes and Anonymous Credentials from Bilinear
Maps,” Proc. Ann. Int’l Cryptology Conf. (CRYPTO), Springer, pp. 56-72, 2004.

[9] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, “A Practical and Provably Secure Coalition-
Resistant Group Signature, Scheme,” Proc. Ann. Int’l Cryptology Conf. (CRYPTO), Springer, pp. 255-
270, 2000.

[10] J. Feigenbaum, A. Johnson, and P.F. Syverson, “A Model of Onion Routing with Provable
Anonymity,” Proc. Conf. Financial Cryptography, Springer, pp. 57-71, 2007.

[11] S. Goldwasser, S. Micali, and R.L. Rivest, “A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks,” SIAM J. Computing, vol. 17, no. 2, pp. 281-308, 1988.

[12] J.E. Holt and K.E. Seamons, “Nym: Practical Pseudonymity for Anonymous Networks,” Internet
Security Research Lab Technical Report 2006-4, Brigham Young University., June 2006.

[13] P.P. Tsang, M.H. Au, A. Kapadia, and S.W. Smith, “Blacklistable Anonymous Credentials: Blocking
Misbehaving Users without TTPs,” Proc. 14th ACM Conf. Computer and Comm. Security (CCS ’07), pp.
72-81, 2007.

[14] P.C. Johnson, A. Kapadia, P.P. Tsang, and S.W. Smith, “Nymble: Anonymous IP-Address
Blocking,” Proc. Conf. Privacy Enhancing Technologies, Springer, pp. 113-133, 2007.

Biography

Anand Joshi is pursuing his computer engineering degree from Pune
University. Having a strong inclination towards ASP.NET coding, he
did his initial schooling from Amravati, Maharashtra. An excellent
communicator and a fine writer, he plans to pursue his career as a
software developer.

Arshiya Shaikh is currently pursuing her graduation course as a
computer engineer from MAE, Alandi in Pune University. Originally
hailing from Junnar, a small village in countryside Maharashtra, she is
the first girl from her school to study engineering. A devoted learner,
she intends to pursue teaching as a profession and pay back her due
back to the society.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.2, April 2012

71

Aruna Kadam is currently pursuing a M.E. from University Of Pune.
She did her graduation from Shivaji University, Satara. She has
worked as a lecturer in Mozhe College of Engineering, Pune and
currently works at Maharashtra Academy Of Engineering, Pune. She
plans to continue her research in the field of computer science

Vasudha Sahu, the quintessential project leader of our project group
is pursuing her B.E. degree in Computer Engineering from Pune
University. She has a strong liking in the field of software
development and has excellent skills in the field of programming
languages like C and C++. She wants to pursue her dream to be a
software developer in a major IT firm.

