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Abstract 

In order to allow users to access Internet services privately, anonymizing networks like Tor uses a series 

of routers to hide the client’s IP address from the server. These networks, however, have been marred by 

users employing this anonymity for abusive purposes such as defacing popular web sites. Usually, web 

site administrators rely on IP-address blocking in order to disable access to misbehaving users, but it is 

impractical if the abuser routes through an anonymizing network. In order to avoid this, administrators 

bar all known exit nodes of the anonymizing network, thereby denying anonymous access to all the users 

(whether misbehaving or not). To solve this issue, we introduce Nymble, a system where servers  blacklist 

misbehaving users, thereby blocking users without affecting their anonymity. Nymble is thus agnostic to 

varied definitions of misbehavior. Servers can block users for any reason, and the privacy of blacklisted 

users is not affected in any case. 
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1.INTRODUCTION 

 

IN order to hide a client’s IP address anonymizing networks like Tor route traffic through 
independent nodes in separate administrative domains. Some users, however, have misused such 
networks—under the cover of anonymity, they have repeatedly defaced popular Web sites such 
as Wikipedia. As administrators cannot block individual users’ IP addresses, they resort to 
blacklisting the entire anonymizing network. However, such methods though eliminate 
malicious activity through anonymizing networks but they also deny anonymous access to 
behaving users. (A case repeatedly observed with Tor.1). In  a pseudonymous credential system, 
users log into Web sites using pseudonyms, which can be blocked if in case a user misbehaves. 
However, this method may results in pseudonymity for all users, thereby dampening the 
anonymity provided by the anonymizing network. Anonymous credential systems employ group 
signatures. On the other hand, basic group signatures allow servers to annul a misbehaving 
user’s anonymity by complaining about it to a group manager. Servers must contact the group 
manager for every authentication, and thus, this method lacks scalability. Traceable signatures 
help the group manager, which then release a trapdoor allowing all signatures generated by a 
particular user to be traced. Even though, using such an approach does not provide the necessary 
backward unlinkability that we desire, a user’s accesses before the complaint always remain 
anonymous. Backward unlinkability allows for immanent blacklisting, in which servers can 
blacklist users for whatever reason as the privacy of the blacklisted user is not at risk. In 
contrast, approaches without backward unlinkability need to pay careful attention to when and 
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why a user must have all their connections linked, and users must worry about whether their 
behaviors will be judged fairly. Subjective blacklisting is more suited to Wikipedia like servers, 
where misbehaviors such as erronous edits to a Webpage, are tough to specify in exact 
mathematical terms. In some systems, misbehavior can indeed be defined precisely. 
These methods hold true for only a few definitions of misbehavior — it is quite arduous to map 
more complex definitions of misbehavior with related approaches. With dynamic accumulators, 
a cancelling operation might result in a new accumulator and public parameters for the group, 
and making it mandatory to update all other existing users’ credentials, thus making it 
impractical. Verifier-local revocation (VLR) overcomes this by requiring the server (“verifier”) 
to perform only local updates during revocation. But VLR calls for heavy computation at the 
server side that is linear in the size of the blacklist. In contrast, our scheme takes the server 
about one millisecond per authentication, which is way faster than VLR. These low overheads 
help servers to use a solution when compared against the potential benefits of anonymous 
publishing  
 

1.1 Nymble 

To solve the given problem, we introduce a system called Nymble, which possesses the 
following properties: anonymous authentication, backward unlinkability, subjective blacklisting, 
fast authentication speeds, rate-limited anonymous connections, revocation auditability (where  
users can verify whether they have been blacklisted), and it also deals with the Sybil attack so as  
to make its implementation practical. In Nymble, users acquire a set of nymbles, a unique type 
of pseudonym, in order to connect to Web Servers. Lacking any other information, these 
nymbles are logically hard to link, and hence, using the collection of nymbles simulates 
unidentified access to services. Web sites, nevertheless,  can block users by obtaining a seed for 
a specific nymble, and thus allowing them to establish a connection with future nymbles from 
the  user — and those prior to the complaint remain unlinkable and untraceable. 
Servers can thus block anonymous users without gaining access to their IP addresses while 
allowing legitimate users to connect anonymously. Our system let the users know about their 
blacklisted status before they are introduced to a nymble, and are disconnected immediately in 
case they are blacklisted. A large number of anonymizing networks can rely on the same 
Nymble system, and blacklisting anonymous users regardless of their anonymizing network. 
 

 

 

Fig 1. The Nymble system architecture showing the various modes of  interaction. Note that 

users interact with the NM and servers through the anonymizing network. 
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2 AN OVERVIEW  TO  NYMBLE 

 

We now introduce a high-level overview of the Nymble architecture, and divide the entire 
protocol description and security analysis to the respective sub-sections. 
 

2.1 Resource-based blocking 
 

To keep a tab on the total number of identities that a user can obtain (popularly known as the 
Sybil attack ), the Nymble system attaches nymbles to resources which are difficult enough to 
obtain in great numbers. For example, here we have used IP addresses as the resource, but our 
scheme generalizes to other resources as well such as email addresses or identity certificates. 
The issues related with resource-based blocking is discussed further in Section 8, where we 
have suggested other alternatives for resources. The Sybil attack problem is faced by any 
credential system and we suggest some promising approaches based on resource-based blocking 
since we aim to create a real-world deployment. 
 

2.2 The Pseudonym manager 

 
The user initially must connect to Pseudonym Manager (PM) and establish control over a 
resource; so as to block the IP-address, the user ought to connect to the Pseudonym Manager 
directly, as shown in Fig. 1. We presume that PM has knowledge of Tor routers and can ensure 
that users are communicating with it directly. Pseudonyms are chosen based on the controlled 
resource, making sure that the very pseudonym is always issued for the same resource. The user 
does not disclose what server he wants to connect to, and the PM’s duties are restricted to 
mapping IP addresses (or other resources) to pseudonyms. The user connects to the PM only 
once per linkability window (e.g., once a day). 
 

2.3 The Nymble Manager 
 

Post gaining a pseudonym from the PM, the user connects to the Nymble Manager via the 
anonymizing network, and then request for nymbles to obtain access to a particular server. A 
user’s requests to the NM are therefore pseudonymous, and nymbles are generated using the 
user’s pseudonym and the server’s identity. Nymbles are thus specific to a particular user-server 
pair. As long as the PM and the NM do not collude, the NM knows only the pseudonym-server 
pair, and the PM knows only the user identity-pseudonym pair. In order to provide the required 
cryptographic protection and security properties, nymbles are encapsulated within nymble 
tickets. Servers pack seeds into linking tokens, and therefore, we will speak of linking tokens 
being used to link future nymble tickets. 
 

2.4  Time 
 

Nymble tickets are linked with specific time periods. Time is divided into linkability windows 
of duration W, each of which is split into L time periods of duration T (i.e., W ¼L _ T ) as 
shown in Fig.2. Time periods and linkability windows are chronologically referred to as t1; t2; . 
. . ; tL and w1; w2; . . . , respectively. While a single user’s access within a time period is 
allotted a single nymble ticket, different nymble tickets across time periods provides the user 
with anonymity between different time periods. Smaller time periods provide users with higher 
rates of anonymous authentication, while longer time periods allow servers to rate-limit the 
number of misbehaviors from a particular user before he is blocked. The linkability window 
allows for dynamism since resources such as IP addresses can get reassigned and it is not 
desirable to blacklist such resources indefinitely, and it ensures forgiving a misbehaving user 
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after a certain window linkability period. All entities are time synchronized, and we can thus 
calculate the current linkability window and time period. 
 

2.5  Blacklisting a user 

In case of a misbehavior, the server may link any future connection from this user within the 
same linkability window. Consider Fig. 2: A user misbehaves at a server during time period t_ 
within linkability window w_. The server then finds this misbehavior and reports it to the NM in 
time period tc (t_ < tc _ tL) of the same linkability window. In the complaint, the server presents 
the nymble ticket of the misbehaving user and obtains the corresponding seed from the NM. The 
server is then able to link future connections by the user in time periods tc; tc þ 1; . . . ; tL of the 
same linkability window w_ to the complaint. Therefore, once the server has complained about 
a user, that user is blacklisted for that particular linkability window. Even though misbehaving 
users can be blocked for the future too, the past connections anyhow remain unlinkable,  
providing subjective blacklisting and backward unlinkability.  
 

2.6  Notifying the user of blacklist status 

 
Users using anonymizing networks want their connections to be anonymous. When a server 
obtains a seed for that user, it can still link the user’s subsequent connections. It is very 
important that users be notified of being blacklisted before presenting a nymble ticket to a 
server. The user can thus download the server’s blacklist and verify its status. When blacklisted, 
the user immediately gets discontinued. 
 

As the blacklist is cryptographically signed by the NM, the blacklist’s credibility is easily 
verified as to if the blacklist was updated in the same time period. Otherwise, the NM provides 
servers with “daisies” every time period so that users are able to verify the freshness of the 
blacklist. As discussed further, these daisies are elements of a hash chain, providing a 
lightweight alternative to digital signatures. Thus, we ensure that race conditions are not 
possible in verifying a blacklist’s novelty. A user is guaranteed that he or she will not be linked 
if the user verifies the integrity and freshness of the blacklist before sending his or her nymble 
ticket. 
 

3 SECURITY  MODEL 

Nymble aims for four security goals. We provide informaldefinitions here; a detailed formalism 
can be found in our technical report , which explains how these goals must also resist coalition 
attacks. 
 

3.1 Goals and threats 

An entity can be termed as honest when its operations abide by the system’s specification. An 
honest entity attempts to infer knowledge from its own information (e.g., its secrets, state, and 
protocol communications). An honest entity becomes corrupt when it is compromised by an 
attacker, and hence, reveals its information at the time of compromise. 

Blacklistability assures that any legitimate server can surely block misbehaving users. Also, if 
an honest server complains about a misbehaving user in the present linkability window, it will 
be successful and the user will not be able to connect. 
Rate-limiting assures that any legitimate server that no user can connect to it more than once 
within any single time period. 
Nonframeability guarantees that any legitimate user can connect through nymble to that server. 
This keeps an attacker from framing a legitimate user, e.g., by getting the user blocked for 
someone else’s misbehavior. Here we assume each user has a single unique identity. When IP 
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addresses are used, a user can be “framed” as an honest user who later obtains the same IP 
address. Nonframeability holds true only against attackers with different IP addresses. A user is  
considered legitimate by a server only if he has not been blacklisted, and has not exceeded the 
rate limit. Honest servers are able to distingish between honest and dishonest users. 
 

 

 

 

 

Fig 2. The life cycle of a misbehaving user. If the server complains in time period tc about a 
user’s connection in t*.the user becomes linkable starting in tc. The complain in tc.  can include 
nimble tickets from onlu tc-1  and earlier 

 
Anonymity protects the anonymity of honest users, regardless of their legitimacy according to 
the (possibly corrupt) server; the server cannot learn any more information beyond whether the 
user behind (an attempt to make) a nymble connection is legitimate or illegitimate. 
 

4 PREREQUISITES 

 

4.1 Notation 
 

The notation a€ R  S represents an element drawn uniformly at random from a nonempty 
set S.№ is the set of nonnegative integers, and N is the set №\{0}. S[i] is  the ith 
element of list s||t is the concatenation of (the unambiguous encoding of) List s and t. 
The empty list is denoted by Ø. Lists of tuples are sometimes counted as dictionaries. 
For example, if L is the list ((alice, 1234), (Bob,5678)), then L[Bob] denotes the tuple  
(Bob,5678). If A is an (possibly probabilistic) algorithm, then A(x) denotes the output 
when A is executed given the input x.a :=b means that b is assigned to a. 
 

4.2  Data structures and Modules 
 

Nymble uses several important data structures, and we divide them into the following 4 
modules: 
 

4.2.1 Module 1: Generation of pseudonym 
 

The PM issues pseudonyms to users. A pseudonym pnym 
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has two components nym and mac: nym is a pseudorandom 
 
 
 

 

 

 

Fig 4.  Evolution of seeds  and nymbles. Given seedsi,., it is easy to 
Compute nymblei, nymblei+1………..nymbleL,  but not nymble

*, 
nymblei……., nymblei-1. 

 

mapping of the user’s identity (e.g., IP address),7 the linkability window w for which the 

pseudonym is valid, and the PM’s secret key nymKeyP ; mac is a MAC that the NM uses to 

verify the integrity of the pseudonym. 

 

Algorithms 1 and 2 describe the procedures of creating and verifying pseudonyms. 

 

Algorithm 1. PMCreatePseudonym 

Input: (uid,w) € H * № 

Persistent state: pmState € Sp 

Output: pnym € P 

1: Extract nymKeyP ; macKeyNP from pmState 

2: nym :¼ MA:Mac(uid||w, nymKeyP ) 

3: mac :¼ MA:Mac(nym||w, macKeyNP) 

4: return pnym :¼ (nym, mac) 

 

Algorithm 2. NMVerifyPseudonym 

Input: (pnym;w) € P * № 

Persistent state: nmState 2 SN 

Output: b € (true; false) 

1: Extract macKeyNP from nmState 

2: (nym; mac)  := pnym 

3: return mac = ? MA:Mac(nym||w,macKeyNP ) 

 

The NM executes NMInitState and initializes nmState in order to generate the algorithm’s 
output. The NM extracts macKeyNP from nmState and sends it to the PM over a type-Auth 
channel. macKeyNP is a shared anonymously between  the NM and the PM, so that the NM can 
verify the authenticity of pseudonyms issued by the PM. (Refer algorithm 3) 
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Algorithm 3. NMInitState 

Output: nmState € SN 

1: macKeyNP := Mac:KeyGen() 

2: macKeyN := Mac:KeyGen() 

3: seedKeyN := Mac:KeyGen() 

4: (encKeyN; decKeyN) := Enc:KeyGen() 

5: (signKeyN; verKeyN) := Sig:KeyGen() 

6: keys :=(macKeyNP ; macKeyN; seedKeyN, encKeyN; decKeyN; signKeyN; verKeyN) 

8: nmEntries := ¢; 

9: return nmState :=(keys;nmEntries) 

 

4.2.2 Module 2: Generation of nymble  

Nymble,  a pseudorandom number, plays the role of an identifier for a particular time period. 
Nymbles (presented by a user) across periods are unlinkable unless a server has blacklisted that 
user. Nymbles are presented as part of a nymble ticket, as described next. As shown in Fig. 4, 
seeds evolve throughout a linkability window using a seed-evolution function f; the seed for the 
next time period (seednext) is computed from the seed for the current time period (seedcur) as 
seednext ¼ f(seedcur): 
The nymble (nymblet) for a time period t is evaluated by applying the nymble evaluation 
function g to its corresponding seed (seedt), i.e., nymblet ¼ g(seedt): The NM sets seed0 to a 
pseudorandom mapping of the user’s pseudonym pnym, the (encoded) identity sid of the server 
(e.g., domain name), the linkability window w for which the seed is valid, and the NM’s secret 
key seedKeyN. User-server-window combinations are therefore specifically linked to seeds. As 
a consequence, a seed is useful only for a particular server to link a particular user during a 
particular linkability window. 
In our Nymble construction, f and g are two distinct cryptographic hash functions. Hence, it is 
easy to compute future nymbles starting from a particular seed by applying f and g 
appropriately, but infeasible to compute nymbles otherwise. Without a seed, the sequence of 
nymbles appears unlinkable, and honest users can enjoy anonymity. Even when a seed for a 
particular time period is obtained, all the nymbles prior to that time period remain unlinkable.  
A credential contains all the nymble tickets for a particular linkability window that a user can 
present to a particular server. Algorithm 4 has a procedure that generates a credential when 
requested: A ticket contains a server specific nymble, linkability window and time period. ctxt is 
scrambled data that NM uses during a nymble ticket complaint. In particular, ctxt contains the 
first nymble (nymble_) in the user’s sequence of nymbles, and the seed used to generate that 
nymble. Upon a complaint, the NM extracts the user’s seed and issues it to the server by 
evolving the seed, and nymble helps the NM to recognize whether the user has already been 
blacklisted. 
 

Algorithm 4. NMCreateCredential 

Input: (pnym; sid;w)  € P * H* № 

Persistent state: nmState € SN 

Output: cred € D 

1: Extract macKeyNS; macKeyN; seedKeyN; encKeyN from 

keys in nmState 

2: seed0 := f(Mac(pnym||sidk||w,seedKeyN) 
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3: nymble* := (seed0) 

4: for t from 1 to L do 

5: seedt := f(seedt_1) 

6: nymblet := g(seedt) 

7: ctxtt := Enc:Encrypt(nymble*||seedt; encKeyN) 

8: tickett :=  sid||t||wknymblet||ctxtt 

9: macN,t := MA:Mac(tickett; macKeyN) 

10: macNS;t := MA:Mac(ticket0||macN,t; macKeyNS) 

11: tickets[t]:= (t, nymblet, ctxtt, macN,t; macNS,t) 

12: return cred := ( nimble*, tickets)  

 

The MACs macN and macNS are used by the NM and the server, respectively, to verify the 
integrity of the nymble ticket, as described in Algorithms 5 and  6( Under next module). As will 
be explained later, the NM will need to verify the ticket’s integrity upon a complaint from the 
server. 
 

Algorithm 5. NMVerifyTicket 

Input: (sid, t, w,ticket) € H * №2 * T 

Persistent state: svrState 

 

Output: b € (true; false) 

1: Extract macKeyN from keys in nmState 

2: (. ,  nymble, ctxt, macN, macNS ) := ticket 

3: content := sid||t||w||nymble||ctxt 

4: return macN =? MA:Mac(content, macKeyN) 

 

4.3.3 Connection to website using nymble and seed 

Here in this module, the algorithm performs the task of checking if the linkability of the ticket 
(using Algorithm no. 6) . If the nymble is linked to the server then we can conclude that the user 
has misbehaved and thus the status of the user is updated.  
 

Algorithm 5. ServerVerifyTicket 

Input: (t, w, ticket) € №2 *  T 

Persistent state: svrState 

Output: b € (true; false) 

1: Extract sid; macKeyNS from svrState 

2: (. , nymble, ctxt, macN; macNS) :=  ticket 

3: content := sid||t||w||nimble||ctxt||macN 

4: return macNS = ? MA:Mac(content, macKeyNS). 

Algorithm 6. ServerLinkTicket 

Input: ticket € T 
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Persistent state: svrState € SS 

Output: b € (true; false) 

1: Extract lnkng-tokens from svrState 

2: (.; nymble; …) := ticket 

3: for all i = 1 to | lnkng-tokens | do 

4: if (.; nymble) = | lnkng-tokens[i]  then 

5: return true 

6: return false 

 

Algorithm 7. ServerUpdateState 

Persistent state: svrState 2 Ss 

1: Extract lnkng-tokens from svrState 

2: for all i = 1 to | lnkng-tokens | do 

3: (seed; nymble) := lnkng-tokens[i] 

4: seed’ := f(seed); nymble’ := g(seed’) 

5: tokens’[i] := (seed’; nymble’) 

6: Replace lnkng-tokens in svrState with tokens’ 

7: Replace seen-tickets in svrState with ¢ 

 

4.3.4 Blacklisting Misbehaved User 

A server’s  blacklist  is a list of nymble   s corresponding to all the  nymbles that  the  
server  has  complained about.  Users can quickly  check  their  blacklisting status   at  a  
server  by checking   to  see   whether  their   nymble     appears  in   the server’s  
blacklist  (see Algorithm 8). 

 
 

Algorithm 8. UserCheckIfBlacklisted 

Input: (sid; blist) € H*Bn, n; l € N0 

Persistent state: usrState € Su 

Output: b € (true; false) 

1: Extract nymble_ from cred in usrEntries[sid] in usrState 

2: return (nymble*€?blist) 

 

Algorithms 9 describe how   users   and   the   NM   can   verify   the   integrity  and 

freshness of blacklists. 

 

Algorithm 9. NMVerifyBL 

Input: (sid; t; w; blist; cert) € H*N2 *Bn * C, n € N0 

Persistent state: nmState 2 SN 

Output: b € (true; false) 
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1-6: Same as lines 1-6 in VerifyBL 

7: Extract macKeyN from keys in nmState 

8: return mac = ? MA:Mac(content; macKeyN) 

 

NMComputeBLUpdate (see Algorithm10) creates new entries  to be appended to the 
server’s  blacklist.  Each entry is either  the  actual  nymble  of the  user  being   omplained 
about if the user has not been blacklisted already, or a random nymble otherwise. This 
way,  the server  cannot  learn  if two complaints are about the same user, and thus, cannot 
link the Nymble connections to the same  user. 
 

Algorithm 10. NMComputeBLUpdate 

Input: (sid; t; w; blist; cmplnt-tickets) € H*N2 *Bn * T m 

Persistent state: nmState € SN 

Output: (blist’; cert’) € Bm * C 

1: (keys;nmEntries) := nmState 

2(. ; macKeyN; seedKeyN; encKeyN; _; signKeyN; . ) := keys 

3: for i = 1 to m do 

4: (.; .; ctxt; .; .) :=  cmplnt-tickets[i] 

5: nymble*||seed := Decrypt(ctxt; decKeyN) 

6: if nymble_ € blist then 

7: blist’[i] € R H 

8: else 

9: blist’[i] := nymble* 

10: daisyL  € R H 

11: target’ := h(L-t+1)(daisy’L) 

12: cert’ := NMSignBL(sid; t; w; target’; blistkblist’) 

13: Replace daisyL and tlastUpd in nmEntries[sid] in nmState with daisy0 L and by t, 

respectively 

14: return (blist’; cert’) 

 

5. ADDITIONAL FEATURES 

5.1 Enterprisal E-mail Server  

Enterprises these days are facing a unique problem i.e. loss of confidential information. Any  
firm’s one of the most valued asset is its data, which it somehow plans to keep out of bounds for 
any outsider.  Thereby, most firms restrict the use of data storage devices like pen drives or 
recordable disks in the office premises, in order to put a check on the loss of secret company 
information. However, it is found that data can be e-mailed to servers which can be accessed 
even from outside the company bounds. That way, any ominous person can e-mail the 
documents to someone who might use them for ill purposes.  
Hereby, we present a system for an enterprise e-mail server. We will design an e-mail server (or 
rent an e-mail domain i.e. name@company.com from Gmail or any other domain selling 
websites) which will forbid the loss of sensitive information. The e-mail server apart from 
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searching all the communicated e-mails for any abusive content, also restricts the transfer of 
mails to outbound servers, in order to prevent leak of secret information. 

 

5.2 User based content hosting websites 

User based content hosting websites such as Wikipedia etc. are currently unable to restrict a user 
from making abusive comments. These websites despite having a large user base are often 
marred by abusive contents posted on their website by anonymous users. They, given the large 
number of comments posted per second, do not have a server side mechanism and usually rely 
on existing users in order to post a content as abusive. As inefficient as that may be, it is the 
only reliable way currently available to handle the issue. 
Here we present Nymble, a system to detect an abusive post by itself, thereby eliminating the 
need to rely on users for the same. The system, detects any abusive behavior from a user and if 
found guilty, blocks him from accessing the website for a stipulated amount of time. However, 
after the time is over, the user is forgiven, and he can access the website again until he 
misbehaves again. 

 

6  SECURITY ANALYSIS 

Our Nymble construction has Blacklistability, Rate-limiting, Nonframeability, and Anonymity 
provided that the trust assumptions in Section 3.2 hold true, and the cryptographic primitives 
used are secure. 
 

6.1 Blacklistability 

An honest PM and NM will issue a coalition of c unique users at most c valid credentials for a 
given server. Due to the security of HMAC, only Nymble Manager can issue valid tickets, and 
for any given time period, the coalition has at most c valid tickets, thus making at most c 
connections in any time period irrespective of server’s blacklisting. It is sufficient to show that 
if each of the c users has been blacklisted in some previous time period, the coalition cannot 
authenticate in the time period k_. Assume the contrary that connection establishment k_ using 
one of the coalition members’ ticket_ was successful even though the user was blacklisted in a 
previous time period k0. Since connection establishments k0 and k_ were successful, the 
corresponding tickets ticket0 and ticket_ must be valid. Assuming the security of digital 
signatures and HMAC, an honest server can always contact an honest NM with a valid ticket 
and the NM will successfully terminate ehost running Ubuntu. 
 

6.2 Nonframeability 

Assume the contrary that the adversary successfully framed honest user i_ with respect to an 
honest server in time period t_, and thus, user i_ was unable to connect in time period t_ using 
ticket_ even though none of his tickets were previously blacklisted. Because of the security of 
HMAC, and since the PM and NM are honest, the adversary cannot forge tickets for user i_, and 
the server cannot already have seen ticket_; it must be that ticket_ was linked to an entry in the 
linking list. Thus, there exists an entry (seed_; nymble_) in the server’s linking list, such that the 
nymble in ticket_ equals nymble_. The server must have obtained this entry in a successful 
blacklist update for some valid ticketb, implying the NM had created this ticket for some user 
~i. 
If ~i 6¼ i_, then user ~i’s seed is different from user i_’s seed as long as the PM is legitimate, 
and yet the two seed’s evolve to the same seed_, which belies the collision resistance attribute 
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of the evolution function. Thus, we have ~i ¼ i_. But, as already argued, the adversary cannot 
forge i_’s ticketb, and it must be the case that i_’s ticketb was blacklisted before t_, which 
contradicts our assumption that i_ was a legitimate user in time t_. 
 

6.3 Anonymity 

 
We show that an adversary learns only that some legitimate user connected or that some 
illegitimate user’s connection failed, i.e., there are two anonymity sets of legitimate and 
illegitimate users. Distinguishing between two illegitimate users. We argue that any two chosen 
illegitimate users out of the control of the adversary will react indistinguishably. Since all 
honest users execute the Nymble connection Establishment protocol in exactly the same manner 
up until the end of the Blacklist validation stage , it suffices to show that every illegitimate user 
will evaluate safe to false, and hence, terminate the protocol with failure at the end of the 
Privacy check stage . 
For an illegitimate user (attempting a new connection) who has already disclosed a ticket during 
a connection establishment earlier in the same time period, ticket Disclosed for the server will 
have been set to true and safe is evaluated to false during establishment k_. 
An illegitimate user who has not disclosed a ticket during the same time period must already be 
blacklisted. 
Thus, the server complained about some previous ticket_ of the user. Since the NM is honest, 
the user’s nymble  appears in some previous blacklist of the server. Since a Nymble Manager 
never erases entries from a blacklist, it will be visible in all the subsequent blacklists, and safe is 
calculated to be false for the current blacklist. Servers cannot forge blacklists or present 
blacklists for earlier time periods (as, otherwise, the digital signature would be forgeable, or the 
hash in the daisy chain could be inverted). 
Distinguishing between two legitimate users. The authenticity of the channel implies that a 
legitimate user knows the correct identity of the server, and thus, Boolean ticket Disclosed for 
the server remains false. Furthermore, User Check If Blacklisted returns false (assuming the 
security of digital signatures) and safe is evaluated to true for the legitimate user. Now, in the 
ticket presented by the user, only nymble and ctxt are functions of the user’s identity. Since the 
adversary does not know the decryption key, the CCA2 security of the encryption implies that 
ctxt reveals no information about the user’s identity to the adversary. Finally, since the server 
has not obtained any seeds for the user, under the Random Oracle model, the nymble presented 
by the user is indistinguishable from random and cannot be linked with other nymbles presented 
by the user. 
Furthermore, if and when the server complains about a user’s tickets in the future, the NM 
ensures that only one real seed is issued (subsequent seeds corresponding to the same user are 
random values), and thus, the server cannot distinguish between legitimate users for a particular 
time period by issuing complaints in a future time period. 
 

6.4 Across Multiple Linkability Windows 
 
With multiple linkability windows, our Nymble construction still has Accountability and 
Nonframeability because each ticket is valid for and only for a specific linkability window; it 
still has Anonymity because pseudonyms are an output of a collision-resistant function that 
takes the linkability window as input. 

 

7 DISCUSSION 

 
IP-address blocking. Using IP addresses as a resource for limiting the Sybil attack, the current 
implementation uses IP-address blocking used by Internet services. In either case, there are 
some predefined limitations of using IP addresses as the rare resource. If a user can obtain 
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multiple addresses, he can get through both nymble-based and regular IP-address blocking. 
Subnetbased blocking eases this problem, and while it is possible to modify our system to 
support subnet-based blocking, new security problems might surface. 
 
Other resources. Users of anonymizing networks would be reluctant to use resources that 
directly reveal their identity . Email  addresses could provide more privacy, but provide weak 
blacklistability guarantees because users can easily create new email addresses. Other possible 
resources include client puzzles and e-cash, where users are required to perform a certain 
amount of computation or pay money to acquire a credential. These approaches would limit the 
number of credentials obtained by a single individual by raising the cost of acquiring 
credentials. 
Server-specific linkability windows. An enhancement would be to provide support to vary T 
and L for different servers. As described, our system does not support varying linkability 
windows, but does support varying time periods. This is due to the fact that the PM is unaware 
of the server that the user intends to connect to, yet it must issue pnyms bound to a linkability 
window. We do note that the use of resources such as client puzzles or e-cash would eliminate 
the need for a PM, and users could obtain Nymbles directly from the NM. In that case, server-
specific linkability windows could be used. 
Side-channel attacks. While our current implementation  does not fully protect against side-
channel attacks, we mitigate the risks. We have implemented various algorithms in a way that 
their execution time leaks little information that cannot already be inferred from the algorithm’s 
output. Also, since a confidential channel does not hide the size of the communication, we have 
constructed the protocols so that each kind of protocol message is of the same size regardless of 
the identity or current legitimacy of the user. 
 

8 CONCLUSION  
 
The existing sytem, however efficient as it may appear, largely depends on human users to 
classify a post into an act of misbehavior. The misbehaving post, even when flagged as abusive, 
is usually not immediately removed from the website. Anonymizing networks as Tor, thus far, 
has been completely blocked by several web services because of users who abuse their 
anonymity.  
Thereby in our paper titled “Nymble Blocking System“, we introduce a system which 
algorithmically flags a post as an act of misbehavior, and thereby eradicating the necessity to 
depend on the existing users for the same. Our system allows websites to selectively block users 
of anonymizing networks. Using it, websites can blacklist users without hindering their 
anonymity.  
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