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ABSTRACT 

This paper derives new results for the design of sliding mode controller for the global chaos 

synchronization of identical hyperchaotic Lorenz systems (Jia, 2007). The synchronizer results derived in 

this paper for the complete chaos synchronization of identical hyperchaotic systems are established using 

Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the sliding 

mode control method is very effective and convenient to achieve global chaos synchronization of the 

identical hyperchaotic Lorenz systems. Numerical simulations are shown to illustrate and validate the 

synchronization schemes derived in this paper for the identical hyperchaotic Lorenz systems. 
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1. INTRODUCTION 

 
Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The 

sensitive nature of chaotic systems is commonly called as the butterfly effect [1].  Chaos is an 

interesting nonlinear phenomenon and has been extensively studied in the last three decades. 

A hyperchaotic system is usually characterized as a chaotic system with more than one positive 

Lyapunov exponent implying that the dynamics expand in more than one direction giving rise to 

“thicker” and “more complex” chaotic dynamics. The first hyperchaotic system was discovered 

by Rössler in 1979 [2]. In the last two decades, hyperchaotic systems found many applications in 

areas such as secure communications, data encryptions, etc. 

 

In most of the chaos synchronization approaches, the master-slave or drive-response formalism is 

used. If a particular chaotic system is called the master or drive system and another chaotic 

system is called the slave or response system, then the idea of the synchronization is to use the 

output of the master system to control the slave system so that the output of the slave system 

tracks the output of the master system asymptotically. 
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Since the pioneering work by Pecora and Carroll ([3], 1990), chaos synchronization problem has 

been studied extensively and intensively in the literature [3-35]. Chaos theory has been applied to 

a variety of fields such as physical systems [4], chemical systems [5], ecological systems [6], 

secure communications [7-9], etc. 

 

In the last two decades, various schemes have been successfully applied for chaos 

synchronization such as PC method [3], OGY method [10], active control method [11-18], 

adaptive control method [19-27], time-delay feedback method [28-29], backstepping design 

method [30], sampled-data feedback method [31], etc. 

 

In this paper, we derive new results based on the sliding mode control [32-35] for the global 

chaos synchronization of identical hyperchaotic Lorenz systems ([36], Zia, 2007). In robust 

control systems, the sliding mode control method is often adopted due to its inherent advantages 

of easy realization, fast response and good transient performance as well as its insensitivity to 

parameter uncertainties and external disturbances. 

 

This paper has been organized as follows. In Section 2, we describe the problem statement and 

our methodology using sliding mode control (SMC). In Section 3, we discuss the global chaos 

synchronization of identical hyperchaotic Lorenz systems. In Section 4, we summarize the main 

results obtained in this paper. 

 

2. PROBLEM STATEMENT AND OUR METHODOLOGY USING SMC 

 
In this section, we describe the problem statement for the global chaos synchronization for 

identical chaotic systems and our methodology using sliding mode control (SMC). 

Consider the chaotic system described by 

   ( )x Ax f x= +&              (1) 

where 
n

x ∈R is the state of the system, A is the n n×  matrix of the system parameters and 

: n n
f →R R is the nonlinear part of the system.  

We consider the system (1) as the master or drive system. 

As the slave or response system, we consider the following chaotic system described by the 

dynamics 

( )y Ay f y u= + +&          (2) 

where 
n

y ∈R is the state of the system and 
m

u ∈R is the controller to be designed.  

If we define the synchronization error as  

 ,e y x= −              (3) 

then the error dynamics is obtained as   

  ( , ) ,e Ae x y uη= + +&            (4) 

where  

  ( , ) ( ) ( )x y f y f xη = −           (5) 

The objective of the global chaos synchronization problem is to find a controller u such that 
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   lim ( ) 0
t

e t
→∞

=    for all (0) .n
e ∈R  

To solve this problem, we first define the control u as 

  ( , )u x y Bvη= − +           (6) 

where B is a constant gain vector selected such that  ( , )A B  is controllable.  

Substituting (5) into (4), the error dynamics simplifies to 

  e Ae Bv= +&           (7) 

which is a linear time-invariant control system with single input .v  

Thus, the original global chaos synchronization problem can be replaced by an equivalent 

problem of stabilizing the zero solution 0e = of the system (7) by a suitable choice of the sliding 

mode control. In the sliding mode control, we define the variable 

 
1 1 2 2( ) n ns e Ce c e c e c e= = + + +L          (8) 

where [ ]1 2 nC c c c= L is a constant row vector to be determined. 

In the sliding mode control, we constrain the motion of the system (7) to the sliding manifold 

defined by 

  { }| ( ) 0n
S x s e= ∈ =R  

which is required to be invariant under the flow of the error dynamics (7). 

When in sliding manifold ,S the system (7) satisfies the following conditions: 

  ( ) 0s e =               (9) 

which is the defining equation for the manifold S and 

  ( ) 0s e =&              (10) 

which is the necessary condition for the state trajectory ( )e t  of (7) to stay on the sliding manifold 

.S  

Using (7) and (8), the equation (10) can be rewritten as 

         [ ]( ) 0s e C Ae Bv= + =&             (11) 

Solving (11) for ,v we obtain the equivalent control law  

1

eq ( ) ( )  ( )v t CB CA e t−= −           (12) 

where C is chosen such that  

0.CB ≠  

Substituting (12) into the error dynamics (7), we obtain the closed-loop dynamics as 

  
1( )e I B CB C Ae

− = − &             (13) 

The row vector C is selected such that the system matrix of the controlled dynamics 
1( )I B CB C A

− −  is Hurwitz, i.e. it has all eigenvalues with negative real parts. Then the 

controlled system (13) is globally asymptotically stable.  
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To design the sliding mode controller for (7), we apply the constant plus proportional rate 

reaching law 

  sgn( )  s q s k s= − −&               (14) 

where sgn( )⋅ denotes the sign function and the gains 0,q >  0k > are determined such that the 

sliding condition is satisfied and sliding motion will occur.  

From equations (11) and (14), we can obtain the control ( )v t as 

 [ ]1( ) ( ) ( ) sgn( )v t CB C kI A e q s−= − + +        (15) 

which yields 

[ ]

[ ]

1

1

( ) ( ) , if ( ) 0
( )

( ) ( ) , if ( ) 0

CB C kI A e q s e
v t

CB C kI A e q s e

−

−

− + + >
=

− + − <





          (16) 

Theorem 1. The master system (1) and the slave system (2) are globally and asymptotically 

synchronized for all initial conditions (0), (0) n
x y R∈ by the feedback control law 

  ( ) ( , ) ( )u t x y Bv tη= − +          (17) 

where ( )v t is defined by (15) and B is a column vector such that ( , )A B is controllable. Also, the 

sliding mode gains ,k q are positive. 

Proof.  First, we note that substituting (17) and (15) into the error dynamics (4), we obtain the 

closed-loop error dynamics as 

  [ ]1( ) ( ) sgn( )e Ae B CB C kI A e q s−= − + +&         (18) 

To prove that the error dynamics (18) is globally asymptotically stable, we consider the candidate 

Lyapunov function defined by the equation 

   
21

( ) ( )
2

V e s e=            (19) 

which is a positive definite function on .n
R  

Differentiating V along the trajectories of (18) or the equivalent dynamics (14), we get 

  
2( ) ( ) ( ) sgn( )V e s e s e ks q s s= = − −& &         (20) 

which is a negative definite function on .n
R   

This calculation shows that V is a globally defined, positive definite, Lyapunov function for the 

error dynamics (18), which has a globally defined, negative definite time derivative .V&   

Thus, by Lyapunov stability theory [37], it is immediate that the error dynamics (18) is globally 

asymptotically stable for all initial conditions (0) .n
e ∈R  

This means that for all initial conditions (0) ,n
e R∈ we have 

  lim ( ) 0
t

e t
→∞

=  

Hence, it follows that the master system (1) and the slave system (2) are globally and 

asymptotically synchronized for all initial conditions (0), (0) .n
x y ∈R  

This completes the proof.  
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3. SLIDING CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION 

OF IDENTICAL HYPERCHAOTIC LORENZ SYSTEMS 

 
3.1 Theoretical Results 

 
In this section, we apply the sliding mode control results of Section 2 to derive state feedback 

control laws for the global chaos synchronization of identical hyperchaotic Lorenz systems ([36], 

Jia, 2007). 

 

Thus, the master system is described by the 4-D Jia dynamics 

          

1 2 1 4

2 1 2 1 3

3 3 1 2

4 4 1 3

( )x a x x x

x bx x x x

x cx x x

x dx x x

= − +

= − −

= − +

= −

&

&

&

&

                                                                                                     (21) 

where 
1 2 3 4, , ,x x x x  are state variables and , , ,a b c d are positive, constant parameters of the 

system. 

The slave system is also described by the controlled 4-D Jia dynamics 

           

1 2 1 4 1

2 1 2 1 3 2

3 3 1 2 3

4 4 1 3 4

( )y a y y y u

y by y y y u

y cy y y u

y dy y y u

= − + +

= − − +

= − + +

= − +

&

&

&

&

                                                                                            (22) 

where 1 2 3 4, , ,y y y y are state variables and 1 2 3 4, , ,u u u u are the controllers to be designed. 

The 4-D systems (21) and (22) are hyperchaotic when  

            10,   28,   8 / 3a b c= = =   and  1.3d =  

Figure 1 illustrates the state orbits of the hyperchaotic Lorenz system. 

 

Figure 1.  State Orbits of the Hyperchaotic Lorenz System 
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The chaos synchronization error is defined by 

  ,  ( 1, 2,3, 4)i i ie y x i= − =              (23) 

The error dynamics is easily obtained as 

 

1 2 1 4 1

2 1 2 1 3 1 3 2

3 3 1 2 1 2 3

4 4 1 3 1 2 4

( )e a e e e u

e be e y y x x u

e ce y y x x u

e de y y x x u

= − + +

= − − + +

= − + − +

= − + +

&

&

&

&

             (24) 

We write the error dynamics (24) in the matrix notation as 

 ( , )e Ae x y uη= + +&          (25) 

where 

     

0 1

1 0 0
,

0 0 0

0 0 0

a a

b
A

c

d

− 
 

− =
 −
 
 

  
1 3 1 3

1 2 1 2

1 3 1 3

0

( , )
y y x x

x y
y y x x

y y x x

η

 
 
− + =
 −
 
− + 

  and    

1

2

3

4

u

u
u

u

u

 
 
 =
 
 
 

    (26) 

The sliding mode controller design is carried out as detailed in Section 2. 

First, we set u as 

 ( , )u x y Bvη= − +              (27) 

where B is chosen such that ( , )A B is controllable. 

We take B as 

     

1

1

1

1

B

 
 
 =
 
 
 

                  (28) 

In the hyperchaotic case, the parameter values are  

      10,   28,   8 / 3a b c= = =     and   1.3d =  

The sliding mode variable is selected as 

      [ ] 1 2 3 49 3 1 7 9 3 7s Ce e e e e e= = − − − = − − − +                                           (29) 

which makes the sliding mode state equation asymptotically stable.  

We choose the sliding mode gains as 

 5k =  and 0.2q =  

We note that a large value of k can cause chattering and an appropriate value of q is chosen to 

speed up the time taken to reach the sliding manifold as well as to reduce the system chattering. 

From Eq. (15), we can obtain ( )v t as 



Computer Science & Engineering: An International Journal (CSEIJ), Vol.1, No.4, October 2011 

67 

1 2 3 4( ) 6.5 17 0.3889 5.85 0.0333sgn( )v t e e e e s= − − − + −    (30) 

Thus, the required sliding mode controller is obtained as 

 ( , )u x y Bvη= − +          (31) 

where ( , ),x y Bη and ( )v t are defined as in the equations (26), (28) and (30). 

By Theorem 1, we obtain the following result. 

Theorem 2. The identical hyperchaotic Lorenz systems (21) and (22) are globally and 

asymptotically synchronized for all initial conditions with the sliding mode controller u defined 

by (31). 

 

3.2 Numerical Results 

 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 
6

10h
−

= is 

used to solve the hyperchaotic Lorenz systems (21) and (22) with the sliding mode controller 

u given by (31) using MATLAB. 

In the hyperchaotic case, the parameter values are given by 

10,   28,   8 / 3a b c= = =     and  1.3d =  

The sliding mode gains are chosen as   

            5k =  and  0.2q =  

 The initial values of the master system (21) are taken as 

         
1 2 3 4(0) 15,  (0) 22,  (0) 10,  (0) 32x xx x= = = =  

and the initial values of the slave system (22) are taken as 

             1 2 3 4(0) 10,  (0) 6,  (0) 31,  (0) 28y yy y= = = =  

Figure 2 illustrates the complete synchronization of the identical hyperchaotic Lorenz systems 

(21) and (22).  

Figure 3 shows the error states 
1 2 3 4( ), ( ), ( ), ( )e t e t e t e t which converge to zero as .t → ∞  

 

Figure 2.  Complete Synchronization of Identical Hyperchaotic Lorenz Systems 
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Figure 2.  Time Responses of Error States - 1 2 3 4( ),  ( ),  ( ),  ( )e t e t e t e t  

4. CONCLUSIONS 

 
In this paper, we have derived new results using Lyapunov stability theory for the global chaos 

synchronization using sliding mode control. As application of our sliding mode controller design, 

we derived new synchronization schemes for the identical hyperchaotic Lorenz systems (2007). 

Since the Lyapunov exponents are not required for these calculations, the sliding mode control 

method is very effective and convenient to achieve global chaos synchronization for the identical 

hyperchaotic Lorenz systems. Numerical simulations are also shown to illustrate the effectiveness 

of the synchronization results derived in this paper via sliding mode control. 
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