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ABSTRACT 
 
Recent advances in computing such as the massively parallel GPUs (Graphical Processing Units),coupled 
with the need to store and deliver large quantities of digital data especially images, has brought a number 
of challenges for Computer Scientists, the research community and other stakeholders. These challenges, 
such as prohibitively large costs to manipulate the digital data amongst others, have been the focus of the 
research community in recent years and has led to the investigation of image compression techniques that 
can achieve excellent results. One such technique is the Discrete Cosine Transform, which helps separate 
an image into parts of differing frequencies and has the advantage of excellent energy-compaction. 
 
This paper investigates the use of the Compute Unified Device Architecture (CUDA) programming model 
to implement the DCT based Cordic based Loeffler algorithm for efficient image compression. The 
computational efficiency is analyzed and evaluated under both the CPU and GPU. The PSNR (Peak Signal 
to Noise Ratio) is used to evaluate image reconstruction quality in this paper. The results are presented 
and discussed. 
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1. INTRODUCTION 
 
The massive amount of digital data on the web has brought a number of challenges such as 
prohibitively high costs in terms of storing and delivering the data. Image compression therefore 
involves reducing the amount of memory it takes to store an image in order to reduce these large 
costs.  
 
Image processing generally, is a very compute intensive task. Taking into consideration the image 
representation and quality, systems or application/techniques for image processing must have 
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special capabilities for unquestionable results in their image processing. The rapid growth of 
digital imaging applications, including desktop publishing, multimedia, teleconferencing, 
computer graphics and visualization and high definition television (HDTV) has increased the 
need for effective image compression techniques.  
 
Many image processing algorithms require dozens of floating point computations per pixel, 
which can result in slow runtime even for the fastest of CPUs.  Because of the need for high 
performance computing in today’s computing era, this paper presents a study based on Cordic 
based Loeffler DCT for image compression using CUDA. Image processing takes the advantage 
of CUDA processing because of the parallelism that pixels exhibit in an image and that can be 
offered by the CUDA architecture. In that way the CUDA architecture is found to be relevant for 
image processing [1], [2], [3] and [4]. 
 
 This paper presents a performance based evaluation of the DCT image compression technique on 
both the CPU and GPU using CUDA. The focus of the paper is on the Cordic based Loeffler 
DCT. 
 
We begin by giving  a brief review of literature (background), followed by a description of the 
research methodology employed, including an overview of image compression, GPUs, CUDA 
architecture, Cordic based Loeffler DCT and related theory. This is then followed by the results 
of the experiments and their interpretation and lastly, conclusions and future work. 
 
2. RELATED WORK 
 
2.1 Computational Efficiency 

 
Generally, computational efficiency refers to the proficiency of a machine or properties of an 
algorithm relating to the ratio of actual operating time to the scheduled operating time.  
 
It can also be explained using an aspect of throughput, which is the amount of work that a 
computer can do over a period of time. Another measure of computer efficiency is performance, 
that is, the speed with which one or a set of batch programs run with a certain workload or how 
many interactive user requests are being handled with what responsiveness. A function or 
algorithm is computationally efficient if it is fast in its processing, it requires less memory and 
storage space for its operation, and consumes less power in its computation. 
 
In the context of image compression including the above mentioned properties and conditions for 
proficient processing, computational efficiency of a transform code or method has other 
important aspects to be taken into consideration such as; image representation and image quality. 
A transform method is computationally efficient in its implementation for image compression if it 
has the capabilities of the above mentioned properties and does not compromise the 
representation and quality of the original input image. 
 
2.2 Image compression 

 
Image compression techniques are either Lossy or Lossless. By lossless and lossy compression 
we mean whether or not, in the compression of a file, all original data can be recovered when the 
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file is uncompressed. With lossless compression, every single bit of data that was originally in the 
file remains after the file is uncompressed. All of the information is completely restored. This is a 
relevant technique for text or spread sheet files, where losing words or financial data could result 
in a very serious problem. An example of lossless image compression format is the Graphics 
Interchange File (GIF) which is normally used to represent web images.  
 
Image compression is minimizing the size in bytes of a graphics file without degrading the 
quality of the image to an acceptable level. The primary objectives for image compression are to 
allow us to store image data in a given amount of storage space, as image data requires a lot of 
storage space, and to reduce the time required to transfer image data on the internet. It addresses 
the problem of image data storage by reducing the amount of data required to represent a digital 
image. This is achieved by removing data redundancy while preserving information content. 
Image Compression addresses the problem of reducing the amount of data required to represent 
the digital image without losing its quality. Compression is achieved by the removal of one or 
more of three basic data redundancies: (1) Coding redundancy, which is present when less than 
optimal (i.e. the smallest length) code words are used; (2) Interpixel redundancy, which results 
from correlations between the pixels of an image; and (3) psycho visual redundancy which is due 
to data that is ignored by the human visual system (i.e. visually nonessential information).A 
detailed analysis of various image compression methods is found in [1], [2],[3],[4],[5] and [6].  
 
2.3 GPU (Graphics Processing Unit) 

 
A GPU (Graphics Processing Unit) is NVIDIAs core for graphics processing developed by 
NVIDIA in 1999. It is a specialized circuit designed to accelerate the image output in a frame 
buffer intended for output to a display. According to [7], the first GPU developed was a GeForce 
256. This GPU model could process 10 million polygons per second and had more than 22 
million transistors. GPUs are very efficient at manipulating computer graphics and are generally 
more effective than general-purpose CPUs for algorithms where processing of large blocks of 
data is done in parallel. 
 
GPUs are highly parallel programmable cores on NVIDIA developmental platforms, and offer 
great relevance for high performance computing. In this research, the GPU hardware that will be 
used is the GeForce GTX 480, which is based on the Fermi architecture. This GPU architecture 
comprises of 480 cores optimized, using the Fermi architecture for efficient processing. GPUs 
have parallel throughput architecture that emphasizes many concurrent threads. This distinction 
makes them suitable for parallel programming. [7], [8] and [9].  
 
 Recently GPU processors are integrated onto CPU host computer systems. These computer 
systems are called heterogeneous systems. That is, a computer system consisting of a CPU as a 
host and a GPU as a device. In this architecture the CPU is the global execution controller (access 
the whole global memory) and the GPU uses local memory to perform computations. GPUs have 
parallel throughput architecture that emphasizes many concurrent threads. Consequently, parallel 
portions of applications called kernels are executed on the GPU (Device). 
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2.4 CUDA Architecture 
 
CUDA (Compute Unified Device Architecture) developed by NVIDIA, is a parallel computing 
platform and programming model that enables efficient computing performance by coupling the 
power of the graphics processing unit so that it is a scalable parallel programming model and a 
software environment for parallel computing. 
 
The CUDA architecture provides developers with a way to efficiently program GPUs using 
minimal extensions to C/C++ environments and it is a heterogeneous serial-parallel programming 
model. CUDA programming is based on the data parallel processing model and exhibits great 
relevance for compute intensive tasks such as image processing, computer visualization, scientific 
computing, etc. CUDA enables this outstanding performance through its standard APIs such as 
OpenCL and DirectX Compute, high level languages such as C/C++, FORTRAN, Java, Python 
and the Microsoft .NET framework as highlighted in [7] and [8]. 
 
According to [7], CUDA exposes a fast memory region that can be shared amongst threads and 
allows threads in the same block to coordinate their activities using a barrier synchronization 
function. The CUDA shared memory architecture makes it possible for thread cooperation.  
 
2.5 DCT and the DCT Algorithms 

 
The notation and definitions about the DCT algorithm in this paper were adopted from [10].  
 
2.5.1 The DCT (Discrete Cosine Transform) 

 
For a clear understanding of the DCT transform coding, particularly the 2-D DCT     often called 
type-II DCT, a clear definition of the 1-D DCT will first be given towards the 2-D DCT definition 
itself. 
 
The 1-D DCT 
 
The equation below is a formal definition of the 1-D DCT, defined within 1-D sequence of length 
N points. F(x) is the 1-D DCT of a signal f(i) and ∝ (i) is for normalizing the basis function which 
is the cosine term. 
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and the corresponding inverse 1D DCT transform is given as 1F   that is: where 
 

          (4) 
 

 



Advanced Computing: An International Journal ( ACIJ ), Vol.4, No.3, May 2013 
 

      5 
 

The 2-D DCT 
 
The general equation (for an NxM image) of the 2-D DCT is defined by the following equation 
(6), where F(u, v) is the 2-D DCT of a 2-D  DCT signal f(i, j).  
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with its corresponding inverse (2D IDCT) transform given as  1 ,F u v , that is: 
where: 

 

                      (7) 
             
2.5.2 The DCT Algorithms 

 
For a better understanding of the Cordic based Loeffler DCT, we start with a brief description of 
the Loeffler DCT algorithm itself. The Loeffler algorithm has a combination of four stages. All 
these stages (1 - 4), need to be executed in serial mode because of the data dependencies involved 
during processing. Prallelization, though, can still be achieved in calculations inside one stage. In 
stage 2, the algorithm splits in two: one part for the even coefficients and the other for the odd 
ones. The even part is actually a 4-points DCT, which is then separated in even and odd parts in 
stage 3. The Cordic based Loeffler DCT, which is a derivation from the Loeffler DCT is made by 
rotating all the input values by  using the rotation block and its associated equations (which is 
atage 4). Figure 1 below illustrates the Cordic based Loeffler DCT flow graph. 
 

 
 

Figure 1. Flow graph of the Cordic based Loeffler DCT (Source:[11]) 
 

Researchers such as [13] and [14] explored the relationship between image compression and the 
discrete cosine transform. These researchers analysed image compression using discrete cosine 
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transform and highlighted its power in image processing. [14] went on to developed functions to 
compute the DCT to compress images. 
 
Some researchers have also carried out an experimental evaluation of the DCT on the GPU and 
the CPU. [12] presented several techniques for efficient implementation of DCT on both the CPU 
and GPU using direct matrix multiplication. Using five methods for performing the DCT on the 
GPU a conclusion was made from the experimental analysis that the speed of the DCT on the 
GPU exceeded that on the CPU illustrating the efficiency of the DCT implementation on the 
GPU. 
 
Castaño-Díez et al. in [15] used the CUDA platform to evaluate the performance evaluation of 
image processing algorithms on the GPU. Algorithms considered in their paper were spatial 
transformations, real-space and the Fourier operations. Its CUDA implementation revealed that, 
compared to the CPU implementations, the GPU implementations of the said algorithms were 10 
-20 times faster, illustrating the power of the GPU in terms of processing computationally 
intensive operations as indicated in [10] and [16]. 
 
For a detailed analysis of the DCT algorithm and its variants, see [13],[17],[18] and [19]. 
 
3. RESEARCH METHODOLOGY 
 
This research is based on an experimental performance evaluation of the selected DCT algorithm 
in a heterogeneous system comprising of a CPU and a GPU. In a heterogeneous system the CPU 
is called the host and the GPU is called the device. The CPU takes control of the system. 
Instructions to the device are copied from the host for processing and copied back to the host after 
being processed (by the device) for output or other serial workloads, using relevant device 
programmable model functions. 
 
3.1 Experiment Settings 

 
1.CPU:Intel 64 Bit Processor i3-2130 
2. Memory:4GB 
3.GPU:NVIDIA Fermi GeForce GTX 480, CUDA version 5.0 
4.System :Windows 7 
 
3.2 Comparison parameters 

 
To examine computational efficiency of the DCT ,the authorr will use processing speed measured 
in milliseconds and the image size as throughput on both the CPU and the GPU. 
 
The Cordic based Loeffler DCT algorithm will be implemented as a core for image compression 
using CUDA. This implementation will be done on several images with concrete analysis based 
on the image quality, compression loss, image errors, and image representation. CUDA C++ 
programming language will be used for all computations in this research. CUDA developmental 
tools namely; CUDA SDK and CUDA graphics drivers will be installed on the system for 
software and hardware compatibility support and usage of the GPU. 
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Images will be loaded from their directory to the sample for processing, and then assessed for 
compression by the working system, so as to launch the DCT implementation functions. The 
DCT, the quantizer and the IDCT executes on different kernels. Compressed images will be 
examined and the computational performance of the two cores and efficiency of the DCT will be 
critically analysed.  
 
4. INTERPRETATION OF FINDINGS 

 
In this research paper, the image quality after compression, DCT compression time for both CPU 
and GPU were studied and  the speedup graph was also illustrated from the results, all 
contributing to the examination of the computational efficiency of the DCT.  
 
The picture below (Figure 2) is a grayscale representation of Lena, on which the DCT transform 
will be computed on the CPU using serial code and on the GPU using parallel code. All original 
images used in this paper were taken from Marco Schmidt's standard database for test images 
used in image processing.  
 

 
 

Figure 2. Lena original (gray). 
 

The two pictures below, figures 3 and 4 are the CPU processed and the GPU processed images 
respectively using a 2048x2048 pixel intensity of Lena’s image. 
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Figure 3. Lena CPU processed (serial code).                      Figure 4. Lena GPU processed (parallel code). 
 
The image quality processed using the CPU (Figure 3), exhibits a lot of degradation compared to 
the one processed using the GPU (Figure 4).  
 
Table 1 below shows the time comparison of grayscale equalization about the CPU and the GPU 
on different sizes of Lena’s image. Based on transformations which were done on different image 
sizes of Lena, it was found that the GPU speedup was significantly larger compared to the CPU. 
 

Table 1: Time comparisons of grayscale histogram of Lena for both CPU and GPU. 
 

Input image CPU(ms) GPU(ms) 

3072x3072 1020.32 8.92 

2048x2048 266.23 5.61 

1600x1400 116.12 2.20 

1024x814 88.23 1.24 

576x720 48.52 0.82 

512x512 16.42 0.62 

200x200 6.88 0.24 

 
The table shows that as the image size increases the CPU takes longer to process the image than 
the GPU does for the same picture size. These results are also displayed in Figures 5 and 6 below. 
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Figure 5. Speedup graph of Lena by the CPU. 
 

 
 

Figure 6. Speedup graph of Lena by the GPU. 
 

Further experiments similar to those done on the Lena image above(on the CPU and GPU 
platforms) were carried out on a different picture (Figure 7).The picture below (Figure 7) is a 
grayscale representation of Cable-car, which was used in the second experiment. 
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Figure 7. Cable-car original (gray). 
 

The two pictures below, Figures 8 and 9 are the CPU processed and the GPU processed images 
respectively using a 544x512 pixel intensity of the Cable-car’s image. 
 

                             
 

Figure 8. Cable-car CPU (serial code).                                 Figure 9. Cable-car GPU (parallel code). 
 
The quality of the image processed using the CPU (Figure 8), exhibits a lot of degradation 
compared to the one processed using the GPU (Figure 9).  
 
Table 2 below shows the time comparison of grayscale equalization about the CPU and the GPU 
on different sizes of the Cable-car image. Based on transformations which were done on different 
image sizes of Cable-car, it was found that the GPU speedup was significantly larger compared to 
the CPU. 
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Table 2. Time comparisons of grayscale of Cable-car for both CPU and GPU. 
 

Input image CPU(ms) GPU(ms) 

544x512 30.32 0.58 

512x480 26.84 0.41 

448x416 21.22 0.34 

384x352 17.28 0.26 

320x288 10.86 0.19 

 
Table 2 shows that as the image size increases the CPU takes longer to process the image than the 
GPU does for same picture size. These results are also displayed in Figures 10 and 11 below. 
 

 
 

Figure 10. Speedup graph of Cable-car’s by the GPU. 
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Figure 11. Speedup graph of Cable-car by the GPU. 
 

4.1 PSNR (Peak Signal to Noise Ratio) Evaluation 
 

To further examine the efficiency of the DCT, the PSNR comparison evaluation of the original 
DCT algorithm and the proposed algorithm was done on both Lena and Cable-car images. The 
tables bellow (Table 3 and 4) illustrates the PSNR evaluations of the mentioned images. The 
PSNR is used to evaluate the image reconstruction quality and it is expressed in decibels (dB). 
The PSNR defined for two images (original and compressed) O and C of size NxM, is defined by 
the equation (23) below as: 
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Where O is the original image and C is the reconstructed or noisy image. MAX is the maximum 
pixel value in image O, and MSE is the mean square error between O and C, MSE is given as: 
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The PSNR between the original and compressed images was calculated as below. The results are 
shown for both the DCT and Cordic based Loeffler DCT. The two tables (Table 3 and 4) below 
illustrate these results for Lena and the Cable-car images respectively for their different sizes.  

 
Table 3. Lena PSNR values calculated between the original and compressed images. 

 
Lenna 200x200 512x512 2048x2048 3072x3072 

DCT 31.612543 33.188042 35.521183 37.077885 
 

Cordic based 
Loeffler DCT 

29.445233 31.157837 33.224584 35.111256 
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Table 4. Cable-car PNSR values calculated between the original and compressed images. 
 

Cable-car 320x288 384x352 448x416 512x480 544x512 

DCT 24.224891 26.154872 28.112488 30.224133 
 

32.254781 

Cordic based 
Loeffler DCT 

21.275488 24.556324 26.985411 28.128771 
 

30.845126 

  
Careful observations about the PSNR values of the original and the proposed algorithm for the 
two experimental images were made, and it was found that; the Cordic based Loeffler DCT tends 
to be a good variation of the DCT and can work well for optimisation purposes. 
 
5. CONCLUSIONS 
 
An implementation of a CUDA based DCT image compression using a Cordic based Loeffler 
algorithm was done and the computational efficiency was analyzed and evaluated under both the 
CPU and GPU. Evidence about the computational efficiency of the DCT for image compression 
was found was found to be good, especially for compute intensive tasks such as image processing 
using NVIDIA GPUs. The DCT algorithm itself, maps well with parallel architectures, and that 
makes it still the best technique for image or digital data processing.  
 
6. FUTURE WORK 
 

 Other image compression techniques can be explored under the CUDA platform. 
 The evaluation of this algorithm can also be evaluated under different GPUs other than 

the GTX 480. 
 The experimental analysis can also be done using other tools besides CUDA and the 

results compared with those of using CUDA. 
 Photo density variations should be taken into account to see how they affect the results. 
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