
International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

DOI : 10.5121/ijnsa.2010.2413                                                                                                                  164 

Lightweight C&C based botnet detection using 
Aho-Corasick NFA  

Udhayan J1, Anitha R2 and Hamsapriya T3 

1Department of Information Technology, Karunya University, Coimbatore, India 
udhayan@karunya.edu, udhayangodwin@rediffmail.com 

2Department of Mathematics and Computer Applications, PSG College of Technology, 
Coimbatore, India  

3Department of Information Technology, PSG College of Technology, Coimbatore, 
India 

ABSTRACT 

Botnet distinguishes itself from the previous malware by having the characteristics of a C&C channel, 
using which a Botmaster can control the constituents of the botnet. Even though protocols like IRC, 
HTTP and DNS are exploited to incorporate C&C channels, previous analysis have shown that the 
majority of the botnets are usually based on IRC. Consequently in this paper the Aho-Corasick NFA 
based detection is proposed to detect the C&C instructions which is exchanged in IRC run botnets.  
However the ability to detect botnet is limited to the existing bot commands. Therefore a counting process 
which analyses every IRC messages is introduced to detect the existence of malicious codes. This 
detection method and various existing methods have been evaluated using real-world network traces. The 
results show that the proposed C&C Instruction based IRC detection method can detect real-world 
botnets with high accuracy.  

KEYWORDS 

Botnet; IRC, C&C, Flow based detection, Behaviour based detection, Signature based Detection  

1. INTRODUCTION 

The botnet is the present day threat on Internet [12]. It is a network of infected end-hosts (bots) 
controlled by the remote Botmaster [2][8].  Remote Botmaster controls the entire botnet through 
C&C (Command and Control) server. The C&C server is the software installed by the 
Botmaster in the remote server with or without the knowledge of the server administration. 
Botmaster then spreads out bot agents using the C&C server. The bot agent is a piece of code 
spread to exploit the vulnerable computers and make them as the bots (compromised computer). 
Like viruses, bot agents can automatically scan the environment, propagate themselves and 
compromise the vulnerable computers [9]. The more the bot agents propagate, the bigger the 
size of the botnet will be. The difference between the virus and the bot is that, while viruses act 
individually according to an inflexible program, bots respond to external commands and then 
execute the attacks as commanded. Furthermore through C&C instructions the Botmaster can 
update the entire network with new capabilities as they are developed. 

Bots usually lurk silently within ordinary desktop computers, inert and undetected, until 
C&C server issues orders to strike. Bots are devoted to carry out several nefarious tasks as well. 
For instance (DDoS) distributed denial-of-service attack [18] an attempt to make a computer 
resource unavailable to its intended users. Most of the Modern days DDoS are constituted from 
botnet which constitutes millions of zombies (compromised computers). As the result, even the 
low rate traffic generated concurrently by computers in botnet can accumulate a mammoth 



International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

165 

 

volume of packet at the receiving end and force the target server to cut off either temporarily or 
indefinitely. 

In all the scenarios of botnet hosted attacks C&C Instructions play a vital role in passing over 
commands to bots. Until the bots receive C&C instructions it remains inactive and harmless. 
Most of the cases IRC channels are used to distribute C&C instruction [1]. In this paper the 
sec.2 shares the background information about IRC and C&C channels. Sec.3 discusses about 
the related works which presents various detection techniques along with their limitations. The 
C&C instruction based botnet detection over the IRC channels is discussed is sec. 4.1. Moreover 
C&C detection is capacitated with Aho-Corasick NFA detection procedure which is discussed 
in sec.4.2.   In addition to that a counting process based verification technique is proposed to 
reduce the false positives and to help updating the new detection signatures which is discussed 
in sec.4.3. The sec.5 presents a complete overview in the proposed detection methodology.  
Moreover various detection techniques are evaluated through scrutinizing the real-world IRC 
C&C traces in sec.6 & sec.7. Eventually the concluding remarks is present in the sec.8. 

 

2. BACKGROUND 

Most of the cases, botnet is established, controlled, monitored, managed and manipulated 
through IRC C&C Channel [4][12]. Therefore the following sections discuss about the IRC 
C&C channels and its strength and weakness. 
  

2.1. IRC C&C Channel 

IRC is a real time chatting system that exchanges the client messages via channels (chat rooms) 
[9]. Channels can be global to entire Internet or local to a single network. 

Generally Botmaster prey on the IRC server for hosting the C&C channel, this helps the 
Botmaster to gain control over the bots through (C&C) IRC channels by inviting the bots to join 
the C&C channel. Once the Botmaster assigns the C&C channel for the bots, he can send 
commands as genuine IRC chat messages and receive acknowledgements as chat messages from 
the bots through C&C channel. 

Initially to establish the channel for the bots, like the genuine IRC clients, IRC bots need the 
login details like User ID and password to connect with the C&C channel. These details are 
normally issued by the Botmaster through C& C channel as PRIVMSG (private messages) [4]. 
PRIVMSG are used by channel admin to control the channel activates.  Once the login details 
are provided to the bots, the bots will login to the specified C&C channel and stay connected, 
and listening for the C&C instructions from the Botmaster to arrive. This is possible because of 
the inherent multicast feature of IRC protocol enables the channels with one-to-many 
communication. Therefore the C&C instructions sent by the Botmaster will be delivered to all 
the bots listening to that specific channel. This helps the Botmaster to co-ordinate the bots to 
zero-in the devastating attacks like DDoS attacks. The C&C instructions issued from the 
Botmaster are usually the IRC Private Messages. This is because the Private Messages are used 
by the owner of the group to control the group and it is high priority messages. 

Following are the few reasons why Botmaster are attracted towards IRC 

1   Two-way communication 
2   IRC is well established and understood protocol 
3   Freely available IRC software and channel control program modules 
4   Interactive and offers redundancy with linked IRC servers 
5   Simplicity and distributive nature [21] 
6   Remote control feature. 



International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

166 

 

Moreover, segregating the IRC from other traffic at the network vantage point is difficult [12] 
because IRC uses the TCP/IP protocol, whereas the IRC header is embedded within the TCP 
payload.  This will therefore look like a genuine TCP packet. 

 

2.2. Advantage of eliminating C&C 

In IRC-based botnets, if the traffic is not encrypted, capturing the packets from the 
compromised node will reveal the name of the IRC network, the name of the IRC server and the 
name of the IRC channel [4]. 

     Once if the IRC C&C channel is identified, the IRC server can be tracked [17]. The C&C 
channel application can be killed instantly by informing the administrative circle of the IRC 
server. The Botmaster literally losses the control over the bots as soon as the central C&C 
channel is removed. This is called as single-point-of-failure problem [16][20]. Thus the 
common method in botnet fighting is to shutdown the known C&C channels to prevent infected 
machines from receiving further commands. Although the botnet is successfully disabled, the 
zombies remain infected. This vulnerability either helps the previously possessing Botmaster to 
recapture his botnet from another IRC Server or helps the new Botmaster to augment his botnet. 

      For instance if a new Botmaster approaches the previously infected system to find a way to 
compromise it, if he check for the existence of bot agent with commands like “bot.about” the 
existing bot agent will respond with the version details so that the Botmaster can exploit it to 
constitute that particular system to the botnet. Therefore the network based detection method 
capacitates the local network administration with the feature of alerting the infected computers. 
As the result, the owners of the contaminated machines can be informed and is able to clean it, 
before getting exploited again. 

 

3. RELATED WORK 

Since the C&C instructions are the software generated messages, it exhibits a pattern different 
from the genuine IRC client messages. Therefore, botnet can be detected by analyzing the IRC 
messages. In this section, the analysis of various previous detection methods for IRC based 
botnet is presented. 

3.1. Signature based detection 

Signature based detection [6][19] is nothing but pattern matching. This extracts the features 
from the IRC packet and performs the cross check with the existing IRC C&C signatures stored 
in the database. If a match is found then it is declared as attack. The process of this method is 
easy because this compares simple byte sequences only. Moreover this kind of detection 
produces less or no false detections. 

        However the frequent update is essential to stay put with the evolving bots to prevent them 
from evading. This is a daunting task because modern Botmaster, by periodically altering the 
source code bring changes to the signature which thwarts the signature based detection, and 
increases the number of false negative detections. 

       Moreover a separate database should be maintained which will augment from time to time, 
whenever there is a signature update. This induces performance problems and increases 
management cost. 

       Moreover, searching of the signature in database for every incoming packet, delays the 
detection and demands lot of buffering space to cache the incoming packets, which annoys the 
detection. Therefore if it is performed online, it introduces the delay in the communication. If it 
is performed offline, it permits evasion of few infected packets before detection. 



International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

167 

 

 

 

3.2. Behaviour based detection 

The interaction pattern or behaviour of bots varies from human [13]. Human interaction occurs 
frequently and with varying Intervals. If the log of the bot traffic is examined, bots stay idle for 
a long time; once it receives the command from the Botmaster, it responds quickly and then 
stays idle until it receives the next command [14]. Therefore the C&C channel detection 
becomes feasible by using spatial-temporal reasoning [11]. The inter arrival time between the 
C&C instructions of one bot will not vary or vary marginally when compared against another. 

Drawback 

This type of detection has its limitations too, while manipulating by spatial-temporal reasoning, 
the genuine IRC clients may also exhibit the same pattern. Hence to avoid false positives this 
method has to look for multiple interactions. Therefore this type of detection can be eluded a 
little by altering the delay between events. However introducing the delay will reduce the 
performance of botnet [5]. 

     Additionally, the spatial-temporal reasoning based detection cannot detect one-to-one 
conversation between Botmaster and bot. For example the Botmaster can deliver a C&C 
instruction through private channel to an individual client to install the keylogger and copy the 
password. 

      Moreover this is a network based detection method; it can be implemented either in server 
or router but not in client. 

      However this method can detect the botnet over the encrypted messages with moderate 
number of false positives. Therefore the behaviour based detection will yield a better result if 
combined with other detection methods. 

3.3. Nick name based detection  

Nick name based C&C channel detection is introduced in [4]. As it is not allowed to have same 
nicknames within the network to avoid naming collision [13, 16] each bot has to JOIN the IRC 
network with different names. A common method used by bots to avoid naming collision is to 
concatenate a certain word or phrase with a random number and this is where this method 
capitalizes. For instance sometimes bots assigns nick name in a standard and predictable manner 
such as [country name| random number] (e.g. USA|221038). In most of the cases the Nick 
names are generated with the constant part and the random part. 

      For instance constant part holds certain information about the kind of bot, the kind of 
operating system running on the bot, or the location of the contaminated machine. Random part 
is mostly composed with the set of integers. 

Drawback 

However the Botmaster can evade this kind of detection with simple source modification which 
uses different naming strategy and changes nick names time to time. In future all the botnets are 
expected to have the encrypted communication. In such cases this detection technique becomes 
ineffective. 

3.4    Flow based detection 

Flow characteristics like packets per flow (ppf) and average, bytes per packet (bpp), bytes per 
second (bps), packets per second (pps) have been used in segregating the botnet traffic from the 
TCP traffic [1, 19]. However these parameters can only help in segregating aggressive flow. 
Modern attackers keep the rate as low as possible to masquerade the attack flow as normal. 



International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

168 

 

Hence to segregate the low rate attack flow, the flow per IP address is correlated to find out the 
similar behavior among the flows. 

Drawback 

However one cannot completely rely on this parameter for detection because the genuine IRC 
packets can also be circulated with similar flow characteristics. Moreover the correlation 
analysis is passive and it fails to initiate the timely action against the attack flow. 

      Other segregation methods like Port based detection, is inept nowadays because the ports 
(source & destination) which are used on IRC can be freely changed [9]. 

 

4. PROPOSED C&C DETECTION  

The main design issue of botnet is how the bots receive the commands from the Botmaster. In 
IRC based botnets, the Botmaster communicates the bots through private messages (messages 
visible to only the channel members). Once the channel has been established by the Botmaster, 
he only needs to type in the command for the bots listening in that channel, following the 
previously defined syntax. This therefore will follow a different format than the genuine IRC 
messages, which can be differentiated as C&C Instruction. 

      More Importantly IRC Botmaster communicates the bots using IRC channel topics and 
through dispersing the PRIVMSG messages in the channel [12]. Botmaster will embed the C&C 
Instructions as PRIVMSG. Therefore monitoring the PRIVMSG will offer a platform to detect 
botnet as follows. 

4.1. Bot Command (C&C) based detection 

The PRIVMSG from the Botmaster is usually composed of C&C Command and supplementary 
Information. The C&C Instruction format therefore is [Command | Information]. 
     Anyhow the Information portion of the bot instruction contains parameters like IP addresses, 
Port Numbers, URL, options etc. which indeed is the user defined parameter and varies from 
instruction to instruction but the bot command is predefined. Therefore altering the command 
lends to misinterpretation by bots. 

      The command part mostly comprises 1) Main command 2) Sub command and normally with 
(.) as a delimiter or separator between them and rarely uses (-) as the delimiter. The delimiter 
marks the end of main command and the start of the sub command. Table1 presents a set of bot 
commands. 

Table 1. IRC based bot commands 

Command 
Description 

 

bot.dns Resolves an IP/hostname 

bot.execute 
Runs .exe file on remote 

computer 

bot.about About the existing bots 

bot.open 
Opens a file on  remote 

computer 
bot.command Runs a command with system() 

ddos.udpflood Starts a UDP flood 
ddos.synflood Starts a SYN flood 

ddos.pingflood Starts a Ping flood 

ddos.phaticmp Starts a PHAT ICMP flood 
pctrl.list List of processes 

pctrl.kill Kills the process 



International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

169 

 

 

The bot commands generally have the following format. 

[Main_Command | .  - | Sub_Command] 

Hence the detection procedure for IRC based C&C channel through PRIVMSG is obvious 
through extracting and comparing the bot commands.  

4.2. Detection using Aho-Corasick NFA 

Aho-Corasick NFA is used to design lightweight signature based detection, which will perform 
botnet detection online and in real-time. 

      Botnet detection through bot commands reduces the size of the signature which indeed 
reduces the storage requirement. At the same time, instant search for bot commands against the 
arriving IRC packet is essential and it is crucial to process the IRC packets at high rate to make 
the detection work online. Moreover the database should be dynamic and be able to 
accommodate any number of bot commands instantaneously which demands augmentable 
storage and the scalable method to bring the updated entities in to effect. 

       For this purpose the Aho-Corasick algorithm [10] is employed because it is a multi-pattern 
matching algorithm and it is scalable too [15]. Given a set of bot commands, as the pattern to 
search for, in the arriving IRC packets, the algorithm constructs a non-deterministic finite 
automation (NFA), which is employed to match all patterns at once. 

        The following is a portion of constructed NFA, due to the space constraint, not all the bot 
commands are included in it. However all the possible bot commands can be added to the NFA 
in the similar fashion, since the Aho-Corasick NFA is easy to construct. 

 

Figure 1. Aho-Corasick NFA. 
 

The Aho-Corasick NFA as in Figure 1 is a forward NFA. If the detection engine traverses 
through, that marks the completion of proper detection. 

     The construction of NFAs must be done before the procedural invocation of Aho-Corasick 
NFA engine. The algorithm for Aho-Corasick is not discussed because it has been well studied 
over the period and has the rich collection of programming library. 



International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

170 

 

     However the papers [3][11] mention the existence of commands in the bot instructions but 
none of them develop the detection mechanism out of it. Reason may be, this kind of detection 
may fall short if the Botmaster uses different string combination for the bot commands, can only 
detect the bot commands that exist in the database whenever the new bot commands arrive there 
is no chance for detection. To overcome these constraints the principle of counting process as 
proposed in Section 5.3 can be handy. 

        4.3. Counting process to detect bot  

At present, limited number of commands is used by the Botmaster. In future, Botmaster may try 
to derive new set of commands or alter the existing commands. In such cases lexical analysis 
like word frequency analysis can help to identify the existence of new bot commands which 
doesn’t exist in the NFA. Once if the new C&C instruction is identified, they can be updated in 
the NFA for active attack detection. 

     The IRC messages have to be transmitted instantaneously because one actor doesn’t afford to 
make another wait which may terminate their communication prematurely this is mostly the 
case with legitimate IRC chatting. Therefore the users truncate the words in such a way that it 
may convey the same meaning, which helps to improve the communication speed. 

     The bot commands are even shorter than the genuine chat messages. For instance, the C&C 
instruction is usually composed of bot command, IP address, port number etc, as per the pre-
determined format. 

     Even though the chat messages and the bot commands are IRC messages they differ in the 
usage of words and framing of the sentence. This motivated us to perform lexical analysis to 
differentiate bot messages from the chat messages. Mostly used lexical analysis is word 
frequency [22]. For instance, word frequency helps in finding out which word is used mostly in 
the document, whether verb is used more than the adverb or not? Etc. 

     However word frequency is effective, only if the input is a book or big article, for a short 
message it is inconclusive. Because the integrity of the word frequency is determined by the 
sample size, therefore bigger the sample size higher the integrity will be [22].  The chat 
messages are normally a single sentence or few sentences with very less number of words which 
in no means suits the need for word frequency analysis. 

     Moreover, due to the smaller size of the chat messages, there will be considerable number of 
messages with not even a single words repeated twice. This even complicates the scenario of 
using word frequency for analyzing the IRC messages. 

     Even though the words may not be reiterated in the IRC messages, the words with same 
number of letters {1-letter words, 2-letter words, 3-letter words up to n-letter words} may be 
reiterated in the IRC chat messages. 

     Therefore instead of finding the word frequency, a method called as counting process is 
introduced and used. It is given as follows. 

 Count (i) = number of words with ‘i’ Character                        i = 1, 2, 3, 4, 5….n.            

Since the C&C message uses limited words, that to with special character and numbers. The 
words constituted with the alphabets alone are counted for every (i). Presume that the C&C 
instructions have low count and the genuine words have high count. The outcome of the 
counting process can be therefore deemed as follows. 

Count (i) = {0, 1}  then C&C instrn is + ive  
Count (i) > 1 then C&C is – ive genuine chat 
                                            Where 1 < i < n   



International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

171 

 

Measuring counting process creates a chance for updating the new bot messages in the Aho-
Corasick NFA. 
 

5. OVERVIEW OF C&C DETECTION 

Initially the bot commands have to be stored in the NFA. Once the bot commands are saved, the 
Aho-Corasick engine or detection engine should be started and to be applied right behind the 
IRC Capture, which segregates a range of TCP packets as possible IRC packets from other 
packets. The filtrate from the NFA engine is analyzed by the counting process for the possible 
new command. 

 

Figure 2. IRC C&C instruction based detection overview. 

Figure 2 illustrates the logical structure of the proposed solution. Even though IRC Capture is a 
single unit but capturing IRC packets or segregating it from other TCP packets is not a simple 
task. Since the Protocol field of IP header helps in segregating TCP from other protocols, other 
than port number 6667 no other fields in TCP header reveals the presence of the IRC protocol. 
Early days the IRC Client uses port 6667 and 6668 no other application uses these ports, so 
there was a possibility to segregate the IRC traffic by looking into the ports. However, 
nowadays the IRC source port and destination port are altered randomly by the attackers to 
make it looks like a different application. This makes the segregation process even worse since 
relying on port 6667 to segregate IRC packets from other TCP packet will not be effective. 
Therefore a sequence of methods as defined in [1][7][21] is useful in segregating the IRC traffic 
from the other TCP packets with marginal deviation. They are, 

  1) Packet size greater than 300B can be exempted for IRC C&C instruction. Since the 
transmitted IRC commands are too small and can be contained in packet size less than 300B. 

        2) Packets with the TCP flags (ACK, FIN, SYN, RST) can be exempted, since they do not 
carry real data. 

This will improve the performance of detection; by easing out the job of looking into every TCP 
packets for possible IRC C&C Instruction. 



International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

172 

 

     Once the segregation is done then the content of the incoming and outgoing IRC packets are 
analyzed using Aho-Corasick NFA engine. If the detection is positive, then the result is stored 
for generating the warning to the bots. 

     However if the NFA engine doesn’t detect the presence of the bot commands, then the 
counting process will be applied to that packet and if the counting process result exhibits the 
presence of C&C instruction, then the particular message is stored in the temporary storage for 
passive manual verification. 

     Manual verification like checking for the information part of the C&C instruction, nick 
names etc. will helps to identify the existence of the bot instruction. Thus creates a chance for 
updating the suspicious bot commands in the NFA without being communicated to the signature 
providers which is the time sensitive process needs timely update to detect new attacks and it is 
time consuming too. 

 

6.  EXPERIMENTAL RESULT ANALYSIS 

The implementation of IRC based malicious botnet detection is done using SNORT and Java. 
Snort is used because it is the most widely deployed intrusion detection and prevention 
technology worldwide, and has become the de facto standard for the industry. The snort rule is 
written to capture the IRC packets based on the IRC packet behaviour. 
     Snort Rule: alert tcp any any  <> $HOME_NET any ( msg:"TCPPACKET"; dsize:300<>40; 
flag:!FSR sid:1000989; rev:1;) 

    This rule captures the TCP Packets.  Snort has many configuration variables and options, but 
the two most important ones are $HOME_NET and $EXTERNAL_NET. $HOME_NET is a 
variable that defines the network or networks to be protected, while $EXTERNAL_NET is the 
external, untrustworthy networks to which you are connected. These variables are used in 
virtually all rules to specify criteria for the source and destination of a packet. The default of 
both variables is "any," which allows monitoring of all the incoming and outgoing packets. 
Therefore choosing $HOME_NET enables monitoring packets from any network to home 
network and vice versa. The packet size less than 300 bytes and greater than 40 bytes are only 
monitored, because this is the range where the bot commands fall. Through traffic analysis we 
found out that the packet size less than or equal to 40 bytes can be refrained for IRC bot 
command based detection because it only have the TCP header and no pay load, which means it  
conveys the status of the communication with any of the flags  FIN, SYN, RST, ACK set. The 
SID is the signature id unique for this rule and rev is the revision number. 

    Once the IRC packets are segregated then the Aho-Corasick NFA which is programmed by 
java is applied. If the packet is found to carry a bot command, then the corresponding source 
and destination IP‘s and port numbers will be recorded for generating warning. If Aho-Corasick 
NFA detects nothing, then the counting process is applied to the packet to confirm the 
genuineness of the packet. 
    The attack is simulated in the SSE lab and the detection engine found very successful in 
detecting them. To perform large scale analysis in real world, the raw data is accumulated from 
three different dataset providers. They are EFNET as dataset-1, QGIS as dataset-2 and Eris Free 
as dataset-3. Those datasets contains genuine traffic as well as the botnet traffic. 

6.1. Real-time Simulation & detection result analysis 

The NFA based IRC C&C detection has been examined in this section. The detection results of 
Aho-Corasick NFA against IRC messages are as follows. 



International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

173 

 

 
Figure 3.  Real-time detection using Aho-Corasick NFA. 

 

Figure 3 gives the number of real time detections completed by the detection engine. However 
the time taken in detecting the bot commands varies widely depending on the size of the words. 
The detection time is measured for patterns with varying length are analyzed. 
 
 

 

Figure 4. Detections per minute for various pattern length. 
 

Figure 4 shows the influence of pattern length over the detection. Around 15 infected packets 
are generated for every 1 minute and the pattern length is increased after every minute, this had 
a effect on number of detection made. The result proves that, smaller the size of the bot 
commands results in quicker detection. 

 



International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

174 

 

6.2 Examining the Real World Data 

The dataset-1, dataset-2 and dataset-3 were examined individually using the counting process by 
incrementing the ‘i’ for every message. The max value ‘n’ for ‘i’ can only be fixed by analyzing 
the behaviour of chat room. Since apart from chitchat the professional chat room uses more 
complex terms where the word length may go up. In such cases ‘n’ may take the value up to 12. 
The test condition Count ( i)  ≤ 1   not only segregates the C&C packets but also a moderate 
number of genuine packets as C&C packets.  

 

Table 2.  Result of segregation done by counting process 

 

 

 

 

 

Table2 shows moderate number of suspicious messages which are mostly genuine messages.   
The chat messages which carry URLs, messages without repeated words etc are all segregated. 
For instance “I am going home”. Through observing suspicious messages manually, additional 
conditions are added along with the counting process, to shun the presence of the genuine chat 
messages. They are 

If the message has only the words then it is not a bot command because bot command carries 
delimiter and numeral values in additional information. E.g. Hello, hai, hi etc are single word 
message sent without any punctuations, moreover chatting introduces new way of writing e.g. ‘I 
m fine’ instead of writing I am fine. ‘ciao’ instead of see you etc. 

If the message has only numbers then it can be considered genuine messages.  Message with 
more than four words can be eliminated from the suspicion. Applying all this conditions 
improved the performance as shown in the following Table 3. 

Table 3. Resultant segregation 
 
 

 

 

 

 

However the test condition Count(i)  > 1  is successful in eliminating the range of genuine 
messages from suspicion as shown in Table4. 

Table 4. Result obtained by varying i 

 

 

 

 

 

IRC 

Dataset 

 

Overall percentage of IRC packets 

segregated 
Genuine 

Message 

Suspicious 

Messages 

C&C 

Instruction 

Dataset-1 72.45% 25.2% 2.35% 

Dataset-2 70.54% 26.45% 3.01% 

Dataset-3 69.72% 25.2% 5.08% 

IRC 

Dataset 

 

Overall percentage of IRC packets 

segregated 
Genuine 

Message 

Suspicious 

Messages 

C&C 

Instruction 

Dataset-1 92.45% 5.2% 2.35% 

Dataset-2 90.54% 6.45% 3.01% 
Dataset-3 89.72% 5.2% 5.08% 

IRC 

 

Percentage of genuine IRC  

messages segregated from 

the suspicion for various ‘ i’ 
Messages 

with no 

symbol 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 
7 

Overall (%) Segregated 

Dataset-1 5 12 50 27 20 10 9 20.4% 

Dataset-2 7 7 52 21 18 13 10 12.2% 

Dataset-3 4 17 50 30 15 9. 11 16.7% 



International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

175 

 

 

7.   COMPARISON RESULTS 

Few other botnet detection techniques has been applied to the dataset and the results has been 
analyzed.   

Table 5.  Result obtained by applying various detections 

 

Table 5 records the number of detection made on three datasets using different detection 
techniques. 

The method applied for bot command based detection is the Aho-Corasick NFA engine with the 
set of bot commands as in Table 1 and the counting process. Set of Nick names and possible 
nicks as discussed in [4] are applied for Nick name based detection, This detection is quick 
because it can detects the botnet activity in the ‘JOIN’ message itself, which is the inception 
stage of botnet formation. For behaviour based detection seven successive communication 
patterns between the Botmaster and the bot is identified and the inter-arrival time is calculated 
and stored in temporary database. Then the comparison is made with the other communication 
patterns. The packet size less than 100 bytes is accounted as bot command for flow 
characteristics based detection. Then the five successive one way communication with packet 
size less than 100 B is marked as detection, because the Botmaster issued C&C Instruction 
mostly framed with packet size less than 100 B but the bots sends the output that may 
sometimes go beyond the packet size 100 bytes. However the bot command based detection 
stands out without being produced any false positives. 

 

8.  CONCLUSION 

 
In this paper the background information about C&C channels and its communication pattern 

over IRC for various botnets are comprehended. It also presents an elaborate study over 
various detection techniques and their limitations. As the result, we were able to device a 
brand new detection strategy which makes use of Aho-Corasick NFA algorithm to 
detect C&C instruction over the IRC channels, because C&C instruction is the definite trait 
of botnet. In addition to that, a counting process based verification technique is proposed to 

reduce the false positives and to help updating the new detection strings. An effective 
detection engine is emerged through the realization of both detection and update 
procedure. Finally various detection techniques and the proposed detection engine are 

evaluated through using them against the real-world IRC C&C traces. The results show that 
the proposed lightweight detection procedure is way ahead of other detection methods 
in performance. 

 

 

IRC 

Dataset 

Size 

MB 

IRC 

Packets 

 

Bot 

command 

based 

Nick Name 

based 

detection 

Behaviour 

Based 

detection 

Flow based 

detection 

Detect 
FP 

% 
Detect 

FP 

% 
Detect 

FP 

% 
Detect 

FP 

% 

Dataset-1 20 48,832 22210 0 17121 6.28 25832 4.63 23632 13.87 

Dataset-2 15 35,878 19790 0 15023 5.52 23790 3.75 21075 12.37 

Dataset-3 12 28,450 11124 0 9197 4.91 18116 3.42 12624 11.5 



International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

176 

 

REFERENCES 

[1] Robert Walsh, David Lapsley, and W. Timothy Strayer. 2009. Effective Flow Filtering for Botnet 
Search Space Reduction. Cybersecurity Applications & Technology Conference for Homeland 

Security, pp.141-149.  
[2] Ping Wang, Sherri Sparks and Cliff C. Zou. 2010. An Advanced Hybrid Peer-to-Peer Botnet. IEEE 

Transaction on Dependable and Secure Computing, pp. 113-127.   
[3] Paul Barford and Mike Blodgett. 2007. Toward Botnet Mesocosms. First workshop on Hot topics in 

Understanding Botnet.  
[4] Jan Goebel and Thorsten Holz. 2007. Rishi: Identify Bot Contaminated Hosts by IRC Nickname 

Evaluation. USENIX workshop on Hot topics in Understanding Botnets. 
[5] Elizabeth Stinson and John C. Mitchell. 2008. Towards Systematic Evaluation of the Evadability of 

Bot/Botnet Detection Methods. Proceedings of the 2nd conference on USENIX Workshop on 
offensive technologies. 

[6] Urjita Thakar, Nirmal Dagdee and Sudarshan Varma. 2010. Pattern Analysis and Signature 
Extraction for Intrusion Attacks on Web Services. International Journal of Network Security & Its 
Applications (IJNSA), pp.190-205. 

[7] Akshay Dua James and R. Binkley Suresh Singh. 2009. Finding IRC-like Meshes Sans Layer 7 
Payloads. PSU TR. 

[8] Ping Wang  Sparks and S.  Zou, C.C. 2010. An Advanced Hybrid Peer-to-Peer Botnet. IEEE 
Transaction on Dependable and Secure Computing, pp. 113 - 127.  

[9] Jianwei Zhuge, Thorsten Holz, Xinhui Han1, Jinpeng Guo and Wei Zou. 2007. Characterizing the 
IRC-based Botnet Phenomenon. Technical Report, University of Mannheim. 

[10] Xinyan Zha  Sahni, S. 2008.  Highly Compressed Aho-Corasick Automata For Efficient Intrusion 
Detection. IEEE Symposium on Computer and Communication,  pp. 298-303. 

[11] Guofei Gu, Junjie Zhang, and Wenke Lee. 2008. BotSniffer: Detecting Botnet Command and Control 
Channels in Network Traffic. Proceedings of the 15th Annual Network and Distributed System.  

[12] J. Rayome, S. Romig. 1998. IRC on Your Dime? What You Really Need to Know About Internet 
Relay Chat. Technical Report, U.S. Department of Energy, Lawrence Livermore National 
Laboratory. 

[13] Yuji Kugisaki, Yoshiaki KASAHARA, Yoshiaki HORI and Kouichi SAKURAI. 2007. Bot 
Detection based on Traffic Analysis. IEEE International Conference on Intelligent Pervasive 
Computing, pp: 303 – 306.   

[14] Zhenhua Chi and   Zixiang Zhao. 2007. Detecting and Blocking Malicious Traffic Caused by IRC 
Protocol Based Botnets. IFIP International Conference on Network and Parallel Computing 
Workshops. pp. 485-489. 

[15] Yanbing Liu, Yifu Yang, Ping Liu and Jianlong Tan. 2009. A Table Compression Method for 
Extended Aho-Corasick Automaton.  Lecture Notes in Computer Science, pp. 84-93. 

[16] Jing Liu, Yang Xiao, Kaveh Ghaboosi, Hongmei Deng and Jingyuan Zhang. 2009. Botnet: 
classification, attacks, detection, tracing, and preventive measures. EURASIP Journal on Wireless 
Communications and Networking.  

[17] Young June Pyun, Young Hee Park,  Xinyuan Wang, Douglas S. Reeves and Peng Ning. 2007. 
Tracing Traffic through Intermediate Hosts that Repacketize Flows. IEEE International Conference 
on Computer Communications, pp: 634-642. 

[18] Claus R. F. Overbeck. 2007. Botspy- Efficient Observation of Botnets. Hack.lu Security conference.   
[19] Mohammed Misbahuddin, Sachin Narayanan and Bishwa Ranjan Ghosh. 2009. Dynamic IDP 

Signature Processing by fast eliminating using DFA. International Journal of Network Security & Its 
Applications (IJNSA), Vol 1, No 2.  

[20] Andre Fucs, Augusto Paes de Barros and Victor Pereira. 2007. ‘New Botnets trends and threats. 
Whitepaper. 

[21] Claudio Mazzariello. 2008. IRC traffic analysis for botnet detection, Proceedings of the Fourth 
International Conference on Information Assurance and Security, pp; 318-323. 

[22] R. Harald Baayen, Counting process distribution, Kluwer Academic Publications. 

 

 

 



International Journal of  Network Security & Its Applications (IJNSA), Vol.2, No.4, October 2010 

177 

 

 

 

Authors 

J. Udhayan is graduated in Network and Internet Engineering from Karunya University, 
India in the year 2006. He is now pursuing PhD in Anna University Coimbatore, India. He 
is also working as Assistant Professor in Department of Information Technology, Karunya 
University, India.  He has published papers in National/International Conferences and 
Journals. His area of interest includes Network Security, Computer Ethics, Grid 
Computing, Sensor Networks and Wireless Networks. 
 

 

 

 
 
R. Anitha received the PhD Degree from Bharathiyar University, India in 1999. Presently 
she is working as Assistant Professor in Department of Mathematics and Computer 
Application, PSG College of Technology. She has published 9 papers in International 
journals and 2 papers in national journals, also having 20 years of teaching experience. Her 
area of specialization includes Queuing theory, graph theory, cryptography and network 
security. 
 
 
 
 
 
 
T. Hamsapriya received the PhD Degree from Anna University, India. She is working as 
Professor & Head in Department of Information Technology, PSG College of Technology. 
She has published 12 papers in reputed International journals and 13 papers in 
International Conferences and more. She is having 15 years of teaching experience. Her 
area of specialisation includes Parallel and Distributed Computing, Networks, Information 
Systems, Database Technologies, Modelling and Simulation.  
. 

 

 

 

 


