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ABSTRACT

Computational  methods  have become especially  important  since the advent of genome  projects,  whose 
objective  is to decode the entire DNA sequence.  Sequence  motifs are short, recurring  patterns in DNA 
that  are  presumed  to have  a biological  function.  These  motifs  are  often  responsible  for similarity  or 
dissimilarity  in  biological  features  and  their  DNA  patterns.  In this  paper,  we  start  with  a database 
containing the set of DNA patterns. Our aim is to search motifs that occur in the same order where as 
other characters  or gaps might occur between  the motifs. We generalize  it as a common sub-sequence 
problem from the computational  aspect. The exponential nature of the problem is rooted in its definition 
in  the  sense  that  the  solution  set  itself  is  expected  to  be  exponential  in  size.  In  this  work,  a  new 
deterministic  subsequence  matching  algorithm  for a set  of DNA  strings  has  been  proposed  from  the 
computational  perspective.  The proposed  deterministic  algorithm  yields  the exhaustive  set of common 
sub-sequences that many of its commercial counterparts cannot guarantee.
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1. INTRODUCTION

Emergence of molecular  genetics has changed the look of biology. Among the most exciting 
advances is large-scale DNA sequencing efforts such as the Human Genome Project [1], [2]. 
These are producing an enormous amount of data [3]. It is estimated that the volume of DNA 
and protein sequence data is currently doubling every 22 months [4]. Analysis  of this huge 
amount of data is the one of the most challenging and innovative field of research. Demands 
for sophisticated analyses  of biological  sequences are  driving  forward  the newly-created 
and explosively expanding research area of computational molecular biology, or bioinformatics. 
The  collections of  biological   data are subject to organize, classify,   relate, and mine the 
selected patterns from the whole data set. DNA structures are made experimentally in biology, 
but these structures are stored in one dimensional pattern form of large alphabetical  sequences 
to make  them   suitable   for mining   and   computing   purpose.   This   provides   strong 
motivation  for developing computational methods that can infer biological  information from 
sequence alone. Computational methods have become especially important since the advent of 
genome projects,  whose objective is to decode this entire DNA sequence and to find the 
location and ordering of genetic markers along the length of the chromosome. These genetic 
markers can be used, for  example, to trace the inheritance of chromosomes in families and 
thereby to find disease genes.

Basically DNA sequencing involves the collection of 4 peaks (A, G, C, or T). DNA and motifs 
are generally long character strings, where character represents amino acid sequence. Sequence 
motifs are short, recurring patterns in DNA that are presumed to have a biological  function. 
Often  they  indicate  sequence  specific  bindings  sites  for proteins  such  as  nucleuses  and
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transcription  features (TF). These motifs which  are amino acid sequence patterns have their 
importance  for biological  significance.  These  sequences are  responsible  for similarity  or 
dissimilarity in biological features and their DNA patterns. At this point, let's define a couple of 
basic  terms  that  have  been  used  frequently  in  the  context  of subsequence  computation 
throughout the article.

A subsequence S1 is a sequence that can be derived from another sequence S by deleting some 
elements from S without changing the order of the elements, e.g., BCDF is a subsequence of 
ABCDEFGH.

When a sequence S1  is a subsequence of another sequence S, then sequence S is called the
super-sequence of sequence S1, e.g., ABCDEFGH is a super-sequence of 
BCDF.

Two sequences S1  and S2  are said to be independent sequences with respect to each other, iff 
S1  is not a subsequence of S2  and S2  is not a subsequence of S1. e.g., BCDF and ACFG are 
independent sequences.

Several Sophisticated statistical and machine-training techniques have been used in more recent 
protein structure prediction programs, and the success rate has increased [4, 5, 9]. A recent 
advance in this now active field of research is to organize proteins into groups or families on the 
basis of sequence similarity,  and to find consensus patterns of amino acid domains characteristic 
of these families using the statistical methods [4]. However,  computational biology has still a 
huge need for finding out the "sequence similarity" between DNA sequences.

The longest common subsequence (LCS) [8] solution is there to find the longest subsequence 
common to all sequences in a  set of sequences (often just two). However, the solution 
inherently has higher complexity,  as the number of sub-sequences is exponential in the worst 
case, even  for only   two   input   strings. There   is   another technique of using bitwise 
operators for the  computation of the longest common subsequence which   would   have 
resulted in a “machine  word length” times improvement  [10]   in  speed. However,   the 
increase in  speed does not improve the time complexity for the solution.

At first  glance,  deciding  that two  biological  sequences are similar  and no  different  from 
deciding that two text strings are similar.  However,  simple substring finding algorithms fall 
short  of accommodating  the kind  of flexibility  in pattern matching required for biological 
sequences. To meet this need several algorithms have been discovered, most important class 
of those are called “edit distances” [6] first introduced by V. I. Levenshtein in 1966. In 1970 
the  Needleman–Wunsch algorithm [7] was developed which performs a global alignment on 
two sequences. It is commonly used in bioinformatics to align protein or nucleotide sequences. 
The  Needleman–Wunsch algorithm was the first application of dynamic programming to 
biological sequence comparison.

The objective of this paper is to design,  implement  and  analyze  the performance  of a new 
deterministic  algorithm that outputs the set of all sub-sequences  of length above a predefined 
threshold value that are common to each string in a set of n DNA strings.

We start with a database containing the set of DNA patterns and a collection of motifs without 
going into the details of DNA, motif structures and their characteristics. Our aim is to search 
motifs that occur in the same order (sequence) but not necessarily in contiguous manner in a 
desired number of the DNA patterns. In other words, the sequence of occurrence of motifs is 
same but there might occur other characters or gaps between two motifs. We generalize it as a 
common sub-sequence problem from the computational aspect.
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However,  let us understand that stated in this form, the solution set can be exponential in nature. 
So any  attempt at  solving  this  problem  deterministically  cannot  have  a  polynomial  time 
complexity. In fact, the problem is inherently NP-Hard [14] in nature. In case of an arbitrary 
number of input sequences, the problem of finding common sub-sequences is NP-hard. Thus 
most of the commercial  tools available  for use by molecular biologists use non-deterministic 
approaches. This  in effect  means that the proposed deterministic  algorithm  gives  the set of 
exhaustive common sub-sequences that many of its commercial counterparts cannot guarantee.

2. LONGEST COMMON SUBSEQUENCE FOR TWO STRINGS

We have used the existing techniques for finding Longest Common Sub-sequece (LCS) as a 
building block for the proposed solution. In this section, the LCS methodology is presented for 
the sake of completeness. The two strings LCS problem can be broken down  into smaller, 
overlapping sub-problems and these smaller problems may again be broken and so on. This may 
be solved using dynamic programming. The method is illustrated by the following algorithm:

Function LCSLength (X[1..m], Y[1..n])
Begin

C = array(0..m, 0..n)
for i := 0..m C[i,0] = 0;
for j := 0..n  C[0,j] = 0;
for i := 1..m

for j := 1..n
if X[i] = Y[j]

C[i,j] := C[i-1,j-1] + 1;
else

C[i,j] := max(C[i,j-1], C[i-1,j]);

End

endif 
return C[m, n];

The function LCSLength (X[1…m], Y[1…n]) computes the subsequence matrix 
C[0…m][0…n] and returns the length of the longest common subsequence that appears in cell 
C[m][n].  The complexity as evident from the algorithm is O(mn). Next we have the function 
that can read out only one instance of the longest common substring.

Function backTrace(C[0..m,  0..n], X[1..m], Y[1..n], i, j)
Begin

if i = 0 or j = 0
return();

else
if X[i-1] = Y[j-1]

return backTrace(C, X, Y, i-1, j-1) + X[i-1];
else

if C[i,j-1] > C[i-1,j]
return backTrace(C, X, Y, i, j-1);

else
return backTrace(C, X, Y, i-1, j);

End

endif 
endif

endif
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This  backTrace  function  is called  with  the arguments i=m and j=n initially  to obtain one 
instance of the longest common subsequence. The complexity is Θ(k), where k = max(m, n).

Function backTraceAll(C[0..m,  0..n], X[1..m], Y[1..n], i, j)
Begin

if i = 0 or j = 0
return;

else
if X[i] = Y[j]

return (Z+X[i] for all Z in backTraceAll(C,X,Y,i-1,j-1));
else

R := {};
if C[i,j-1] ≥ C[i-1,j]

R := backTraceAll(C, X, Y, i, j-1);
endif
if C[i-1,j] ≥ C[i,j-1]

R := R U backTraceAll(C, X, Y, i-1, j);
endif

End

endif 
endif 
return R;

The backTraceAll  function reads out all the longest common subsequences between strings X 
and Y, if more  than one of them exists. The  complexity  is of the exponential  order.  The 
algorithm that we have developed for finding  out All Common Substrings of two strings is 
modeled on backTraceAll.

2 1 7 3 5 4 8 9 3 6

0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 1 1 1 1 1 1

3 0 0 1 1 2 2 2 2 2 2 2

5 0 0 1 1 2 3 3 3 3 3 3

2 0 1 1 1 2 3 3 3 3 3 3

4 0 1 1 1 2 3 4 4 4 4 4

3 0 1 1 1 2 3 4 4 4 5 5

6 0 1 1 1 2 3 4 4 4 5 6

7 0 1 1 2 2 3 4 4 4 5 6

8 0 1 1 2 2 3 4 5 5 5 6

9 0 1 1 2 2 3 4 5 6 6 6

Figure 1: Matrix C[][] for longest common subsequence operation

The following  is an example of the running of Longest Common Subsequence algorithm on 
strings: S1 = 2173548936 and S2 = 1352436789.  In these strings, each digit represents a different 
alphabet.  The  matrix  C[][]  generated by  LCSLength  is  as  follows   with  the  paths  for 
backTraceAll.

In this case the longest common subsequences are not unique and thus backTraceAll would be
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needed to generate the entire set of solutions. Figure 2 illustrates the two solutions. Our work on 
finding all the common sub-sequences of two strings is largely based on this algorithm. In fact 
we make use of the matrix C[][] from this algorithm and then proceed to build upon that.

2 1 7 3 5 4 8 9 3 6

0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 1 1 1 1 1 1

3 0 0 1 1 2 2 2 2 2 2 2

5 0 0 1 1 2 3 3 3 3 3 3

2 0 1 1 1 2 3 3 3 3 3 3

4 0 1 1 1 2 3 4 4 4 4 4

3 0 1 1 1 2 3 4 4 4 5 5

6 0 1 1 1 2 3 4 4 4 5 6

7 0 1 1 2 2 3 4 4 4 5 6

8 0 1 1 2 2 3 4 5 5 5 6

9 0 1 1 2 2 3 4 5 6 6 6

Figure 2: Longest Common Subsequences found after running backTraceAll

Another result that we would  use in the proposed solution is that from the longest increasing 
subsequence problem. This has been defined as to find a subsequence of a given sequence in 
which  the subsequence elements  are in  sorted order,  lowest  to highest, and  in  which  the 
subsequence is as long as possible. This subsequence is not necessarily contiguous.

For example,  in the sequence:  0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15, a longest 
increasing subsequence is 0, 2, 6, 9, 13, 15. This  subsequence has length six. However,  the 
longest increasing subsequence in this example is not unique, as illustrated by 0, 4, 6, 9, 11, 15 
which is another increasing subsequence of equal length in the same input sequence.

The  solution may  be obtained by computing the longest common subsequence between the 
original string and the string of the same alphabets sorted in non-decreasing order. The longest 
increasing subsequence problem is solvable in time O(nlog(n))  [11], where n is the length of the 
input sequence. The longest increasing subsequence problem is closely  related to the longest 
common subsequence problem, which has a quadratic time dynamic programming solution.

3. THE  PROPOSED  ALGORITHM  FOR  GENERATING  ALL  COMMON  SUB-
SEQUENCES FOR ANY NUMBER OF STRINGS

We use a divide and conquer technique to handle this problem. Let S denote the input set strings 
and cardinality of S be n. We divide this set into Ґn/2˥ sets, each containing a pair of strings (in 
case n is odd then the last set would contain a single string).

Next  we  compute  the  set  of independent  super-sequences  that  contain  every   common 
subsequence present in the two strings for each such set. In case of a single string, we just copy 
the string. Next  we  treat each such independent super-sequence as strings and compute  the 
independent super- sequences across such sets in a hierarchical  fashion until we arrive at the 
final set. Assuming that we know the value of the minimum length of sub-sequences to find, we 
can ignore any subsequence of length less than the threshold value. The sub-sequences of length 
greater than or equal to that of the threshold value are automatically  promoted to the next level 
iff the set does not contain a super-sequence of it.



Lastly we use a lexical order subset generation algorithm [12, 13] to compute and enumerate all 
the common sub-sequences appearing in all strings of the set above the threshold value.  This 
last phase of the process is exponential in nature owing to the generation of combinations.

3.1. Algorithm for generating Independent Super-sequences

We begin with  the Longest Common Subsequence matrix described in section 2. From this 
matrix we  compute the independent sub-sequences starting from  the rightmost column  and 
bottommost row. We start from all such points where the last letter of either sequence match 
with  letters of the other sequence.  The  procedure  for reading  out  the independent  super- 
sequences is different from the longest common subsequence algorithm.

Input: String   str1, str2

Output: Set <String> Super-sequences

Variables:   String   s1, s2 /* to store normalized form of str1 and str2 */ 
Matrix <char>  M  /* string the LCS character matrix */

Begin
(s1, s2)  = normalize  (str1, str2)

/*  s1  and  s2 will be computed from  str1 and str2 respectively  by  removing  those
characters that occur in only in any one string. */

M = compute_LCS_matrix ( s1, s2 );
/* the LCS matrix will be computed and stored in M */

Scan the matrix M row-wise, and for each match in position (i, j);
begin

Create a vertex that contains the following  information:
int x=i, y=j;

/* position of the match */
Set <vertex> link = Φ

/* set of vertices having a directed edge from the present vertex */
char ch;

/* character which caused the match */
cutoff = 0;

For each column k (0 <k <j) starting from k=j-1 to k=1
begin

Identify the lowest jump at position (l, k) (if it exists) in the column k, such that
cutoff < l < i and no jump in that column is placed in the range between (l+1, k) and
(i-1, k);
Find out the vertex V at with x=l and y=k and put it in the vertex set link;
cutoff = l;

end
end

/* Now we  have  obtained a Directed  Acyclic Graph  (DAG)  D in  which  the vertices 
containing the matches positioned at the rightmost column or bottommost row have 0 in- 
degree */

S = Φ;
for all vertices a: a ε D Λ In-degree(a)=0

traverse the directed path P from a to b: b ε D Λ Out-degree(b)=0;
derive a super-sequence by reversing the directed path P;



/* From each vertex in DAG with in-degree 0, traverse the DAG from that vertex to all the 
reachable vertices of out-degree 0. Each such path from a start to an end vertex will trace 
out one single super-sequence in reverse order. */

end.

3.2. Illustrative Example

2 1 7 3 5 4 8 9 3 6

0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 1 1 1 1 1 1

3 0 0 1 1 2 2 2 2 2 2 2

5 0 0 1 1 2 3 3 3 3 3 3

2 0 1 1 1 2 3 3 3 3 3 3

4 0 1 1 1 2 3 4 4 4 4 4

3 0 1 1 1 2 3 4 4 4 5 5

6 0 1 1 1 2 3 4 4 4 5 6

7 0 1 1 2 2 3 4 4 4 5 6

8 0 1 1 2 2 3 4 5 5 5 6

9 0 1 1 2 2 3 4 5 6 6 6

Figure 3: Matrix C[][] with the matches encircled

To demonstrate the aforementioned algorithm for generating independent super-sequences, we 
go back to the original example in section 2 for S1  = 2173548936 and S2 = 1352436789.  Let the 
threshold value be 4, any subsequence of length less than that is not required.

In Figure 3, the circled numbers are the valid jumps, which indicate the positions where the 
vertical  and horizontal strings has a letter in common, The value of such a cell indicates the 
length of the longest common  substring that can be obtained from that character to the first 
character of respective strings.

Figure 4: DAG drawn on the matrix C[][]

Figure 4 shows the Directed Acyclic Graph (DAG), drawn on the matrix C[][] itself, connecting 
all the valid jumps to one another. Figure 5 shows the same DAG, drawn in a different way to



aid the comprehension of the underlying meaning. In fact, this is the DAG that we will be using 
for our computation of the super-sequences.

Figure 5: Directed Acyclic Graph from the C[][] matrix

Using the DAG, we can now compute the super sequences. Each path from a source node (in 
degree = 0) to a destination path (out degree = 0) represents a unique super-sequence. The set of 
all super-sequences obtained from the DAG contains all the sub-sequences common to strings 
S1  and S2.

Figure 6: Final DAG (red paths are invalid)
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As we know that the threshold value is 4, thus we can edit the DAG to contain only those paths 
of length ≥ 4. So we get a DAG represented in Figure 6. In fact while generating the DAG, this 
is automatically done. However  this does not affect the complexity of the algorithm.

From this final  DAG in Figure  6, we obtain the set of super-sequences by  tracing out the 
alphabets in reverse order to which  they occur in any path between a source and destination 
node: 135489, 135436, 2789, 2389, 2489, 2436, 1789, and 1389. It may be noted that we have a 
total of four sequences of length 4 here and two of length 6. So the total number of 
common sub-sequences between the strings S1  and S2  would be:

To get this entire set, the exhaustive  set of all possible sub-sequences of length greater than 
or equal  to the threshold  value  are to be generated from  the super-sequences obtained so 
far.  However,   we do this only for the final   step of the hierarchy   and not at any lower 
levels  to substantially reduce the amount of computation.

4. PROOF OF ALGORITHM FOR GENERATING SUPER-SEQUENCES

S2

ch[1] ch[2]

0 0 0

S1

ch[1] 0 0/1 0/1

ch[2] 0 0/1 0/1/2

Figure 7: Possible values in a 2x2 subsequence matrix

We will make use of induction to prove the correctness of our algorithm. First we will establish 
an  induction  base by  proving  that our  algorithm  works  for all  possible 2x2 subsequence 
matrices. To do this, we will have to first look into the different values that can constitute the
2x2 subsequence matrix [figure 7].

So we see that there are three cells with two possible values and one cell with one three 
possible values. Thus if we generate the exhaustive listing, there will be 23  x 31  = 24 such 
matrices. Fortunately, many of them are invalid in nature like the one shown in figure 8.

X

0 0 0

0 1 1

0 1 0

Figure 8: Invalid configuration of a 2x2 subsequence matrix

In total there are only 9 valid combinations of values for the 2x2 subsequence matrix. They are 
enlisted in figure 9 along with sample strings (of length 2) that cause them to appear. From 
the patterns, it is obvious that our algorithm works for all of them. This  entire set of valid 
2x2 subsequence matrices constitutes the induction base.

The induction hypothesis n this case is “Assuming that the algorithm works for any matrix of



size nxm, it also works  for matrices of size (n+1)xm”. In other words it means that “if the 
algorithm works correctly for strings S1  and S2  then it will also work for pairs S'1, S2  and S1, 
S'2 where S'1, S'2 represent the original strings with one character appended at the end.

1 2 2 4 2 3 7 2 1

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 1

1 0 0 0 2 0 1 0 2 0 1 1

2 3 1 5 2 2 8 1 3

0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 1 0 1 1

2 0 0 0 2 0 1 1 2 0 1 1

3 3 2 6 2 1 9 1 2

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 1 1 0 1 1

2 0 0 1 1 0 0 1 2 0 1 2

Figure 9: Valid cell values for 2x2 subsequence matrix

Without loss of generality let us assume that S1   is the vertical string and S2   is the horizontal 
one  in the subsequence matrix. Let us further assume that only S2   is appended by one 
character,  making it S'2. So the new matrix is same as the old matrix, with only a single new 
column added to the right side of it (figure 10).

String S'2

[1] [2] … … [m] [m+1]

0 0 0 0 0 0 0

St
ri

n
g 

S 1 [1] 0 … … … … … …

[2] 0 … … … … … …

… 0 … … … … … …

… 0 … … … … … …

[n] 0 … … … … … …

Figure 10: Modified subsequence matrix (grey cells are newly added)

As we are normalizing the strings before processing, there is bound to be some valid jump in the 
nth  row of the old matrix (non grey part). In the DAG for the new matrix, these will be the 
source nodes. For all other valid jumps that are present below (i.e. having higher y value that) 
the lowest valid jump in (m+1)th column would no longer be source nodes. Instead they will 
become the child nodes of the new valid jumps in column (m+1).



Figure 11: A generic DAG from nxm subsequence matrix

Thus, basically all the source nodes in the old DAG which had y values lower than the highest 
y value of the valid jumps in the (m+1)th  column will become child nodes of the valid jumps 
in (m+1)th column. Rest of the nodes will stay in the same status as they were in the old DAG.

Figure 12: A generic DAG from nx(m+1) subsequence matrix

Figure  11 shows  the old  DAG  and Figure  12 shows  the newly  constructed DAG  as  a 
modification of the old DAG. The new parts are colored red. Thus, it is established that source 
vertices of the old DAG will have either of the two outcomes in the newly constructed DAG:

Case 1: Continue to be source nodes

Case 2: Become the child nodes of the valid jumps appearing in column 
(m+1)

So the super-sequences that existed from the old source vertices are all preserved either in the 
same form (as in case 1) or as sub-sequences (as in case 2). Now what remains to be proved is 
that our DAG also contains the exhaustive set of sub-sequences that have been generated due to 
the inclusion of the alphabet appended at the end of string S2.

Showing the validity of the sub-sequences is easy. We look into figure 12 in the parts drawn in 
red. The new nodes correspond to the valid jumps in (m+1)th column i.e. they correspond to the 
last character appended at the end of string S2. If P be such a super-sequence and let C be the 
last character in S'2  then the sequence Q, defined by P = concatenation  (Q ,C), is a valid super- 
sequence for the strings S1 and S2. The character C is placed after the position where P ends in 
strings S1. That is why there was a match of that character with the (m+1)th  character of 



string



S2. Hence we prove that P is indeed a valid super-sequence of strings S1 and 
S'2.

To prove that our DAG contains the exhaustive set of sub-sequences for strings S1 and S'2, let 
us assume that there exist such a subsequence R. There can now be two cases:

Case 1: R is be a subsequence of strings S1 and S2.

Case 2: R is be a subsequence of strings S1 and S'2 and not of strings S1 and S2.

Case 1 cannot be true as we have already shown that all the sub-sequences of R must be a 
subsequence of strings S1 and S2  are also contained in the DAG. Thus only case 2 can be true; 
this implies that R ends with the last character of S2. This again cannot be true, as all the sub- 
sequences ending at the last character of S2 will end at either of the newly inserted nodes. Hence 
we prove that such a sub-sequence R cannot exist.

Thus we have proved the induction hypothesis to be true and so using the law of induction, it 
follows that our algorithm is correct.

5. TIME COMPLEXITY OF THE PROPOSED SOLUTION

5.1. Time Complexity for Generating Super-sequences 

We can break down the algorithm into the following stages: 

Stage 1: Generating the subsequence matrix

Stage 2: Computing the Directed Acyclic Graph

Stage 3: Traversing the DAG for super-sequences

Stage 1 has a complexity of Θ(mxn)   as we have to generate a subsequence matrix of size 
mxn and computation of value for each cell takes a constant amount of time. Stage 2 and 3 
has the same complexity of O(p), where p = O(k(k-1)(k-2) … (k-m+1)) = O (kPm), where m is 
length of  longest common subsequence and k is minimum of the lengths of S1   and S2   . The 
reason for this is evident from the following observation: in top level of DAG, we can have at 
most k number of children. In next level  nodes can have (k-1) children  and so on till level 
m, which is the stopping point.

However, the worst case complexity is O(k!) where k = min(m, n). This is derived from the 
fact that a node at position (x, y) can have at most min(x-1, y-1) number of child nodes. Thus 
the worst case complexity of the proposed algorithm is O(k!) where k = min(m, n). This case 
occurs when the subsequence has no gap and degenerates to substring finding problem.

5.2 Time Complexity of the entire Algorithm

A problem of this nature which ultimately involves k-subset generation is inherently NP-Hard 
[11] and resultantly there cannot be any polynomial time complexity algorithm for the solution. 
The last stage of the problem involves the generation of k-subsets where k = {t, t+1, t+2 … L}, 
where t is the threshold value and L is the length of the largest super-sequence produced. Any 
such subset generation problem has a complexity of exponential order.

Leaving out the last part, if we want to estimate the complexity of the part of generating super- 
sequences hierarchically,  then the complexity  for each problem is O(k!) k = minimum  of the 
length of two sequences. If the initial  number of strings were N,  then the number of stages



àààà

would be log2N. Thus the worst case complexity of the algorithm is

(where n is the maximum length of the input strings). Clearly  the complexity is exponential is 
nature.

6. CONCLUSIONS

The exponential nature of the problem is rooted in its definition in the sense that the solution set 
itself is expected to be exponential in size. Thus, any attempt  at solving this problem 
deterministically cannot have a polynomial time complexity. However,   the  proposed 
deterministic  algorithm  gives  the set of exhaustive common sub-sequences that many  of its 
commercial counterparts cannot guarantee.

Although the all common independent super-sequence generation algorithm proposed by us 
has a worst case exponential time complexity,  but if the threshold value (t) and the length of 
the largest common subsequence (c) are sufficiently  close then the complexity is a polynomial 
of  O(c–t). Thus this algorithm has a practical scope of application where the value (c–t) is 
small.

A major  advantage of the proposed algorithm  is that it is inherently  parallel  in nature. In 
contrast to some of the existing dynamic  programming based solution, the proposed algorithm 
works  on a divide  and conquer mechanism. Breaking down  the original  problem into sub- 
problems of similar nature enables us to use a parallel architecture to achieve a significant time 
gain. The granularity of the sub-problem is quite low to ensure a sufficient time improvement 
during parallel implementation.
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