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ABSTRACT 

The original image corrupted by Gaussian noise is a long established problem in signal or image 

processing .This noise is removed by using wavelet thresholding by focused on statistical modelling of 

wavelet coefficients and the optimal choice of thresholds called as image denoising .  For the first part, 

threshold is driven in a Bayesian technique to use probabilistic model of the image wavelet coefficients 

that are dependent on the higher order moments of generalized Gaussian distribution (GGD) in image 

processing applications. The proposed threshold is very simple. Experimental results show that the 

proposed method is called BayesShrink, is typically within 5% of the MSE of the best soft-thresholding 

benchmark with the image. It outperforms Donoho and Johnston Sure Shrink.  

                     The second part of the paper is attempt to claim on lossy compression can be used for image 

denoising .thus achieving the image compression & image denoising simultaneously. The parameter is 

choosing based on a criterion derived from Rissanen’s minimum description length (MDL) principle. 

Experiments show that this compression & denoise method does indeed remove noise significantly, 

especially for large noise power. 
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1. INTRODUCTION 

                 Denoising of images corrupted by additive white Gaussian noise (AWGN) are 

classical problem in image processing. The distortions of images by noise are common during 

its acquisition, processing, compression, transmission, and reproduction. In the past two decades 

several successful articles focused on removing the noise from the image to increase the overall 

quality of the processed image. Especially the case of additive white Gaussian noise a number 

of techniques using wavelet-based thresholding . Donoho and Johnston proposed hard and soft 

thresholding methods for Denoising. This scheme exterminates many wavelet coefficients that 

might contain useful image information. However, the major problem with both methods is the 

choice of a suitable threshold value. The definition of coefficient independent threshold given 

by Donoho and Johnston depends on the noise power and the size of the image. In practice, 

however one deals with images of finite size where the applicability of such a theoretical result 

is rather questionable. In addition, most signals show spatially non-uniform energy distribution, 

which motivate the choice of a non-uniform threshold.  Linear filtering is an efficient technique 

to deal with additive noise while non-linear filters are efficient to deal with the multiplicative 

and function based noise.  

                 Wavelet shrinkage method proposed by Donoho [1]–[3] is the pioneering work for 

signal denoising using the wavelet transform. The method described in [3] provides a mini-max 
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optimal solution. Another criterion commonly used is the mean squared error (MSE), even 

though it does not match well with the characteristics of the human visual system [4]. The 

discrete wavelet transform (DWT) used in image denoising can be real/complex-valued. 

                  The intuition behind using lossless compression for denoising may be explained as 

follows. A signal typically has structural correlations that a good coder can exploit to yield to 

the point of representation. White noise, however, doesn’t have structural redundancy and thus 

it is not easily compressible. Hence, a good compression method can provide a suitable model 

for distinguishing between signal and noise. Lossy compression and denoising can easily be 

seen when one examines the similarity between thresholding and quantization, the latter of 

which is a necessary step in a practical lossy coder. The quantization of wavelet coefficients 

with a zero-zone is an approximation to the thresholding function (see Fig. 1). Thus, provided 

that the quantization outside of the zero-zone does not introduce significant distortion, it follows 

that wavelet-based lossless compression achieves denoising. With this connection in mind, this 

paper is about wavelet thresholding for image denoising and also for lossless compression. The 

threshold choice aids the lossy coder to choose its zero-zone, and the resulting coder achieves 

simultaneous denoising and compression if such property is required. 

                                    
    Figure. 1. The thresholding function approximation by quantization with a zero-zone 

  
Many wavelet based thresholding techniques like Visu shrink, Oracle Shrink, Normal shrink 

have proved better efficiency in image denoising. For image denoising, however, Visu Shrink is 

known to yield overly smoothed images. This is because its threshold choice, √2logM  (called 

the universal threshold and is the noise variance), can be unwarrantedly large due to its 

dependence on the number of samples, which is more than 105 for a typical test image of size 

256*256 . Sure Shrink uses a hybrid of the universal threshold and the Sure threshold, derived 

from minimizing Stein’s unbiased risk estimator has been shown to perform well (6). In this 

paper, we propose a framework and a near-optimal threshold more suitable for image denoising 

based on Bayesian analyzing the statistical parameters of the wavelet coefficients that 

outperforms the traditional ones, improving the denoised results significantly 

 

2. WAVELET THRESHOLDING 

                Wavelet Thresholding is very simple non-linear technique, which operates on one 

wavelet coefficient at a time. In its most basic form, each coefficient is threshold by compare 

against threshold, if the coefficient is smaller than threshold, set to zero; otherwise it is kept or 

modified. Replacing the all small noisy coefficients by zero and inverse wavelet transform on 

the result may lead to reconstruction with the essential signal characteristics and with less noise. 

Wavelet thresholding involves threes steps A linear discrete wavelet transform, nonlinear 

thresholding Step & a linear inverse wavelet transform.  

                  Let us consider a signal { xij , i, j = 1,2…N} denote the N X N matrix of the original 

image to be recovered and N is some integer power of 2. During transmission the signal is 

corrupted by independent and identically distributed (i.i.d) zero mean, white Gaussian Noise zij 

with standard deviation σ i.e.  zij  ~ M (0, σ2) as follows. 

yij = xij + zij 
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From this noisy signal y, we want to find an approximation xij.  The goal is to estimate the signal 

xij from noisy observations yij such that Mean Squared error (MSE) is minimum. I.e. 

 

|| X - X||
2
  = 1/M � (

���

���
Xi - Xi)

2
 

 
Let W and W-1 denote the two-dimensional orthogonal discrete wavelet transform (DWT) 

matrix and its IDWT respectively. Then equation (1) can be written as 

dij = cij +εij 

With d=W y, c =W x, ε =W z .Since W is orthogonal transform, εj is also an i.i.d Gaussian 

random variable with ij ε ≈ (0, σ 2).Now T (.) be the wavelet thresholding function then the 

wavelet thresholding based Denoising scheme can be expressed as X =W
 -1(T (Wy)) wavelet 

transform of noisy signal should be taken first and then thresholding function is applied on it. 

Finally the output should be undergone inverse wavelet transformation to obtain the estimate x. 

There are two thresholds frequently used, i.e. hard threshold, soft threshold. The hard-

thresholding function is described as 

f h(x) = x     if x ≥ λ 
           = 0   otherwise 

The hard-thresholding function chooses all wavelet coefficients that are greater than the given 

threshold λ and sets the others to zero. The threshold λ is chosen according to the signal energy 

and the noise variance (σ 
2
). 

         The soft-thresholding function has a somewhat different rule from the hard-thresholding 

function. It shrinks the wavelet coefficients by λ towards zero,  

f (x) = x −λ       if x ≥ λ 
     = 0            if x <λ 

       = x +λ      if x ≤ −λ 
The soft-thresholding rule is chosen over hard-thresholding, for the soft-thresholding method 

yields more visually pleasant images over hard thresholding. 

 

3. NOISE CATEGORIES  

The classification of noise relies mainly on the characterizing probabilistic specifications. There 

are the four types of noise categories in image processing 

1. Gaussian noise 

              2. Salt and Pepper Noise 

              3. Poison noise 

 4. Speckle Noise 

 

Any one of above noise uses for addition of noise. 
 

4. PROPOSED  ALGORITHM 
 

4.1. Adaptive thresholding function:-This section focuses on the estimation of the 

GGD parameters, which in turn yields a data-driven estimate of that is adaptive to different sub 

band characteristics. The noise variance need to be estimate first. In some situations, it may be 

possible to measure based on information other than the corrupted image. If such is not the case, 

it is estimated from the sub band by the healthy median estimator. 
               

σ^ = Median (|Yij|) /. 6745 -- (1) 

Where   

                      Yij € subbandHH1  
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The parameter does not explicitly enter into the expression TB(σx) of, only the signal standard 

deviation (σx). TB is the optimal threshold function. Therefore it suffices to estimate directly σx 

or σx2. .Recall the observation model is Y = X + U, with X and U independent of each other, 

Where n x n is the size of the sub band under consideration. Thus 

 

T
^
B (σx)=

σ^�

σ^�  
   ------ (2) 

 
Where 

 

σ2
y = σ2

x + σ2           ----- (3) 
 

σˆx    =√max (σˆ2
y - σ^

2
, 0)  ---(4) 

 
Where σ2

y is the variance of Y. Since Y is modelled as zero-mean, σ2
y can be found empirically 

by 

 

σ^2
y  = �

�
� ∑ (�

�,��� Xij
2 

) ---- (5) 
 

T
^
B(σx) = max (|yij |) ------ (6) 

 
            The above equation shows the probalistics function which is proposed by scientist 

bayes .so, this method is called as B Wavelet Thresholding Bayesian shrink. And below 

equation shows the optimal threshold.  
 

T
^
B(σx)=

σ^�

σ^�  
 

 

 

 

 

4.2. Flowchart & Experimental Results 

 

 

 
            

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Original Image 

Start 

Addition of Noise 

Wavelet thresholding 

Denoising Image 

Stop 



International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011 

20 
 

 4.3.   Results 

 

Image 

Peak Signal To Noise Ratio in 

db(PSNR) 

σ 
hard 

Shrink 

Soft 

shrink 

Proposed 

Method 

 Lena 

10 32.434 32.273 33.5793 

20 30.224 30.247 30.3582 

30 27.235 28.138 28.5722 

 

 

                             
Noisy Lena at σ = 30              soft thresholding                  Hard thresholding             proposed Shrink method 

 

                                                        
Figure. 2. Comparing the performance of (a) Noisy Lena at σ = 30 with (b) soft thresholding 

(c) Hard thresholding      (d) proposed Shrink method 

 

5. CONCLUSION 

               The main issues regarding image denoising were addressed in this paper.  an adaptive 

threshold for wavelet thresholding images was proposed, based on the generalized Guassian 

distribution modelling of subband coefficients, and test results showed excellent performance . 

The results show that Proposed Shrink removes noise significantly. In this paper, we compare 

the results with soft thresholding, hard thresholding & proposed method 
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