
International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

DOI : 10.5121/ijnsa.2010.2305                                                                                                                    70                                               

INVESTIGATING & IMPROVING THE RELIABILITY 

AND REPEATABILITY OF KEYSTROKE DYNAMICS 

TIMERS  

Mr Pavaday Narainsamy 
1
, Dr Soyjaudah Sunjiv

2
 & Mr Nugessur Shrikaant

3 

1
Department of Computer Science and Engineering, University of Mauritius. 

n.pavaday@uom.ac.mu 
2
Professor in Communication and Signal processing, University of Mauritius.  

ssoyjaudah@uom.ac.mu 
3
Student, Computer Science Department, University of Mauritius. 

shrikaant@gmail.com 

ABSTRACT 

One of the most challenging tasks facing the security expert remains the correct authentication of human 

being which has been crucial to the fabric of our society. The emphasis is now on reliable person 

identification for computerized devices as the latter forms an integral part of our daily activities. 

Moreover with increasing geographical mobility of individuals, the identification problem has become 

more acute. One alternative, to curb down the increasing number of computer related crimes, is through 

the use of keystroke biometric technology which represents an enhancement to password mechanisms by 

incorporating typing rhythms in it.  

Time captured being critical to the performance of the identifier, it is primordial that it satisfies certain 

requirements at a suitable degree of acceptability This paper presents an evaluation of timing options for 

keystroke dynamics paying attention to their repeatability and reliability as well as their portability on 

different systems. In actual passwords schemes users enroll using one computer and access resources 

using other configurations at different locations without bothering about the different underlying 

operating systems. 

KEYWORDS 

Security, Authentication, Passwords, Biometrics, Keystroke, Typing rhythms, Timers   

1. INTRODUCTION 

The increase reliance on computerized devices for our daily tasks has been correlated with an 

unprecedented increase in computer crimes. These incidents, making the headlines of the press, 

have caused serious losses over the last years such that secure systems now constitute a priority 

to agencies and organizations around the globe [1]. Computer security usually involves a 

number of components among which successful verification of the identity of a person/entity 

wishing to use the system stands as the essential front line of defense [2]. Effective system 

administration, auditing, and efficient resource management all hinge on accurate user 

identification [3–5]. The knowledge based authentication scheme (password) represents the 

default mechanism for most systems.  It is expected to remain the de facto for many more years 

due to a number of reasons.  First, it is straightforward to implement, easy to use and maintain 

in that if the typed password does not match the stored one, the user is denied access. 

Additionally their precision can be adjusted by enforcing password-structure policies or by 

changing encryption algorithms depending on the security level desired. They represent a cheap 

and scalable way of validating users, both locally and remotely, to all sorts of services [2, 6]. 

Unfortunately passwords inherently suffer from a fundamental flaw stemming from human 



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

71 

 

psychology. On one hand it should be easy to remember and provide swift authentication. On 

the other for security purposes it should be difficult to guess, composed of special combination 

of characters, changed from time to time, and unique to each account [7]. These stringent 

requirements make people adopt unsafe practices such as record their password close to the 

authentication device, share with friends and use same passwords on multiple accounts or use 

familiar names. To reduce the number of security incidents, inclusion of the information 

contained in the “actions” category has been proposed [8, 9].  

Society still relies on the written signature to verify the identity of an individual for a wide array 

of applications. The complexity of the hand and its environment make written signatures highly 

characteristics and difficult to copy precisely. The handwritten signature has its parallel on the 

keyboard in that the same neuro-physiological factors that account for its uniqueness are also 

presents in a typing pattern as detected in the keystroke latencies between two consecutive 

keystrokes. The typing patterns of a person using a computer keyboard is a distinctive feature 

that, even when it is not as precise as others in terms of entropy and classification power [10], 

has the advantage of not requiring costly equipment and software to be implemented. From the 

measured features, the dwell time and flight times are extracted to a form a pattern used to 

represent a computer user. For the system to work, it is necessary to obtain timing information 

with sufficient resolution [11, 12]. Conversely if the resolution is too finicky the variation for a 

user will be very wide and may increase computation. Consistency, a major feature of data 

quality [13], is concerned with how similar a valid user’s access typing patterns are to his enroll 

typing patterns. Without a reliable and consistent timing scheme the uniqueness and 

discriminate capability of the keystroke dynamics scheme will suffer. Moreover as the same 

computation is needed each time, before authorizing a user, the repeatability of the processing is 

also of prime importance.   

A survey at the papers published reveals that few authors have paid attention to these algorithm 

independent factors [14]. The purpose of the forthcoming work is three-fold (1) Demonstrate 

and assess the different software/hardware base timing alternatives available. (2) Evaluate the 

response of timers to events (internal/external) which can be consistently repeated a number of 

times. (3) Propose a scheme with improved timing capabilities that should be used where time 

measurement is a matter of concern. Inherently we solve the issue of getting sufficiently 

accurate timing information on time-sharing system [11] where access may be through a variety 

of networks and hard/firm/software.  

This paper is structured as follows. We first present a brief on keystroke dynamics with 

emphasis on timing of keystroke as reported by other researchers in the field. Section 3 reviews 

background information on measuring events on the computer. Using performed experiments 

we demonstrate the limitations of present approach used in designing timers for keystroke 

dynamics authentication. In the subsequent section we describe our technical solution applied. 

Section 5 details the experimental results obtained with the prototype developed. Conclusion 

and references are at the end of the document. 

2. RELATED WORK  

The idea of using keyboard dynamics for authentication is not new [15] and some products that 

use such characteristics are already on the market [16, 17] while others have been rumored to be 

ready for release. Furthermore as keyboard characteristics are rich in cognitive qualities and 

hold great promise as personal identifiers, they have been the concern of a number of 

researchers. Delving into the details of each approach is beyond our scope but in general each 

one measures the similarity between an input keystroke-timing pattern and a reference model of 

the legitimate user’s keystroke dynamics. In light of the reading of previous works, the 

focus/contributions of these studies can be emphasized along these lines: (1) Target string (2) 



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

72 

 

Features investigated (3) Sample size (4) Classifier (5) Pre/Post Processing (6) Adaptation 

mechanism. 

A striking commonly is that most have only mentioned the capture of the timing associated with 

the typed text without any focus on how to do it. Among the very few where some mention has 

been made, most quoted the accuracy only, varying from 0.1millisecond [18] to 1second [19].  

Long et al. [20] reported inter key latencies varying from 55 milliseconds to hundreds of 

milliseconds corresponding to efficient typists and “hunt and peck’ users respectively. Brown 

and Rogers [21], Araújo [22] and Ostry [23] collected data at millisecond accuracy while in 

both studies of Obaidat and Sadoun [24, 25] samples were collected with an accuracy of tenths 

of a millisecond (0.0001 second). In some previous work, statistical techniques were relatively 

successful with only hundredth of second resolution [26]. Shepherd [27] pointed out that, with a 

resolution of 0.0001 of a second, events are recorded with an accuracy of approximately one 

percent.   

The four different timers, available for use on the windows platform, were mentioned in [12], 

and details were rounded to 10ms as it is mentioned that higher resolution was not possible 

contrary to what others have said. QueryPerformanceCounter being updated between each 

successive API may achieve a resolution in the order of a microsecond [11, 12]. In a recent 

work, Cho and Hwang [13] introduced the concept of data quality and used artificial clues and 

rhythms to improved typing consistency of users.  

3. BACKGROUND THEORY 

This section focuses on the underlying hardware which makes it feasible to use the Personal 

Computer (PC) for timing purposes. An oscillator supplies cycles of fixed input frequency to the 

timer device. At each pulse of the oscillator, the counter connected to its output is decremented 

and when it reaches zero, it sends an interrupt signal to the processor. At that instant, in the 

aperiodic mode, counting stops while in the periodic mode it is reset and counting continues. An 

input register stores value to be loaded in the counter register after a reset [28]. The counter can 

be accessed by both hardware and software. With evolution of computer hardware changes in 

timing modules have been added as enhancements to the existing architecture.  

The 8253/8254 Programmable Interval Timer (PIT) chip basically consists of a 1.193182 MHz 

crystal oscillator which is used mostly in the periodic mode [29-31]. In 1984, the first Real-

Time Clock (RTC), in addition to the 8254 PIT, was included by IBM to keep track of the local 

time, which is read during boot time and maintained by the OS [32]. The presence of a small 

battery as an alternate source of power maintains the correct time while the computer is off. The 

Advanced Programmable Interrupt Controller (APIC) timer, also known as the CPU Local 

timer, has many of the capabilities of the above mentioned timers and was designed to be used 

to synchronize multiple processors [31]. In a multiprocessor system, each processor has a local 

APIC, integrated onto the processor chip with the input frequency being the processor’s base 

front-side memory bus (FSB) frequency [30]. The timer being of 32 bits long is considered to be 

finer that the PIT's timer of 16 bits [33].  It is therefore programmed to issue interrupts at very 

low frequencies. The Power Management (PM) timer is an additional system timer that is 

required as part of the Advanced Configuration and Power Interface specification (ACPI). The 

PM timer continues to run even in some power saving modes where other timers have been 

stopped or slowed [28]. Additionally it incorporates a 24/32 bit counter that increments at 

3.579545MHz and therefore be programmed to generate an interrupt when its high‐order bit 

changes value [34]. Among the latest addition is the Timestamp Counter (TSC) which started 

with the fifth-generation CPUs (Pentiums). It is a 64-bit counter of elapsed CPU cycles since 

power-on [35] and can be captured through the RDTSC (read TSC) assembly instruction. The 

timestamp counter runs off the CPU oscillator, and rolls back to zero each time the processor is 



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

73 

 

reset. Nowadays with the increasing use of multi-core/hyper-threaded CPUs, systems with 

multiple CPUs and ‘hibernating’ operating systems, concerns have been raised on its accuracy 

[36] and portability of applications as all processors may not have a similar features [37].  The 

High Precision Event Timer (HPET) is a new high-resolution timer chip, developed jointly by 

Intel and Microsoft to meet the timing requirements of multimedia and other time-sensitive 

applications [31]. 8 HPET blocks may exist in a computer with each block consisting of fixed-

rate counters and 3 to 32 independent timers [38]. It has been design such that in the future, the 

OS may be able to assign specific timers directly to specific applications. With a minimum of 

10 MHz frequency and 32-64 bit counter, it can be used to capture timing for up to once in 100 

nanoseconds making it more efficient and faster than legacy timers [35]. It supports both 

periodic and aperiodic modes but it is not supported by operating systems designed before 

HPET existed therefore exist only on Windows XP, Windows Server 2003, Linux kernel 2.6 

and above [39].  

Interactions to the underlying hardware are made, on windows platform, through the Now, 

TimeGetTime, QueryPerformanceCounter, and GetTickCount while on the Linux environment 

the GetTimeofDay and ClockGetTime are available [35]. 

The Now property returns an object that is set to the current date and time on the computer. The 

values are measured in 100-nanosecond units called ticks using the reference 12:00 midnight, 

January 1, 0001 A.D [40]. The precision of this property depends on the system timer which in 

turn has a precision of about 10ms in Windows NT 3.5 and later version. It was previously at 

55ms in Windows 98 [41]. Even though current date and time on the computer is updated at 

regular interrupts [42], it is still subject to adjustments by the Windows Time Service [43]. 

GetTickCount expresses the number of milliseconds that have elapsed since the system was 

started as a 32-bit unsigned integer value. The time will wrap to zero if the system is run 

continuously for 49.7 days [44]; hence the need to check for overflows while comparing times. 

Another variant is the GetTickCount64 which takes much longer to wrap [45] and as the 

previous one it is based on the system timer interrupt [35]. The resolution is therefore limited to 

that of the system timer (usually the PIT) [44]. TimeGetTime forms part of the Windows 

Multimedia Timer Functions [46], and is particularly used in applications that require high-

resolution timing [47]. It returns the number of milliseconds elapsed since Windows was started 

and therefore similar to GetTickCount overflows after 49.7 days [45]. The precision is 

dependent on the underlying operating system varying from 1ms to 5ms or even more.  To 

improve its precision the TimeBeginPeriod and TimeEndPeriod functions can be used to modify 

the update interval of the counter. However this in turn affects the global setting as Windows 

uses the lowest value (that is, highest resolution) requested by any process [48]. Moreover this 

causes the thread scheduler to switch tasks more often and can reduce overall system 

performance and additionally prevent the CPU power management system from entering power-

saving modes. QueryPerformanceCounter (QPC) and QueryPerformanceFrequency (QPF) are 

API calls that retrieve the counter value and frequency of the high-resolution performance 

counter respectively. Using the frequency and the number of counter ticks elapsed, the lapse of 

time can easily be calculated. However if the return value of QPC or QPF is zero then high 

performance timers are not supported by the hardware [49]. Therefore the accuracy of the high-

performance counter depends on the underlying hardware as well as on the version of windows 

being used. The PIT is used in Windows 2000, PMT in Windows XP and HPET on Windows 

Vista [4] respectively. QPC is recommended for high resolution timing [50], even though the 

former may use the TSC in some systems.  

Under the Linux environment the GetTimeOfDay function provide the current time, expressed 

as seconds and microseconds since the Epoch (00:00:00 UTC on January 1, 1970) [51]. On the 

other hand the function Clock_GetTime takes a clock identifier as parameter and retrieves the 

time from the specified clock [52]. The clock identifier can be the system real time clock, the 

per process/ thread timer from the CPU or the clock monotonic. However the timing process 

can get pre-empted during timing, producing unwanted delays in the measurements.   



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

74 

 

The functions SetPriorityClass and SetThreadPriority can be used to change the priority of a 

process to Low, Below Normal, Normal, Above Normal, High and Realtime. The use of 

Realtime priority can make the system unstable as it interrupts system threads that manage 

mouse input, keyboard input, and background disk flushing [53]. In Linux, the process priorities 

are known as nice values with a range decreasing from the highest (-20) to lowest (19) with the 

default value being the median value 0. They can be modified by doing a priority call. 

4. SET UP  

In keystroke authentication, capturing of keystroke timings is vital to the successful operation of 

the verifier. Usually a toolkit is constructed with an appropriate GUI for users to type their text 

while in the background their rhythms are stored. Two methods were used to assess the 

capabilities of the timers. The tight-loop test provided an easy way to compare the repeatability 

and constancy of the timers within a system. Testing the quality of the computer’s time can only 

be achieved by comparing it with an external reliable source. The use of a robotic arm was not 

successful as most robots are computer controlled and this would come down to using a 

computer to assess a computer. Additionally making a robot pressing a key was almost 

impossible except if additional variation of the sticky key and repeat rate features were 

considered. Therefore the time elapsed between two successive edges of an electrical square-

wave signal of known frequency was used. A function generator (Cathode Ray Oscilloscope) 

was calibrated to produce the electrical signal fed to the computer via the parallel port. 

The tight loop implemented had adjustable loop-count so that the execution time could be 

varied to investigate its linearity. The test though very simple and easily replicated on various 

computers without any special equipment or arrangement, required special precautions to avoid 

erroneous results. The optimizations applied by the system can leave the tight loop unexecuted 

if the latter does not do useful work. As an example, an empty loop is skipped by C++ unless 

the result of that calculation is used outside the loop. Therefore a simple computation is done 

inside the loop, and the result of this calculation is used outside the loop to emphasize the 

‘usefulness’ of the code.  

 

Figure 1. Parallel-Port Cable Pins Specification 

To maintain constant CPU speed throughout the timing process, technologies that dynamically 

adjust CPU frequency ( Intel SpeedStep and AMD PowerNow) are disabled. This achieved by 

choosing the “Always On” power scheme from Power Options in the Control Panel or by 

turning it off in the BIOS itself  [54]. For the external source test, the electrical leads from the 

function generator are connected to an input line (pin 10,11,12,13 or 14) and any ground pin. 

An input pulse was applied to change the voltage on the pins at regular intervals and monitored 

by continuously polling the parallel input port at address 0x379. Changing the frequency of the 



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

75 

 

pulse changes the length of time the electrical signal stays high or low in a square wave i.e. the 

time elapsed between two edges of the wave. To avoid damage to the parallel port and the 

motherboard the input signal was then set to be of the same amplitude as that supported by other 

pins of the parallel port. 

Performing the experiment only under normal condition is a naïve move, so exploration under 

stress conditions was also performed to get a picture of worst case scenarios to which keystroke 

dynamics may be subject to.   

The Stress program (developed by Amos Waterland) was used for Linux while for windows it 

was SiSoftware Sandra Lite. They allow straining components such as disk, memory and CPU. 

Similarly the codes for the experiments were implemented on two programming languages 

(C++ and visual basic) and different operating systems (Vista Ultimate SP 1, XP SP 2 and 

Linux 8.04, kernel 2.6.24). The different configurations for the computers used are as follows. 

Most of the computers are from the Computer Science Laboratory.  

• HP Laptop XP: HP Compaq model nc6000 Intel Pentium M processor 1600MHz 

with 1024 MB RAM 

• Lab PC : Intel Pentium 4 CPU at 1.60GHz with 640 MB RAM 

• Home PC : Intel Pentium Dual CPU E2180 at 2.00GHz with 2GB RAM 

 5. RESULTS  

The Linux timers were implemented as a simple console program that accepts command-line 

arguments. Communicating with the parallel port was simple with older versions of Windows 

(DOS, Win95/98) but with Windows NT and later, the Inpout32.dll was used [56]. This DLL 

contains the necessary methods to perform port I/O and can be easily linked and used in 

Microsoft Visual Studio’s projects. In Linux, the inb function was to read the input.  

For the tight loop test, the loop count value was adjusted so that the execution time is less than 

10ms. 100 readings were taken in all cases and the scatter-graphs below demonstrate the spread 

obtained.  

QPC on Visual Basic 

 

QPC on Visual C++ 

Figure 2.  Spread in time taken for the tight loop test.  

No considerable differences were observed in the variations of the timers in the different 

languages used, which may be because of the underlying .Net Framework that they share. In 

terms of performance however, a tight-loop of a given length (loop count) takes less time to 



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

76 

 

execute in C++ than in VB. One striking feature was the random spread in time taken for the 

same task when repeated a number of times. 

With the Now and GetTickCount timers, the values were found to be multiples of the system 

clock interrupt interval (obtained by calling the GetSystemTimeAdjustment function). It was 

either 10 or 0 with values changing from XP to vista. When tested on PCs of different 

configurations the variations were wide enough to question their use. For GetTickCount when 

the system clock’s update-interval is not a whole number e.g. 15.625ms, then the return values 

are rounded to 0, 15 and 16. TimeGetTime behaves like getTickCount if timeBeginPeriod is not 

enabled. Otherwise, it is able to measure time values that are smaller than the system clock 

interval.  

 

TimeGetTime with default precision 

 

TimeGetTime with 1ms precision 

Figure 3.  Effect of adjusting precision on performance.    

The second graph demonstrates a considerable improvement over the left one with the 

timeBeginPeriod function enabled. This allows the system to update its time every millisecond 

at the expense of system performance as mentioned above. The graph below taken from The 

Performance Monitor program under Windows Administrative Tools clearly indicates these 

changes.  

 

Figure 4.  Effect of enabling and disabling timeBeginPeriod on performance.    



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

77 

 

Figure 4 shows a considerable rise in the number of interrupts per second, from a low value of 

411 to a maximum 1511, pointing towards millisecond-update of the TimeGetTime counter 

when the precision is set to ms.  

The frequency of the performance counter provides an indication of the underlying hardware 

clock as shown below with the experiment repeated on computers with different configurations. 

Figure 5.  Performance obtained using the QPC on computers using different timers.    

The graphs below shows the results obtained under the Linux environment. Similar to the 

windows plateform the results were not free from jitter as peaks much above the average value 

were obtained. 

QPC based on 2.0 GHz Time-Stamp Counter 

[Home PC XP] 

 

QPC based on 14.3 MHz HPET [Home PC Vista] 

QPC based on 3.57 MHz PM Timer [HP 

Laptop XP] 

 

Low variations in values using QPC [Lab PC XP] 

 
Gettimeofday [HP Laptop Linux] 

 
CLOCK_MONOTONIC [HP Laptop Linux] 

Figure 6.  Performance of timers on Linux using the same PC. 



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

78 

 

The effect of varying priority on results captured is shown in the table below for two different 

windows configuration configurations. To facilitate understanding only the range variation is 

shown. 

Table 1.  Range of Windows timers (ms) with Increasing Priority 

 { Lab PC XP/ Home PC XP} 

Timers Normal Above Normal High Realtime 

DateTime.Now 16/16 16/16 16/16 16/16 

GetTickCount 16/16 16/16 16/16 16/16 

TimeGetTime 2/6 2/5 2/7 2/6 

QPC 0.541/5 0.637/4 0.585/5 0.349/5 

 

Similarly the same investigation was carried out under the Linux operating system. The Nice 

priorities didn’t affect the results (table 2) much whereas the results from FIFO scheduling 

policy were very impressive as can be seen in table 3. Under FIFO, the latencies were much less 

than 1ms. This clearly speaks for the need to have control on the FIFO priorities when capturing 

time. 

Table 2.  Range of Linux timers with Increasing Priority (Nice Values)  

 Linux Nice Values   { Lab PC /HP Laptop} 

Timers 0 (normal) -5 -10 -15 -20 (highest) 

gettimeofday 7/11 7/21 6/22 6/27 6/21 

Clock_gettime 16/6 23/7 24/8 23/6 23/22 

 

Table 3.  Range of Linux timers with Increasing FIFO Scheduling Priorities 

 Linux FIFO Scheduling Priorities { Lab PC /HP Laptop} 

Timers 1 30 50 70 99 

gettimeofday 0.222/0.540 0.238/0.530 0.218/0.509 0.220/0.610 0.222/0.524 

Clock_gettime 0.220/0.520 0.191/0.541 0.186/0.603 0.258/0.461 0.187/0.622 

 

Users usually enter their passwords while there are other background processes running and this 

has been boosted with multitasking capabilities of the operating system. This test aims 

determine the effects on timing when background processes access various components of the 

system. When the system is under stress, the timing is highly affected. In Windows, increasing 

the priority of the timing process negated the bad effects of the stress program while for Linux, 

the timer process under FIFO policy was nearly unaffected. 



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

79 

 

 

Table 4.  Range of variations of different timers under different stress conditions  

 

From table 4 above it is clear that to minimize variations in the data captured and achieve 

repeatability priorities have to be maximized.  

For the electrical signal test the frequency generator was set to output a square wave of 

frequency 500Hz. With this frequency, the time captured by the computer must ideally be equal 

to 1ms. 

 

 

 

As can be deduced from the background work carried out, the 10 to 15 ms precision of 

DateTime and GetTickCount yielded very bad results while the others produced some 

interesting observations.  

 

Normal Priority 

 

High Priority 

 Lab PC Windows Priority Levels 

Timers Normal Above Normal 

 CPU 
ME

M 

I/

O 

CPU ME

M 
I/O 

DateTi

meNow 
63 78 16 

16 
16 16 

GetTic

kCount 
47 62 16 

16 
16 16 

TimeG

etTime 
64 41 10 

2 
2 2 

QPC 34 63 8 
0.62

9 

0.88

7 

0.31

6 

 

 Lab PC with Linux Priorities 

Time

rs 
Nice = 0 Nice = -20 FIFO Priority 1 

 
CP

U 

M

E

M 

I/

O 

C

P

U 

M

E

M 

I/

O 

C

P

U 

ME

M 
I/O 

GetTi

meOf

Day 

12 
2

2 

2

4 
9 

1

2 

2

4 

0.

22

3 

0.25

6 

0.23

5 

Cloc

k_Ge

tTim

e 

32 
1

7 

2

1 

1

4 

3

2 

2

6 

0.

29

2 

0.11

2 

0.23

5 

 



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

80 

 

Figure 7. Result obtained using TimeGetTime for the frequency generator input. 

The TimeGetTime got most of the readings right (1 ms) but the readings also included strange 

values such as 12 and 11 (circled on the figure 6 above). Fortunately when the priority was set 

to high (right graph) refine results were obtained but still with few erratic value. 

The experiment was repeated on the same PC using this time the QPC and the results was seen 

to be more consistent but with only one unusual readings which was however surprising high. 

 

QPC under Normal Priority 

 

QPC under high Priority 

Figure 8.  Performance of timers on windows XP using the same PC. 

The jitter was considerably reduced under high priority to only 23 microseconds. The vertical 

axis was based on a microsecond scale to indicate the minor variations seen.  Similarly when 

applied for Linux, increasing the priority minimizes the variations obtained. The table 6, below 

shows the values captured for the experiments performed on the same PC in the lab. 

Table 6.  Results obtained when using experiment was repeated on Linux 

 Normal Priority – Captured 

value 

FIFO priority-  

Captured value 

GetTimeofday  Min 0 ms, Max : 7 ms Min 610 µs Max 1007 µs 

Clock_GetTime 

(CLOCK_MONOTONIC) 

Min 0 ms: Max : 5 ms Min 103 µs Max 1086 µs 

 

6. CONCLUSION  

The experiments performed shows that great care should be taken when using the computer as a 

time measuring device. The performance of the timers is not the same on all computer systems 

and worst of all is not repeatable. Previous work has hyped the inclusion of keystroke dynamics 

to enhance the actual password based schemes without impacting on its desired properties 

which are consistency, portability, repeatability and acceptability on all systems. Currently once 

a user has registered with a password, independent of the operating system and the underlying 

hardware, he is swiftly authenticated the next time he supplies the same password. However our 

research work has shown that with inclusion of typing rhythms this may not be the case as the 

timing captured depends on a number of factors. Moreover if the computer is already involved 

in other activities then he may not be able to login in as performance is degraded further.  

Additionally most antivirus are automatically launch at start up without user intervention (same 

for screen saver) and will therefore impede on the performance of the processor. Background 

processes negatively affect timing on computer and running a CPU intensive alongside the timer 



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

81 

 

process causes the measurements to vary by several orders of magnitude. Similar behavior was 

noticed during execution of memory or disk intensive tasks.  

Increasing the priority of the timer used has considerably minimized the fluctuations captured 

but even then some jitter is still present. Among the timers that have been used by previous 

researchers in the field, the QPC performs much better and this is improved further by 

increasing the priority at the expense of system instability However as the latter’s accuracy 

depends on the underlying hardware the fast CPU can use the high-performance counter present 

in some systems. Great care should however be taken so that power-saving features do not 

change the processor speed. 

To facilitate comparisons of performance between different algorithms, different classifiers and 

features, it is primordial that all users adopt the same timer which provides the minimum 

fluctuations in values. For the windows environment the QPC is recommended with highest 

priority enable. Our investigation has shown that the variation then falls to a very low value or 

the order of several microseconds.  Although it can be considered to be more efficient that other 

timers it cannot achieve the 0.1 microsecond accuracy claimed by Wassenberg [35]. The Now 

and GetTickCount have too coarse precision (10 to 16ms) to be useful for accurate time 

measurements.  

In Linux, changing the scheduler policy to FIFO provided remarkable low-jitter results for both 

GetTimeofDay and Clock_GetTime. Moreover the changes due background processes were 

minimum with FIFO priority set. The question that remains is how to get constant, accurate and 

reliable results given the jitter is inevitable in non-realtime operating systems. To this end real-

time solutions available on Windows and Linux were tested. IntervalZero’s Real-Time 

Extension[54] is a self-contained real-time subsystem that bypasses the Windows scheduler to 

provide the desired determinism for Windows. Ingo Molnar’s Preemptible Linux patch[55] 

allows the entire kernel to be preempted as it replaces most spinlocks with mutexes that support 

priority inheritance as well as moving all interrupt and software interrupts to kernel threads. 

Windows PC 

 

Linux PC 

Figure 9.  Performance of RealTime timers on Windows and Linux respectively. 

As shown in figure 9 above, for the 1 ms second pulse experiment the range variation is much 

smaller than in Linux and Windows thereby boosting the use of these timers in time critical 

activities.  The use of these timers for keystroke dynamics remains an avenue to be explorer 

further.  

ACKNOWLEDGEMENTS 

The authors would like to thank heartily those who have helped in the setting up of the different 

experiments and also those who have provided valuable suggestions. Our kind appreciation for 



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

82 

 

those who worked hard on making the robot strike on the keyboard although the study has not 

produced any valuable input for this paper. 

REFERENCES 

[1] R. Richardson (2003), Computer crime & security survey . Technical report, Computer 

Security Institute, CSI and Federal Business of Investigations, FBI, 2003. 

[2] CP, Pfleeger (1997), “Security in Computing”, International Edition,  Second Edition, Prentice 

Hall International, Inc, 

[3] D.L. Jobusch & A.E. Oldehoeft (1989), “A Survey of Password Mechanisms: Weaknesses and 

Potential Improvements, Part 1,” Computers & Security,Vol. 8, pp. 587–604. 

[4] C.P. Pfleeger (1993), Security in Computing, Prentice - Hall, Upper Saddle River, New Jersey. 

[5] J.C. Spender (1987), “Identifying Computer Users with Authentication Devices (Tokens),” 

Computers & Security, Vol. 6, pp. 385–395. 

[6] S. Garfinkel & E. H. Spafford (1996), Practical UNIX Security. O Reilly, 2nd edition, April 

1996. 

[7] S. Wiedenbeck, J. Waters , J. Birget, A. Brodskiy & Nasir Memon (2005), Passpoints: Design 

and Longitudinal Evaluation of a Graphical Password System, International Journal of 

Human-Computer Studies, 63(1-2), pp. 102-127. 

[8] A Mészáros, Z Bankó, L Czúni(2007) , Strengthening Passwords by Keystroke Dynamics, 

IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing 

Systems: Technology and Applications, Dortmund, Germany. 

[9] D. Chuda & M. Durfina(2009),  Multifactor authentication based on keystroke dynamics, 

ACM International Conference Proceeding Series; Vol. 433, Proceedings of the International 

Conference on Computer Systems and Technologies and Workshop for PhD Students in 

Computing, Article No.: 89   
 

[10] A. Mandujano & R. Soto(2004), Deterring Password Sharing: User Authentication via Fuzzy 

c-Means Clustering Applied to Keystroke Biometric Data, Proceedings of the Fifth Mexican 

International Conference in Computer Science. 

[11] J.R.Young, & R.W. Hammon (1969), Method and apparatus for verifying an individual’s 

identity. Patent Number 4805222 U.S. Patent and Trademark Office, Washington, DC. 

[12] R Joyce & G. Gupta (1990), Identity Authentication Based on Keystroke Latencies, Volume 33 

Number 2 Communications of the ACM, pp. 168-176. 

[13] S. Cho & S. Hwang(2006),  Artificial Rhythms and Cues for Keystroke Dynamics Based 

Authentication, D. Zhang and A.K. Jain (Eds.): Springer-Verlag Berlin Heidelberg , ICB 2006 

, LNCS 3832, pp. 626 – 632.  

[14] N. Pavaday (2009), Transfer report, Submitted to University of Mauritius. 

[15] R. Gaines et al (1980), Authentication by Keystroke Timing: Some Preliminary Results, 

technical report R-256-NSF, RAND. 

[16] www.psylock.com 

[17] www.biopassword.com 

[18]  J.A. Robinson, V.M. Liang, J.A.M. Chambers, & MacKenzie(1998), Computer User 

Verification Using Login String Keystroke Dynamics,  IEEE Transactions on Systems, Man 

and Cybernetics —Part A, Volume 28 (2), pp 236-241 

[19] O. Coltell, J. M. Badia, & G. Torres(1999),  Biometric identification system based in keyboard 

filtering, In IEEE 33rd International Carnahan Conference on Security Technology, pp 203-

209. 



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

83 

 

[20] J. Long, I . Nimmo-Smith and A. Whitefield (1983), Skilled typing: A characterization based 

on the distribution of times between responses, Cognitive Aspects of Skilled Typewriting,ed. 

W. E. Cooper (Springer, Berlin,) pp 145-196.   

[21] M. Brown & S.J. Rogers (1993), User identification via keystroke characteristics of typed 

names using neural networks, International, Journal of Man-Machine Studies vol 39, pp 999-

1014. 

[22] L. C. F. Araújo et al. (2004), User Authentication through Typing Biometrics Features, D. 

Zhang and A.K. Jain (Eds.): ICBA 2004, LNCS 3072, pp. 694-700. 

[23] D.J. Ostry (1983), Determinants of interkey times in typing, Cognitive Aspects of Skilled 

Typewriting, ed. W. E. Cooper (Springer, Berlin),pp 225-246,. 

[24] M.S. Obaidat (1995), A verification methodology for computer systems users, Proceedings of 

the ACM Symposium on Applied Computing, pp 258- 262. 

[25] M.S. Obaidat & B. Sadoun (1997), Verification of computer users using keystroke dynamics, 

IEEE Trans. Systems, Man and Cybernetics Part B, Vol 27, No2, pp 261-269. 

[26] J. Umphress & G. Williams (1985), Identity verification through keyboard characteristics, 

International Journal of Man-Machine Studies, Vol 23, pp 263-273. 

[27] S.J. Shepherd(1995) , Continuous authentication by analysis of keyboard typing 

characteristics, European Convention on  Security Detection, pp 111-114. 

[28] VMWARE INC., 2008. Timekeeping in VMware Virtual Machines, Information Guide 

Available from:http://www.vmware.com/pdf/vmware_timekeeping.pdf. 

[29] D. JURGENS 8253/8254 PIT - Programmable Interval Timer. Available from: 

http://heim.ifi.uio.no/~stanisls/helppc/8253.html  

[30] Y. CHIEN-HUA ( 2007), SUN MICROSYSTEMS INC.,. Solaris OS Hardware Virtualization 

Product Architecture, (1.0, 11/27/07). Available from: 

http://www.sun.com/blueprints/1107/820-3703.pdf 

[31] WINDOWS HARDWARE DEVELOPER CENTRAL, 2002. Guidelines for Providing 

Multimedia Timer, Microsoft Support, Microsoft Corp. 

http://www.microsoft.com/whdc/system/sysinternals/mm-timer.mspx 

[32] INTEL CORP, 2007. Intel ICH Family RTC Accuracy and Considerations under Test 

Conditions, (292276-008). http://www.intel.com/Assets/PDF/appnote/292276.pdf 

[33] INTEL CORP. Intel 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 3A: System Programming Guide, Part 1. Available from: 

http://www.intel.com/design/processor/manuals/253668.pdf  

[34] HEWLETT-PACKARD CORPORATION, INTEL CORP., MICROSOFT CORP., PHOENIX 

TECHNOLOGIES LTD. & TOSHIBA CORP., 2006. 

Advanced Configuration and Power Interface Specification, (3.0b). 

http://www.acpi.info/DOWNLOADS/ACPIspec30b.pdf 

[35] WASSENBERG J., 2007. Timing Pitfalls and Solutions Available from: 

http://www.stud.uni-karlsruhe.de/~urkt/timing_pitfalls.pdf 

[36] ADVANCED MICRO DEVICES INC., 2007. TSC Dual-Core Issue & Utility Fix, AMD 

Technical Bulletin, http://developer.amd.com/assets/TSC_Dual-Core_Utility.pdf. 

[37] INTEL CORP., Intel 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 3B: System Programming Guide, Part 2. 

http://www.intel.com/design/processor/manuals/253669.pdf 

[38] INTEL CORP., 2004. IA-PC HPET (High Precision Event Timers) Specification, (Revision 

1.0a, 2004) 

http://www.intel.com/hardwaredesign/hpetspec_1.pdf  



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

84 

 

[39] BOVET D.P., CESATI, M., 2006. Understanding the Linux Kernel. 3
rd

 ed. O’Reilly 

[40] MICROSOFT DEVELOPER NETWORK. DateTime Structure, MSDN .NET Framework 

Class Library. 

http://msdn.microsoft.com/en-us/library/system.datetime.aspx 

[41] MICROSOFT DEVELOPER NETWORK. DateTime.Now Property, MSDN .NET Framework 

Class Library. 

http://msdn.microsoft.com/en-us/library/system.datetime.now.aspx 

[42] MICROSOFT HELP AND SUPPORT, 2007. Task Scheduler Behavior at DST Transitions and 

Other Events (rev. 1.2). http://support.microsoft.com/kb/325413  

[43] THE NTP PUBLIC SERVICES PROJECT, 2008. Windows Time Service.  

http://support.ntp.org/bin/view/Support/WindowsTimeService 

[44] MICROSOFT DEVELOPER NETWORK. GetTickCount Function, MSDN Time Functions. 

http://msdn.microsoft.com/en-us/library/ms724408(VS.85).aspx 

[45] MICROSOFT DEVELOPER NETWORK. GetTickCount64 Function, MSDN Time 

Functions.http://msdn.microsoft.com/en-us/library/ms724411(VS.85).aspx 

[46] MICROSOFT DEVELOPER NETWORK. Multimedia Timer Reference, Windows 

Multimedia. 

http://msdn.microsoft.com/en-us/library/ms712713(VS.85).aspx 

[47] MICROSOFT DEVELOPER NETWORK. TimeGetTime, Multimedia Functions.

http://msdn.microsoft.com/en-us/library/ms713418(VS.85).aspx 

[48] MICROSOFT DEVELOPER NETWORK. About Multimedia Timers, Windows Multimedia. 

http://msdn.microsoft.com/en-us/library/ms704986(VS.85).aspx 

[49] WINDOWS EMBEDDED HARDWARE DEVELOPER CENTRE. HOWTO: Use a 

Performance Counter, .NET Compact Framework HowTo.  

http://msdn.microsoft.com/en-us/library/aa457094.aspx  

[50] WALBOURN C., 2005. Game Timing and Multicore Processors, Microsoft Corp. [online] 

http://msdn.microsoft.com/en-us/library/bb173458.aspx  

[51] UBUNTU MANUAL, 2008. gettimeofday - get the date and time. [online] 

http://manpages.ubuntu.com/manpages/jaunty/en/man3/gettimeofday.3posix.html 

[52] UBUNTU MANUAL,2008. clock_getres, clock_gettime, clock_settime - clock and time 

functions 

http://manpages.ubuntu.com/manpages/jaunty/en/man3/clock_gettime.3.html 

[53] MICROSOFT DEVELOPER NETWORK. Scheduling Priorities. [online] 

http://msdn.microsoft.com/en-us/library/ms685100.aspx 

[54] INTEL CORP. Enhanced Intel SpeedStep Technology How To Document 

http://www.intel.com/cd/channel/reseller/asmo-na/eng/203838.htm 

[54] www.intervalzero.com 

[55] www.linuxfordevices.com/.../Linux.../ELJOnlineBRRealTime-and-Linux-Part-2-the-

Preemptible-Kerne/ 

[56]  www.logix4u.net 

 

 

 

 

 



International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010 

 

85 

 

 

 

 

Short Biography 

This work represents a continuation of the work 

carried out under the Fulbright research grant 

U105315 allocated to the first author, for 

working on his research thesis. 

Mr. N. Pavaday is now with the Computer 

Science, Faculty on Engineering, University of 

Mauritius, having previously done his research 

training with the Biometric Lab, School of 

Industrial Technology, University of Purdue 

West Lafayette, Indiana, 47906 USA, (phone: 

+230-4037727 e-mail: n.pavaday@uom.ac.mu). 

Professor  K.M.S.Soyjaudah is with the same 

university as the first author. He is interested in 

all aspect of communication with focus on 

improving its security. He can also be contacted 

on the phone +230 403-7866 ext 1367 (e-mail: 

ssoyjaudah@uom.ac.mu) 

Mr Srikant Nugessur was a student in the 

faculty of Engineer and has helped in the setting 

up of the experiments.  He is now working as a 

programmer in a private company ( email: 
shrikaant@gmail.com. 


