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Abstract.  

Lattice reduction is a powerful concept for solving diverse problems involving point lattices. Lattice 

reduction has been successfully utilizing in Number Theory, Linear algebra and Cryptology. Not only the 

existence of lattice based cryptosystems of hard in nature, but also has vulnerabilities by lattice reduction 

techniques. In this survey paper, we are focusing on point lattices and then describing an introduction to 

the theoretical and practical aspects of lattice reduction. Finally, we describe  the applications of lattice 

reduction in Number theory, Linear algebra. 
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1 Introduction 

Lattices are periodic arrangements of discrete points. Apart from their wide-spread use in pure 

mathematics, lattices have found applications in numerous other fields as diverse as 

cryptography/cryptanalysis, the geometry of numbers, factorization of integer polynomials, 

subset sum and knapsack problems, integer relations and Diophantine approximations, coding 

theory. In this paper, we survey the main tools which can be used to  the verify vulnerabilities of 

different cryptosystems. 

     Lattice reduction is concerned with finding improved representations of a given lattice using 

algorithms like LLL (Lenstra, Lenstra, Lov´asz) reduction .There are some versions for lattice 

reduction, but people are using the LLL algorithm for theoretical and practical purposes.  It is a 

polynomial time algorithm and the vectors are nearly orthogonal. In section II, we briefly 

discuss the complexity issues of LLL algorithm and its properties. In section III, we discuss the 

subset sum problem and how lattice reduction has been used to get a solution in some instances. 

This technique, in turn can be applied to break knapsack cryptosystems like Merkle-Hellman 
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knapsack cryptosystem. In section IV, we discuss Univaraite polynomial congruence problem 

and how lattice reduction was used to get a solution. This technique, in turn can be applied to 

check vulnerabilities of RSA cryptosystem. In section V, we discuss simultaneous Diophantine 

approximation problem and vulnerabilities of knapsack cryptosystem. 

2. Terminology  

2.1 Lattices  

A lattice is a discrete subgroup of ℝ�. Equivalently, given � ≤ � linearly independent vectors 

�� , �� , �� , … , �! ∈ ℝ�, the set ℒ = ℒ%��, ��, ��, ⋯ , �!' = (∑ *+�+!+,� |*+ ∈ ℤ/, is a lattice. The 

�+are called basis vectors of  and ℬ = (��, ��, ⋯ , �!/ is called a lattice basis for ℒ. Thus, the 

lattice generated by a basis  is the set of all integer linear combinations of the basis vectors in  

ℬ. The determinant of a lattice, denoted by 123%ℒ' is the square root of the gramian 

determinant456�7+,87!〈�+, �8〉, which is independent of particular choice of basis. A general 

treatment of this topic see[1]. 

2.2 Lattice reduction 

Lattice reduction techniques have a long tradition in mathematics in the field of number theory. 

The goal of lattice basis reduction is to find, for a given lattice, a basis matrix with favorable 

properties. Usually, such a basis consists of vectors that are short and therefore this basis is 

called reduced. Unless stated otherwise, the term “short” is to be interpreted in the usual 

Euclidean sense. There are several definitions of lattice reduction with corresponding reduction 

criteria, such as Minkowski reduction, Hermite-Korkine-Zolotareff reduction, Gauss reduction, 

Lenstra-Lenstra-Lov´asz (LLL) reduction, Seysen reduction. The corresponding lattice reduction 

algorithms yield reduced bases with shorter basis vectors and improved orthogonality; they 

provide a tradeoff between the quality of the reduced basis and the computational effort required 

for finding it. Here we consider the LLL reduced, because there is a polynomial time algorithm 

exists and vectors are  near orthogonal and the first vector solves the   approximate SVP 

problem. For good survey on lattice reduction algorithms refers [4]. 

2.3 LLL reduced 

The following LLL reduced version given by Lenstra, Lenstra, Lovasz[1],[2],[3]. 

LLL reduced: A basis ��, ��, ��, ⋯ , �� of a lattice  is said to be Lovasz-reduced or LLL-

reduced if 

;<+,8; ≤ �
�  for 1 ≤ > < @ ≤ � 

;�+∗ + <+,+C��+C�∗ ;� ≥ �
E |�+C�∗ |� for 1 < @ ≤ �.  where the �+∗ and <+,8 are defined by the Gram-

Schimdt orthogonalization process acting on the �+. Above in place of   ¾ one can replace any 

quantity 
�
E < F < 1. 
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2.4 LLL Algorithm 

The Lenstra –Lenstra -Lov´asz (LLL) algorithm [1][2][3]  is an iterative algorithm that 

transforms a given  

lattice basis into an LLL-reduced one. Since the definition of LLL-reduced uses Gram-Schmidt 

process, the LLL algorithm performs the Gram-Schimdt method as subroutine.  

 

LLL Algorithm with Euclidean norm: 
 

Input: ��, ��, ��, ⋯ , �� ∈ ℤ! 

Output: LLL reduced basis ��, ��, ��, ⋯ , �� 

1: Compute the Gram-Schimdt basis ��∗, ��∗,⋯ , ��∗  and coefficients <+,8 for 1 ≤ > < @ < �. 
2: Compute G+ = 〈�+∗, �+∗〉 = ‖�+∗‖� for 1 ≤ @ ≤ � 

3:  k=2 

4: while I ≤ � do 

5:   for > = I − 1 downto 1 do 

6:      let K8 = <L,8 and set �L = �L − K8�8 

7:      update the values <L,8 for 1 ≤ > < I and GL 

8:   end for 

9: if GL ≥ %�
E − <L,LC�� )GLC� then 

10:    I = I + 1 

11:          else 

12:      Swap �L with �LM� 

13:              Update the values �L∗ , �LC�∗ , GL , GLC�, <LC�,8 and <L,8  for 1 ≤ > < I and <+,L and 

<+,LC�    

  for    I < @ ≤ �.      
14:     I = min (2, I − 1/ 

15:         end if 

16:  end while 

 It can be proven that the LLL algorithm terminates a finite number of iterations. Let ℒ ⊂ ℤ� be 

a lattice with basis(��, ��, ��, ⋯ , �!/ and P ∈ ℝ, P ≥ 2 be such that ‖�+‖ ≤ √P for @ =
1,2, ⋯ , �. Then the number of arithmetic operations needed for the algorithm R%�E log P) on 

integers of size R%� log P' bits.  

 

2.5 Properties of LLL algorithm:  

Let ��, ��, ��, ⋯ , �! be an LLL reduced basis for a lattice ℒ ⊂ ℝ!. Then 

                                                1)  4%ℒ' ≤ ∏ |�+| ≤�+,� 2U%UVW'
X 4%ℒ', 

                                                2) ;�8; ≤ 2YVW
Z |�+∗|, if 1 ≤ > ≤ @ ≤ �, 

                                                3)  |��| ≤ 2UVW
X 4%ℒ'W

U,  

        4) For every [ ∈ ℒ with [ ≠ 0 we have |��| ≤ 2UVW
Z |[|.  

In this paper, we use the property 4 frequently.   
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3. Solving subset sum problem of low density: 

Let (^�, ^� , ^� , … , ^�/ be distinct positive integers. The subset sum problem is, given an integer 

s obtained as a sum of elements ^+, to find [+ ∈ (0,1/ for @ = 1,2, ⋯ � such that ∑ ^+[+ = _. The 

density of S is defined to be 4 = �
`ab (cde fY|�7+7�/. The subset sum problem is gh-complete. 

3.1 LLL algorithm solution  

Using LLL algorithm one can find a particular short vector in a lattice[4]. Since the reduced 

basis produced by LLL algorithm includes a vector of length which is guaranteed to be within a 

factor of 2UVW
Z  of the shortest non-zero vector of the lattice. In practice, however, the LLL 

algorithm usually finds a vector which is much shorter than what is guaranteed. So the LLL 

algorithm can be expected to find the short vector which yields a solution to the subset sum 

problem provided that this vector is shorter than most of the non zero vectors in the lattice. 

3.2 Justification  

Consider the matrix %� + 1' ∗ %� + 2' matrix G =

i
jj
jj
k2 0 0
0 2 0
0 0 2

⋯
0 �^� 0
0 �^� 0
0 �^� 0

⋮ ⋱ ⋮
0 0 0
1 1 1 ⋯ 2 �^� 0

1 �_ 1n
oo
oo
p
 

Let  the rows of the matrix B be �� , �� , �� , … , �� , ��M� and L be the lattice generated by these 

vectors. If [� , [� , [� , … , [� is a solution to the subset sum problem, then we have 

q = r [+ 
�

+,�
�+ − ��M� 

           =([� �� + [� �� + [� �� +  … + [���-��M�) 

         (2[� − 1, 2[� − 1,.  .  . , 2[� − 1, �%^�[� + ^�[�+.  .   . +^�[� −
_', 1' 

        

Since ([� , [� , [� , … , [�) is a solution and each [+ %1 ≤ @ ≤ �' is either 0 or 1, we have q+ ∈
(−1,1/ and q�M� = 0.  Since ‖q‖ = sq��+.    .   . +q�M�� + q�M�� , the vector y is a vector of short 

length in L.  If the density of the knapsack set is small, i.e the ^+ are large, then most vectors in L 

will have relatively large lengths, and hence y may be unique shortest non zero vector in L. If 

this is indeed the case then there is a good possibility of the algorithm finding a basis which 

includes this vector. Above algorithm is not guaranteed to succeed. Assuming that the LLL 

algorithm always produces a basis which includes the shortest non zero lattice vector, then 

algorithm succeeds with high probability if the density of the knapsack set is less than 0.9408. 

3.3 Application  

This is most powerful general attack known on knapsack encryption schemes[5]. It is typically 

successful if the density of the knapsack set is less than 0.9408. This is significant because the 
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density of a Merkle-Hellman knapsack[6] set much be less than 1, since otherwise there will  be 

many subsets of the knapsack set with the same sum, in which case some cipher texts will not be 

uniquely decipherable. Also, since each iteration in the multiple-iterated scheme lowers the 

density, this attack will succeed if the knapsack set has been iterated a sufficient number of 

times. Similar techniques have since been used to break most knapsacks schemes that have been 

proposed, including the multiple-iterated Merkle-Hellman scheme. 

4. Solving modular equations 

It is easy to compute the integer roots of a polynomial in a single variable over the integers. But 

the related problem of solving modular equations can be hard. We have different tools to 

solve t%[' = 0. But one cannot solve t%[' = 0 %�24 �' efficiently. The solution for the above 

equation was proposed by Coppersmith in the year 1997[7]. Here we present simple version of 

Howgrave-Graham[8]. 

        Let u be an integer and t ∈  vw[x be a monic polynomial of degree 4. Set y = uW
zC{

 for 

some | ≥ 0.  Then given 〈u, t〉, one can efficiently find all integers |[}| < y satisfying t%[}' =
0%�24 u' using the LLL algorithm.  This fact claims the existence of an algorithm which can 

efficiently find all roots of t modulo u that are less than y = uW
z. As y gets smaller, the 

algorithm’s runtime decreases. This theorem’s strength is the ability to find out all small roots of 

polynomials modulo a composite N. The idea is simply reducing the root finding problem in 

modular equations to the case of root finding equations over the integers. Thus one has to 

construct from the polynomial t~%[' with the root [} ≤ y modulo � a polynomial of t%[' 

which has the same root [} by applying standard root finding algorithms to t%['.  But how can 

be transform t~%[' into t%['?. This transform is exactly the core of the Coppersmith’s method. 

He defines the matrix which has the elements of the form �+,8%[' = u!C+[8t~+%[' for @ =
1, ⋯ � and some choice of > and it has a root [}�24 �!. Then every integer linear combination 

t%[' = ∑ �+,8%[',   ^+,8 ∈ v+,8  of polynomials in G also has the root   [}�24 �!. Our goal is to 

find among these linear combinations one which has the root [} not just modulo �! but also 

over the integers. For this one can choose coefficients of t%[' satisfies the relation t%[}' < �!. 

This is where the lattice reduction algorithm such as LLL comes into the picture. The first vector 

of a reduced basis satisfies the above inequality.  

4.1 Application 1: Attacking RSA with small e by knowing parts of the message: 

Suppose that � = � + [ for some known part � of the message and some unknown part 

[ ≤ uW
�. Now one can recover � from above scenario. This situation occurs in the case of 

stereotyped messages. Let %u, 5' be a public key in RSA public key cryptosystem[7]. 

Furthermore, let P = %� + [}'��24 u be an RSA encrypted message  with known M and 

unknown [},where |[}| ≤ uW
�. Then one can find [} in time polynomial in log u and 5. The 

above fact is direct application of Coppersmith’s method.  

 

 We can extend the above attack to hold in the case where the unknown part [ is 

somewhere in the middle of the message i.e � = � + [2L + �′ when [ begins at the %I + 1'�� 
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least significant bit. Here we need small modification to get monic polynomial from the equation 

t%[' = %� + [2L + �′'� − � by multiplying with 2CL�. 

 

4.2 Application 2: Repeated message and short pad attack 
 
Consider the situation when Bob sends two messages to Alice that only differ by a small 

amount. Also  

assume that  sender is using a exponent 3. In this case �� = ��%�24 u' and  %� + ['� =
��%�24 u'.  

One can eliminate the M from above two equations by using resultants, and is left with the 

equation   

[� + 3%�� − ��'[� + 3%��� + 7���� + ���'[�+%�� − ��'� = 0%�24 u', so one may discover the 

padding  

as long as |[| ≤ u
W
�. It is not obvious that recovering M from the knowledge of x, but this is true 

due to  
clever trick of Franklin and Reiter[9]. To explain this in our case let � be a polynomial 

indeterminate and  

calculate gcd (�� − ��, (� + [)� − ��) using the Euclidean algorithm. It can be shown that the 

result of  

this gcd will be the linear polynomial � − �, and hence we discover �. 

 

5.Simultaneous Diophantine Approximation 

Simultaneous Diophantine approximation is concerned with approximating a 

vector ��W
� , �Z

� , ⋯ , �U
� � of rational numbers by a vector of ��W

� , �Z
� , ⋯ , �U

� � of rational numbers with 

a smaller denominator �. Algorithms for finding simultaneous Diophantine approximation have 

been used to break some knapsack public key cryptosystems. The vector ��W
� , �Z

� , ⋯ , �U
� � of 

rational numbers is said to be a simultaneous Diophantine approximation of F-quality to the 

vector ��W
� , �Z

� , ⋯ , �U
� � of rational numbers if � < K and �� �Y

� − �+� ≤ KC�  for @ = 1,2, ⋯,n. One 

can reduce the problem of finding a F-quality simultaneous Diophantine approximation to the 

problem of finding a short vector in a lattice [2]. The latter problem can be solved using LLL 

algorithm. Consider the (n+1) dimensional matrix �+,8 as   

=�K @t @ = > and 1 ≤ @ ≤ �, 

=0 if i≠ > and @ ≤ @ ≤ �, 
=-�K8if @ = � + 1 and j≠ � + 1, 

=1 if @ = � + 1and j=� + 1 where � ≈ K� . 

5.1 Justification: 

 

Apply LLL algorithm to above matrix  and let the rows of the matrix � be denoted by 

(��, ��, ⋯ , ��, ��M�). Suppose that  ��W
� , �Z

� , ⋯ , �U
� � has a Fquality approximation 
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��W
� , �Z

� , ⋯ , �U
� �.  Then [ = ���� + ���� + ⋯ + ���� + ��M���M�=%�%��K − �K�', �%��K −

�K�', ⋯ , �%��K − �K�', �'is in L and has length less than approximately √� + 1K. Thus [ is 

short compared to the original basis vectors, which are of length roughly K�M�. Also, if 1 =
%1�, 1�, ⋯ , 1�, 1�M�' is a vector in L of length less than K, then the vector ��W

� , �Z
� , ⋯ , �U

� � 

defined as above is a F quality approximation.  

5.2 Application  

Given the public knapsack set, this technique finds a pair of integers �′, �′ such that 
�′
�′

 is close 

to 
�
� where � and � are part  of the private key of the Merkle-Hellman Cryptosystem  and 

� = �C��24 � and such that the integers �+′ = �′^+�24 �, 1 ≤ @ ≤ � form a super 

increasing sequence. This sequence can then used by an adversary to decrypt messages [2].  

6. Conclusions: 

In this survey paper, we have discussed some Cryptanalytic attacks using some tricky lattice 

techniques. First one, we solved subset sum problem of low density. Then we observe 

vulnerabilities of Merkle-Hellman knapsack cryptosystem which is based on subset sum 

problem. Second one, we solved univaraite modular polynomial equations. Using this we check 

the pitfalls of RSA function in two cases. Finally we discuss the problem of Simultaneous 

Diophantine Approximation problem. Again we observe vulnerabilities of Merkle-Hellman 

Cryptosystem. All are implemented in NTL number theory [12] library maintaining by victor 

shoup.  
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