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ABSTRACT 

One-way functions are widely used for encrypting the secret in public key cryptography, although they 

are regarded as plausibly one-way but have not been proven so. 

Here we discuss the public key cryptosystem based on the system of higher order Diophantine equations. 

In this system those Diophantine equations are used as public keys for sender and recipient, and both 

sender and recipient can obtain the shared secret through a trapdoor, while attackers must solve those 

Diophantine equations without trapdoor. Thus the scheme of this cryptosystem might be considered to 

represent a possible one-way function. 

We also discuss the problem on implementation, which is caused from additional complexity necessary 

for constructing Diophantine equations in order to prevent from attacking by tamperers. 
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1. INTRODUCTION 

 Since the public-key cryptography introduced by Diffie and Hellman,[1] various public-

key cryptosystems based on integer factorization or discrete logarithm such as RSA, El Gamal, 

or those using elliptic curve techniques have been developed.[2] They obtain the computational 

security by using the sufficiently large key which imposes the attackers too heavy 

computational cost to decipher through solving integer factorization or discrete logarithm 

problems. Although no polynomial-time method for factoring large integers or solving the 

discrete logarithm problem has been known, it has not been proven that there exist no 

polynomial-time solutions for those problems.[3] Therefore the cryptosystems which are 

proven that there is no polynomial-time solution for attackers are thought to be significantly 

secure against their attacks. 

 Here a new cryptosystem is discussed. In this cryptosystem the public key for recipient is 

expressed with Diophantine equation and his/her private key is expressed with a value on the 

quotient ring defined with another Diophantine equation.  

 A Diophantine equation has plural unknown variables and defines an algebraic curve or 

algebraic surface. It is know to find the lattice points as the solutions of Diophantine equation is 

difficult in general when the order of that Diophantine equation is higher than one.[7] This 

difficulty is derived from that the equation may have no nontrivial solution, a finite number or 

an infinite number of solutions. Regarding its solvability, there is no general method to 

determine by a finite number of operations whether the equation is solvable or not.[8] However 
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these properties of Diophantine equation are also useful for encrypting message to keep it secret 

and have been applied to some public key cryptosystems.[9][10] For example, the cryptosystem 

proposed by Lin, et al. is based on that the Diophantine equation dealt with in the system is 

practically non-soluble.[11] Precisely saying, the practically non-soluble Diophantine equation 

mentioned here indicates that there is no algorithm for solving it running in polynomial time. 

However it has been revealed that some alternative methods such as using AI[12], A* 

search[13] or genetic algorithm[14] are effective for solving numerically some specific types of 

Diophantine equation. It implies the cryptosystem built on a certain type of Diophantine 

equation might be broken within polynomial time by using those methods.    

 On the other hand, on the cryptosystem proposed here both sender and recipient can 

choose the form of Diophantine equation arbitrary. Therefore they can avoid the use of the 

specific types of Diophantine equation which are vulnerable to the methods mentioned above. 

The Diophantine equation used for recipient's public key is given by sender who has the 

trapdoor which is explained later and he/she can recovers the shared secret with that trapdoor, 

while attackers who have obtained the Diophantine equations as public keys for sender and 

recipient must solve them without the trapdoor. Thus this cryptosystem is expected to have the 

computational security stemmed from the difficulty of Diophantine problem.  

 In the following sections we discuss the basic idea for that cryptosystem, practical scheme 

and hardness of decryption by attackers. Also positive and negative aspects comparing with 

other cryptosystems are discussed. 

2. KEY EXCHANGE SCHEME 

 Firstly we discuss the basic idea on this key exchange scheme using examples. To simplify 

the discussion we use simpler Diophantine equations and quotient ring in the following 

examples than those used in practical cases. 

This key exchange scheme begins from the recipient side. The recipient sets the integer values 

of variables, say, x, y as x = 2, y = 3. Using those variables the recipient constructs a 

Diophantine equation such as, 

   x
3
 – y

2 
+ 1 = 0        

 1) 

The recipient sends the information of that Diophantine equation to sender with keeping the 

values of x and y secret. The above Diophantine equation (1) is the public key and x, y are the 

private keys for recipient. 

 Sender constructs the polynomial as Diophantine equation on the quotient ring Z[X,Y] / 

(X
3
 – Y

2 
+ 1) through the following procedures; Firstly the sender defines the following 

operator on that quotient ring. 

   T[a,b;c]   :  x → (x + a) 
c  

+ b      

 2) 

where a, b are integers and c is odd (c > 0). The inverse operator for it is given as,  
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   T[a,b;c] 
-1  

:  y → (y – b)
1/c  

– a      

 3) 

Sender then sets an element on the quotient ring, say xy
2
, and applies the operator (2) 

repeatedly to that element as, 

   T[a1,b1;c1] (T[a2,b2;c2] (...(T[an,bn;cn] (xy
2
))...) = T[a1,b1;c1] T[a2,b2;c2] ... T[an,bn;cn] 

(xy
2
)    

            = h(x,y)         

 4) 

where h(x,y) is an element in Z[X,Y] / (X
3
 – Y

2 
+ 1). For example, 

   T[1,2;3] T[0,3;1] (xy
2
) = T[1,2;3] (xy

2 
+ 3) 

            = (xy
2 

+ 4)
3 

+ 2 = x
3
y

6 
+ 12x

2
y

4 
+ 48xy

2 
+ 66    

 5) 

Sender keeps the parameters in the operators (i.e. 1, 2, 3 and 0, 3, 1 in T[1,2;3] and T[0,3;1] ) secret. 

Those parameters are the private keys for sender and actually form a "trapdoor". x
3
y

6 
+ 12x

2
y

4 
+ 

48xy
2 

+ 66 is expressed with various ways in Z[X,Y] / (X
3
 – Y

2 
+ 1). Sender chooses one of 

those representations, say, (y
2
 – 1) y

6 
+ 12x

2
y

4 
+ 48xy

2 
+ 66  = y

8
 – y

6 
+ 12x

2
y

4 
+ 48xy

2 
+ 66 and 

sends it with xy
2
 to the recipient. The form of polynomial y

8
 – y

6 
+ 12x

2
y

4 
+ 48xy

2 
+ 66 is the 

public key for sender. 

 Recipient calculates y
8
 – y

6 
+ 12x

2
y

4 
+ 48xy

2 
+ 66 and xy

2
 using his/her private keys x = 2, 

y = 3 as, 

   y
8
 – y

6 
+ 12x

2
y

4 
+ 48xy

2 
+ 66 = 10650    

 6) 

   xy
2  

= 18        

 7) 

and returns the value 10650 to sender with keeping xy
2  

= 18 secret. The Diophantine equation 

(6) is another public key for recipient, and the value of xy
2 
 is actually the shared secret between 

sender and recipient as shown below; Sender calculates xy
2  

using the inverse operators as, 

   T[0,3:1] 
-1 

T[1,2:3] 
-1 

(10650) = T[0,3:1] 
-1 

((10650 – 2)
1/3

 – 1)  

            = T[0,3:1] 
-1 

(21) = (21 – 3) – 0 = 18     

 8) 

and sender could recover the value of xy
2
 as 18.  

 Attackers who have had the public keys for both sender and recipient must solve the 

following system of equations to obtain the value of xy
2
. 



International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.2, March 2011 

46 

 

   x
3
 – y

2 
+ 1 = 0        

 9) 

   y
8
 – y

6 
+ 12x

2
y

4 
+ 48xy

2 
+ 66 = 10650    

 10) 

Since the above system is zero-dimensional, the attackers can solve it numerically or using 

Groebner basis.[5] However when the number of variables are greater than two, or the system 

is positive-dimensional, solving it is difficult in general.[6] 

 Based on the above discussion, we construct the general scheme for the key exchange 

cryptosystem. 

Step 1 

Recipient sets the integer values of variables x1, x2, ... , xm as,  

   x1 = k1, x2 = k2, ... , xm = km   (kj : integers)   

 11) 

and constructs Diophantine equation as recipient's public key using those variables as, 

   f(x1, x2, ... , xm) = 0       

 12) 

Recipient keeps k1, k2, ... , km secret.  

Step 2 

Recipient sends the above Diophantine equation (12) to sender.   

Step 3 

Sender sets an element g(x1, x2, ... , xm) in the quotient ring Z[X1, X2, ... , Xm] / (f(X1, X2, ... , 

Xm)) and defines the operators T[aj,bj:cj]   (j = 1, ... , n) on that quotient ring as, 

   T[aj,bj:cj] : x → (x + aj) 
cj
 +  bj      

 13)  

where aj, bj are integers and cj is odd (cj > 0). Then the sender applies those operators to g(x1, 

x2, ... , xm) as, 

   T[a1,b1:c1] (T[a2,b2:c2] ( ... (T[an,bn:cn] (g(x1, x2, ... , xm))) ... ) 

            = T[a1,b1:c1] T[a2,b2:c2] ... T[an,bn:cn] (g(x1, x2, ... , xm))  

            = h(x1, x2, ... , xm)       

 14) 
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where h(x1, x2, ... , xm) is an element in Z[X1, X2, ... , Xm] / (f(X1, X2, ... , Xm)) and has generally 

various representations. Sender chooses one of them as his/her public key. 

Step 4 

Sender sends the public key h(x1, x2, ... , xm) chosen in the previous step with the form g(x1, x2, 

... , xm) to recipient.  

Step 5 

Recipient calculates h(x1, x2, ... , xm) = p and g(x1, x2, ... , xm) = s using (11) where p and s are 

some integers.  

Step 6 

Recipient sends back the value p to sender with keeping the value s secret.  

Step 7 

Sender recovers the value s of g(x1, x2, ... , xm) as, 

   s = T[an,bn:cn] 
-1  

T[an-1,bn-1:cn-1] 
-1 

... T[a1,b1:c1] 
-1 

(p)   

  15) 

Thus sender and recipient could share the secret s. 

 The parameter c in the operator T[a,b:c] must be odd, otherwise the image of inverse 

operator; 

   T[a,b;c] 
-1  

: y → (y – b)
1/c  

– a      

 16) 

may not be determined uniquely and it causes the ambiguity on the obtained secret s.  

 It is possible to modify the above scheme to that on finite ring. In that case the 

Diophantine equation (12) is modified to a congruence equation with modulus w and the 

quotient ring is rewritten as, 

   Zw [X1, X2, ... , Xm] / (f(X1, X2, ... , Xm))    

 17) 

where Zw is the quotient ring composed of 0, 1, ... , w-1. The operator defined in Step 3 is 

modified as, 

   T[a,b:c] : x → (x + a) 
c
 + b       mod w     

 18) 

and its inverse operator is expressed as, 
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   T[a,b;c] 
-1  

: y → (y – b) 
c'
 
  
– a     mod w    

  19) 

where cc' = 1 mod ϕ(w) (ϕ(w): Euler's totient function). 

3. HARDNESS OF DECRYPTION FOR ATTACKERS 

 Attackers who have had the public information of sender and recipient are to solve the 

following system of two Diophantine equations; 

    f(x1, x2, ... , xm) = 0   ... in Step 1    

 20) 

    h(x1, x2, ... , xm) = p   ... in Step 5    

 21) 

and estimate the secret s = g(x1, x2, ... , xm) with the obtained solution. As mentioned in earlier 

section, it is difficult to solve (20) and (21) in integers when m is greater than two in general. 

  As another strategy, attackers may consider to decipher the sequence of operators appeared 

in Step 3; 

   T[a1,b1:c1] T[a2,b2:c2] ... T[an,bn:cn] (g(x1, x2, ... , xm)) = h(x1, x2, ... , xm) 
 22) 

by using (20) and (21). Once the above sequence has been deciphered, attackers can estimate 

the secret s = g(x1, x2, ... , xm) applying the inverse sequence of the above sequence. However 

the highest order among x1, x2, ... , xm in h(x1, x2, ... , xm) becomes greater in general along with 

the increase of the iteration number n expressed in (22). Since the greater the highest order is, 

the more equivalent expressions in the quotient ring  Z[X1, X2, ... , Xm] / (f(X1, X2, ... , Xm)) are,  

it is also virtually impossible to decipher the sequence of operators (22) unless attackers have 

known the iteration number n previously or the Diophantine equation (12) is linear. 

 When the system of higher order congruence equations are used for the scheme instead of 

Diophantine equations (20) and (21) as mentioned in earlier section, the size of secret key is 

generally determined by that of modulus w. Although the solution space for the system of 

congruence equations is finite, obtaining the secret s is still difficult for attackers because in 

general the problem to solve such system of higher order congruence equations is NP-complete 

when m > 2.[4] 

4. PRO AND CON 

 Attackers must solve the system of Diophantine equations to estimate the shared secret 

between sender and recipient. Generally it is hard to solve that system when it is positive-

dimensional. Attackers also subject the similar constraint on the corresponding higher order 

congruence equation system. That feature brings the proven security which does not depend on 

the performance of attackers' computational capacity. Namely sender and recipient can choose 

the public keys which have the length shorter than that of public keys used for other 

cryptosystems without harming the security, and the shorter length of public keys would 

alleviate the computational load considerably.  
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 Comparing with other key exchange cryptosystem such as RSA or Diffie-Hellman scheme, 

this cryptosystem needs additional key exchange step, that is, recipient must tell a Diophantine 

equation from which the quotient ring is constructed to sender prior to key exchange between 

them. It may increase the vulnerability regarding the security on this key exchange 

cryptosystem. 

 Sender and recipient exchange Diophantine equations as their public keys. Although 

sender and recipient can choose their Diophantine equations arbitrary, some specific 

considerations are required to construct those Diophantine equations practically in the actual 

key exchange scheme as discussed below. 

 Firstly in Step 1 described in the section: Key exchange scheme, the Diophantine equation 

(12) must be constructed carefully to avoid the case that it has unique solution, otherwise as 

soon as solving that equation, attackers get the secret keys expressed in (11). Next in Step 3, the 

Diophantine equation (14) must not have unique solution as well as (12), also it must be 

complicated enough to prevent from inferring the sequence of operators used for constructing 

(14) by attackers. It is not practical that the above Diophantine equations are constructed 

manually by sender and recipient in general cases, and it will be necessary to implement 

appropriate programs into that cryptosystem to generate those equations automatically based on 

the values of variables x1, x2, ... , xm set in Step 1, and aj, bj, cj and n set in Step 3. To prevent 

from breaking the patterns of generating them by attackers, the forms of Diophantine equations 

determined by those programs must not be static, but dynamically change according with the 

input, or randomly. Thus the implementation of this cryptosystem will impose additional 

calculation load for them with that for dealing with the Diophantine equations symbolically. 

5. SUMMARY 

 In the proposed key exchange cryptosystem the system of two higher order Diophantine 

equations is considered for encrypting shared secret between sender and recipient. 

 The first Diophantine equation is created by recipient and sender creates another 

Diophantine equation on the quotient ring based on the first Diophantine equation. The shared 

secret has the form of polynomial and both sender and recipient can obtain its value by a 

trapdoor without solving the system of those Diophantine equations explicitly. 

 On the other hand, attackers must solve the following system of two Diophantine 

equations mentioned above in order to obtain the secret.  

    f(x1, x2, ... , xm) = 0       

 23) 

    h(x1, x2, ... , xm) = p        

 24) 

In general it is hard to solve the above system in integers for x1, x2, ... , xm when m is greater 

than two. 

 Although this key exchange cryptosystem has the intrinsic security mentioned above, it 

requires rather complicated implementation comparing with other key exchange cryptosystems. 
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This complexity is due to generate Diophantine equations used as public keys with 

unpredictable manner lest attackers detect the pattern of their generations. The specifically 

designed program must be implemented in the cryptosystem for that purpose. 
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