
International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

DOI : 10.5121/ijwsc.2013.4201 1

SOA-A GENERIC APPROACH FOR INTEGRATING
LOOSELY COUPLED SYSTEMS WITH OTHER

SYSTEMS

D.R. Ingle1 and Dr. B.B. Meshram2

1Department of Computer Engineering, Bharati Vidyapeeth College of Engineering, Navi
Mumbai, India

dringleus@yahoo.com
2Department of computer Technology, VJTI, Mumbai, India

bbmeshram@vjti.org.in

ABSTRACT

Various organizations generate data in various domains which is queried and analyzed by users. This limits
the possibility of database integration with other systems. We describes a generalized approach comprising a
loosely couples system and integrate with other system. It deals with the setting up the environment for
implementing the system. User Interface screen shows how the user will interact with the system and the data
entry forms required to gather data for the system.

KEYWORDS

SOA, CORBA, DCOM, BPEL, XML, SOAP.

1. INTRODUCTION

The fundamental concept in SOA is a service [1]. We define a service as a discrete unit of
business functionality that is made available through a service contract [2]. The service contract
specifies all interactions between the service consumer and service provider [3]. This includes:
Service interface, Interface documents, Service policies, Quality of service (QoS) and
Performance [4]. One of the main differences between a service and other software constructs is
that a service is explicitly managed. The QoS and performance are managed through a service
level agreement (SLA). In addition, the entire service life cycle is managed—from design, to
deployment, to enhancements, to maintenance [5]. There are two main aspects to the service itself
[6]. The Web Services architecture describes the principles behind the next generation of e-
business architectures, presenting a logical evolution from object-oriented systems to systems of
services [7]. Web Services systems promote significant decoupling and dynamic binding of
components [8]. All components in a system are services, in that they encapsulate behavior and
publish a messaging API to other collaborating components on the network [9]. Services are
marshaled by applications using service discovery for dynamic binding of collaborations [10].
With the Web Services approach, application design becomes the act of describing the
capabilities of network services to perform a function and describing the orchestration of these
collaborators [11]. At runtime, application execution is a matter of translating the collaborator
requirements into input for a discovery mechanism, locating a collaborator capable of providing
the right service and orchestrating message sends to collaborators to invoke their services [12].

mailto:dringleus@yahoo.com
mailto:bbmeshram@vjti.org

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

2

What is important here is that consumers of the service should. Fusion Middleware face the
challenges like communicating entities may take on different roles such as [13] client server or
peer-to peer. Based on the interaction mode like synchronous invocations, asynchronous message
passing, coordination through shared objects performance affects [14]. Fusion middleware also
face problem of the scalability, availability, reliability, concurrency, security widespread
computing [15].

1 .1 Backgroundand Motivation

SOA is a long-term transition that will reshape the business, and IT -- all parts of IT -- need to be
full partners with the business side in this journey [16]. Service-oriented architecture differs from
most other integration projects in that it's an effort that reaches outside the IT silo, requiring
participation from all ends of the enterprise [17].

1.1.1 Objective

A. Logical view:

1. Business level operation for this model include checking the status of the student in the merit
list based on the certain condition
2. It is also based on the suggestion of the educational loan from the number of the banks
3. Orchestration of the process is formed to get the final result as the list of the admitted student
taken the advantage of the educational loan.

B. Message Orientation

1. From the service provider to the consumer how the values of the variables are moving across is
considered using message orientation.
2. Depending on the synchronous and the asynchronous type of messaging the variables are
defined and the values are used.
3. Choreography of the business rules are sequenced to check the working.

C. Description orientation

1. A service is described by machine-process able metadata.
2. Merit list generation is specified with the single service which further can be fragmented using
various conditions.

1.3 Problem Statement

Student admission is the process for admitting the student in the organization. This process
includes list of student's personnel information with the academic information. List of the selected
students are displayed according to their educational information. Selected students can take
admission with the payment of the fees. Some time due to financial problem and the unaware of the
educational loan student may lose admission in the good organization. For the above process
different application may be constructed. Specifically application form, merit list module,
admission form, payment modules. If status of the student's admission is to check whether
admitted or not, two different application modules need to be checked. Retention of both
modules may be problematic if the both the packages are different. Writing the combined
interface is the costly and time consuming phase if the existing modules are working fine.
Integration can be a problematic it affects a lot on the business logic of one on another. Basic
problem is to make integration of the modules without changing the business logic of the existing

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

3

one to form the legacy module. In the institute Student's personnel information is an application
storing the student's personnel information. Similarly Student's academic information is another
application for storing the student's academic performance. Services provided by these two are
different. Similarly banking application is for the educational loan having various services like
interest rate, documents required, repayment etc. Accessing all these application under one roof is
difficult. So there should be a combine system which will provide all the information at the same
time. Reconstructing the whole system will be time consuming. Also it will be standalone
application which will be platform dependent.

1.3.1 Detailed Statement of the Problem

Problem of combining the interfaces from the different application with business logic can be done
with Service Oriented Architecture. SOA, based on Web Services, promises to simplify
integration by providing universal connectivity to existing systems and data. SOA is an
architectural approach to building systems based on the architecture and a strategic and business
vision, with engineering discipline and governance, and a supporting organizational structure.
Using SOA strategic reuse of modules across multiple departments' applications can be done.
SOA provide more agile support to business processes, with the change management impacts more
efficiently and effectively.

Modules used in the Proposed System

a. Student application form module
1. Online application form for student resulted as application number.
b. Merit list generation module
1. generating the merit list based on the condition like gate
2. generating the merit list based on the condition like gate with category
3. sponsor student s merit list generation based on the interview and written test performance
c. Admission module by Administrator
1. Admitting student listed in the merit list
2. Payment option selected
d. Banking educational loan module
1. List of banks educational loan schemes
e. SOA integrated module
1. Check the status of the student based on the application form no.
2. Check the status of the student present in the merit list as per the condition for gate/sponsor
3. Check the financial status of the student
4. If it is not satisfactory then suggest for the educational loan
5. Educational loan from certain bank is the output of the number of comparison done among
various banking educational loan scheme.
6. If the student sanctioned the loan this information is saved into the admission form as a separate
record
7. This database is utilized as the future reference for the next student for better selection of the
bank.

The rest of the paper is organized as follows. Section 2 deals with Case study of M.Tech
admission, system analysis, design and proposed system deals with Section 3. Section 4 deals
with Algorithms for admissiom using SOA and section 5 gives the conclusion.

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

4

2. CASE STUDY M.TECH ADMISSION MODEL USING SOA

2.1 Introduction

The data integration model to overcome the data integration issues related to the SOA. Each layer
in this model performed the task related to data integration. Uniform data accessor is the interface
to various heterogeneous data sources. XML view and SOA mapper encapsulates the uniform data
accessor to the standard service of Web Service and then starts data integration through it. Data
integration using processing engine uses metadata of XML Schema which is the basis of XML
view. XML Schema is like the table in relational database while XML view is just like the view
corresponding to the table in relational database. The XML data integration view represents the
constitution of practical data as where the data is from, which process is needed for table data,
how to combine the data from different tables and so on.

Figure 1 Proposed System For Dynamic Data Integration Model Using Intelligent Database

2.2 Intelligent Database

With this model data sources from the various application can be integrated to respond to the end
user. For this response model uses XML schema to represent the result. Problem arises if the
similar type of the request raised from the user then again the same integration technique is
repeated. This causes the efficiency problem. Solution for the above problem can be solved using
the intelligent database after the generation of the result. This result is in the form of XML
format. So the task is to convert the XML representation in the database format.

2.3 XML into database storage

XML is designed to transport and store data. XML is important to know, and very easy to learn.
XML is used as storage or interchange format for data that is structured, appears in a regular

order and is most likely to be machine processed instead of read by a human. Problem can be
solved by mapping from xml message inputs to stored procedure input parameters using
business objects

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

5

XML stands for eXtensible Markup Language.

This include the advantages as
Contract between xml and table
Guarantees the matching of elements and columns

This technology will reuse the existing application of student's personnel information and
student's academic information with banking information application to form integrated new
application. Student applying for the educational loan with all the information from personnel and
academic information with selected banking information will be saved in the database. Security
of the transaction is build using choreography. Storing and retrieving the transactions intelligently
into db.

3 . SYSTEM ANALYSIS

This section explains how the system is analyzed to carry out the work for proposed system. First
we will perform requirement analysis is done for the system. Secondly the UML Diagrams and
workflow Diagrams, along with the ER Diagram and various Data Flow Diagrams for the system
are explained.

3.1 Introduction

Analyzing requirements involves studying the current system and finding out how it works.
Requirement is gathered by studying basic business process, collecting input data and data which is
produced. ER diagram is basically used to identify the data for the system to be developed. A data
flow diagram is graphic description of a system or a portion of the system.

3.2 Static Modeling of the system

This system contains the database of student applied along with banks. This system also stores
information of the student who has taken the admission with the educational loan facility. To
analyze the system we have used UML strategy.

3.2.1 Use Case Diagram

The systems use case diagram is shown in figure 3. The system use case diagram contains student
and admin as the main actor.

Figure 3. M.Tech. Admission System Using SOA Use Case Diagram.

Following figure 5 shows the merit list generation operation for the admin. Using this he can
generate different merit list based on the type or the category.

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

6

Figure 5. Merit list generation use case diagram

Figure 6. Bank information use case diagram

Figure 6 explains the graphical representation of the admission model which is handled with
admin. He checks for the form no of the student and then performs the admission procedure.

Figure 7. Admission procedure use case diagram

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

7

Figure 7 shows the bank information model. Figure 8 shows the educational loan model of
the system using this student can see the bank information for educational loan

Figure 8. Educational loan use case diagram

3.2.2. Class Diagram

The class diagram is a static diagram. The purpose of the class diagram can be summarized as:

Forward and reverse engineering
Describe responsibilities of a system.
Analysis and design of the static view of an application.
Base for component and deployment diagrams.

Figure 9 below shows class diagram for the online application system. It includes following
classes:

1. Validatelogin: this class uses the students information to check the validity of the student. this
is used if student wants to update his information.
2. Editrecords: this class allows student's information to be updated.
3. Serverenquiryform: this class works as the servlet to allow students information to save in the
database.

Figure 9. Online application class diagram

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

8

Figure 10 below shows class diagram for the meritlist generation system. It includes:

1. Meritgeneration: this class uses the gate score information to create the merit list for gate
student. 2. Meritgeneratelist: this class is used to access the database information from the merit
student informationto display the information.
3. Sponser: saves the info of the student in the sponser's examination performance into the
database.

Figure 10. Merit list generation class diagram

Figure 11 below shows class diagram for the bank information system. It includes following
classes:

1. Login : this class use for the admin as well as for student to check the login validity.
2. Bankinfo: this class use to add the banking information into the database.
3. Education bank loan: this class is use to save the selected bank information for the particular
student

Figure 11 Bank information class diagram

Figure 12 below shows class diagram for the educational loan for the integrated system. It
includes following classes:
1. Validatelogin: this class used to check validity of the student.

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

9

2. Checkmeritlist: this class is used to check presence of the student in the merit list. This shows
the general and category wise merit list number of the student.

Figure 12. Educational loan class diagrams

3.2.3. Dynamic UML Diagram

UML is a general purpose modelling language. It was initially started to capture the behavior of
complex software and non software system and now it has become an OMG standard. UML
provides elements and components to support the requirement of complex systems. UML follows
the object oriented concepts and methodology. So object oriented systems are generally modeled
using the pictorial language.UML diagrams are drawn from different perspectives like design,
implementation, deployment etc.

UML Interaction diagram: describes the dynamic interaction of different elements of the system.
Activity diagram: describes the business and operational step-by-step workflows of

components in a system. An activity diagram shows the overall flow of control.

3.2.3.1. State chart Diagram

State Chart Diagram describes different states of a component in a system. State chart
diagram, is an illustration of the states an object can attain as well as the transitions between those
states in the Unified Modeling Language (UML). In this context, a state defines a stage in the
evolution or behavior of an object, which is a specific entity in a program or the unit of code
representing that entity. State diagrams are useful in all forms of object-oriented programming
(OOP). The concept is more than a decade old but has been refined as OOP modeling paradigms
have evolved. It is used to model dynamic aspect of a system.

Fig 14 shows State chart diagram for online application model. model goes through different states
as connected, loging, adding new, updating information.

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

10

Figure 14. Online application state chart diagram

Fig 15 shows Statechart diagram for merit list generation application model. model goes through
different states as connected, loging, creating and displaying merit list

Figure 15. Merit list generation state chart diagram

Fig 16 shows Statechart diagram for educational loan for the integrated system model. model
goes through different states as connected, loging, selecting the bank, saving the records in the
database.

Figure 16 Educational Loan Using Intergrated Model State Chart Diagram

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

11

3.2.3.2. Interaction diagrams

Interaction diagrams are models that describe how a group of objects collaborate in some
behavior - typically a single use-case. The diagrams show a number of example objects and the
messages that are passed between these objects within the use-case. So the purposes of
interaction diagram can be describes as:

To capture dynamic behavior of a system.
To describe structural organization of the objects.
To describe interaction among objects.

Figure 17 shows sequence diagram for merit list generation model. This shows the way admin
interact with the merit list generation model.
Figure 18. shows sequence diagram for online application model.

Figure 17. online application model sequence diagram

Figure 18. merit list generation sequence diagram

3.2.3.3 Activity Diagram

Activity diagrams are graphical representations of workflows of stepwise activities and actions[1]

with support for choice, iteration and concurrency. In the Unified Modeling Language, activity
diagrams are intended to model both computational and organisational processes (i.e. workflows).
Activity diagrams show the overall flow of control

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

12

Figure 19. online application activity diagrams

Figure 20. Merit list generation activity model

3.2.3.4 Workflow of System

A workflow consists of a sequence of connected steps where each step follows without delay or
gap and ends just before the subsequent step may begin. It is a depiction of a sequence of
operations, declared as work of a person or group, an organization of staff, or one or more simple
or complex mechanisms. Workflow may be seen as any abstraction of real work. For control
purposes, workflow may be a view on real work under a chosen aspect, thus serving as a virtual
representation of actual work. The flow being described may refer to a document or product that
is being transferred from one step to another.

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

13

Figure 21. Workflow of the student online application model

Figure 22. Workflow diagram of the merit list generation model

Figure 23. Workflow diagram of the educational loan for the student integrated model

Figure 24 Workflow of Educational loan for SOA module

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

14

3.3. Design M.Tech admission model using SOA System

3.3.1 Database System Analysis and Design

Database system contains the data to load in the database. For analyzing the system we have used
structured analysis. As a part of this process, we have generated ER diagram dataflow diagram
and component diagram for different modules of the system.

Figure 25 E-R diagram of the online application model

Figure 26 E-R diagram of the educational loan for the student using integrated model

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

15

Figure 27 E-R diagram of the admission process model

3.3.2 Data Flow Diagram

Data flow diagram shows the transformation of data from input to output, through processes. We
have analyzed the system up to the second level of data flow diagram.

3.3.2.1 Context Level DFD

The student will receive the data or requested resources at the client side in terms of response
from the server. Figure 28 shows the context level DFD of the system.

Figure 28 Context diagram of the educational loan for student using integrated model

3.3.2.2 Level-1 DFD
Figure 29 shows the level-1 DFD for the system. The proposed system allows student to check
the presence in the merit list. Also check for the educational loan form the existing bank
information. Admin will monitor the application model and admit the student those are present in
the merit list.

Figure 29: Level DFD diagram of the educational loan for student using integrated model.

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

16

3.4 Component Diagram

The Component Diagram helps to model the physical aspect of an Object-Oriented software
system. It illustrates the architectures of the software components and the dependencies between
them. Those software components including run-time components, executable components also
the source code components.

So the purpose of the component diagram can be summarized as:

Fig shows component diagram.

Figure 30 Online application component diagrams

Figure 31 Merit list generation component diagram

Figure 32 Educational loan for student using integrates system's component diagram

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

17

Figure 33 Admission procedure model component diagram

3.5 Package Diagram

Package diagrams organize the elements of a system into related groups to minimize
dependencies among them.Fig shows package diagram.

Figure 34 package diagram of the system

4. ALGORITHMS

4.1 Pseudocode for M.Tech admission model using SOA

4.1.1 Publishing Web services to a UDDI registry

1. Creating services: create the services / reusable methods at the producer side. Service description
of the method should be made available at the producer side.

4.1.2 Pseudo code for producer

Input: publishURL, UDDIuserid, UDDIpassword
Output: provider in the list
1. Class name for producer
2. {
3. Declare UDDIProxy proxy;
4. Assign publishURL=path; uddiuserid and uddipassword; trustStoreFilename = path;
trustStorePassword = value;
5. classname {
6. call setEnvironment();
7. call setupProxy();
8. }
9. }
Pseudo code for setEnvironment()

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

18

Input : username, password
Output: updated provider list
1. {
2. Set appserver username and password 3. Add SSL as a supported protocol.
4. Add provider to the provider list
5. }

Pseudo code for creating UDDIProxy
Creating the UDDIProxy
Input : inquiryURL;
Output: Proxy UDDI setup
1. setupProxy()
2. {
3. Create object proxy for UDDIProxy(); 4. proxy.setInquiryURL as inquiryURL; 5. if
MalformedURLException occured
6. display error Can't create proxy - exit ...
7. }
8. }

2. Setting up the registry and Publishing your services: defined services at the register with
it type of service i.e. business.
Pseudo code for producer
Input: modelkey
Output: published business service businesskey
1. Producer
2. {
3. Create Classname classoject;
4. Classobject.publishBusinessEntity();
5. Classobject.publishBusinessService(businesskey, modelkey);
6. ….//repeat for the all the class to be register at the registry;
7. }

4.1.3 Discovering Web Services from a UDDI registry

1. Running Web services: for accessing the web services that are published at the register side
first develop the client and then access the web service The client: first assign the location of the
register to the client using following locator.

Locator -- sets up the connection to the UDDI registry for queries.
ModelLocator -- locates the technical model based on a model name.
ServiceLocator -- locates all the services implementing a given technical model and finds
the URLs of the actual services.
BusinessLocator -- retrieves and displays information about a business. Connecting to the
registry -- the Locator class Input: inquiryurl path Output: connection to the registry\

1. Class locater
2. {
3. Declare Uddi proxy object representing the UDDI registry;
4. Assign inquiryurl=path;
5. Locater();
6. Call setupproxy();
7. }

Locating the technical model -- the ModelLocator class Call the locator class
The find_tModel method

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

19

find_tModel() method to find tModels by name, categories, identifiers, or any combination of them. The
last parameter, (int maxRows)
TModelList find_tModel()
input: tModelName, categorybag, identifierbag, findqualifier, maxrows
output: tModelKey
1. {
2. Assign tModelInfoVector as Null;
3. Define findQualifier, findQualifier findqualobject;
4. Settext for the object using sortbydatedesc;
5. Create findQualifiers findqualifierobject;
6. find model (Name, findQualifiers);
7. assign values to vector = tModelList. getTModelInfos().getTModelInfoVector();
8. catch(TransportException)
9. catch(UDDIException)
10. if(Vector.size()>0)
11. {
12. Assign tModelInfo = 0th vector; tModelKey = tModelInfo.getTModelKey();
13. }Else
14. {
15. Display no tmodel
16. name;
17. }
18. return tModelKey;
19. }
Locating the services -- the ServiceLocator class
Locating BusinessService using UDDI by using the find_service() method of the
UDDIProxy class. find_service() method of the UDDIProxy class to find services in the
registry based on the following:

The UUID of a BusinessEntity
The name of the service
The category information of a service
The tModel information of this service
Any combination of these parameters.

ServiceList find_service

Input: businessKey, Vector names, CategoryBag, TModelBag , FindQualifiers , maxRows
Output: serviceKeys
findServices()
1. {
2. Create mpdellocator modelobject;
3. Assign tModelKey = findTModel(tModelName);
4. Create tmodelbag modelbagobject;
5. Add tmodelkey to tModelBag;
6. create ServiceList myServiceList = proxy.findservice (null, null, null, tModelBag,
null, 0);
7. serviceInfoVector = myServiceList.getServiceInfos().getServiceInfoVector();
8. }catch(TransportException)
9. catch(UDDIException)
10. if(serviceInfoVector.size() == 0)
display no service found;
11. Create Map serviceKeysobject;
12. repeat till serviceInfoVector.size reached
13. {
14. serviceInfo = serviceInfoVector.get(i); serviceKey = serviceInfo.getServiceKey();
15. businessKey = serviceInfo.getBusinessKey(); serviceKeys.put(serviceKey, businessKey);

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

20

16. }
17. return serviceKeys;
18. } 19. }

4.1.4 The find_business()

BusinessEntity can be located using UDDI by using the find_business() method of the UDDIProxy
class.
find_business(
input: Vector names, DiscoveryURLs, IdentifierBag, CategoryBag, TModelBag,
FindQualifier, int maxRows
output: BusinessList
getserviceURL()
1. {
2. Create urlmap object;
3. Assign servicedetails as proxy.get_servicedetail(service keys);
4. Assign businessServices = serviceDetail.getBusinessServiceVector();
5. }catch(TransportException t)
6. catch(UDDIException)
7. Check for (businessServices.size() == 0){
8. Display failed to find;
9. }
10. repeat till businessServices.size reached
11. {
12. assign serviceKey = businessService.getServiceKey(); bindingVector= 13.
businessService.getBindingTemplates(). getBindingTemplateVector();
14. bindingTemplate = null;
15. Get bindingTemplate = bindingVector.elementAt(); Get AccessPoint accessPoint
16. = bindingTemplate.getAccessPoint();
17. if(accessPoint.getURLType().equals("http"))
18. {
a. urlMap.put(accessPoint.getText(),serviceKey);
19. } 20. } 21. }
22. return urlMap;
23. }
Function bindservice()
Input : business key
Output: business vector
1. class BusinessLocator extends showBusinessDetail(businessKey){
2. usinessDetail = proxy.get_businessDetail(businessKey);
3. }catch(TransportException).
4. }catch(UDDIException)
5. Get businessEntityVector =businessDetail.getBusinessEntityVector();
6. Check if(businessEntityVector.size() == 0)

5. CONCLUSION

Proposed system is constructed to integrate number of the application with the help of web
services. Web services produced by the service producer are stored at the central registry to be
available to use for the service consumer. Business process Execution language is used to
composite the web services. Composition of the web service will give the result as per the
business logic implemented for the requirement.

International Journal on Web Service Computing (IJWSC), Vol.4, No.2, June 2013

21

REFERENCES

[1] Michael Rosen, Boris Lublinsky, Kevin Smith, “Applied SOA: Service-Oriented Architecture and
Design Strategies”, Wiley Publishing, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 2008
by Wiley Publishing, Inc., Indianapolis, Indiana Published simultaneously in Canada ISBN: 978-0-
470- 22365-9.

[2] A Dynamic Data Integration Model Based on SOA Jun Wang 2009 ISECS International Colloquium
on Computing, Communication, Control, and Management

[3] DCIO, DOD OASD NII, ―Net-Centric Checklist‖, version 2.1.2 March 31th, 2004.
[4] W. Kernochan, ―Mainframe Security Changes as Web Services Arriveǁ.
[5] M. P. Singh and M. N. Huhns, Service-Oriented Computing, John Wiley & Sons, 2005 .
[6] Business Process Intelligence System: Architecture and Data Models Liping An1, Jianyuan Yan1,

Lingyun Tong2
[7] Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and

system approaches. AI Commun. 7, 39–59 (1994)
[8] Lingjuan Li,Wenyu Tang. Research of the Applications of CBR in Business. Journal of Nanjing

University of Posts and Telecommunications,No.10,2006 pp:17-21 Based on SOA and CBR
[9] Yan Qin, Zhang Guoliang, Wang Keyi Knowledge-enabled Human Resource Development Based on

e-HR. Computer Applications and Software, No.11,2008
[10] I. Matsumura, T. Ishida, Y. Murakami, and Y. Fujishiro. Situated web service: Context-aware

approach to high speed web service communication. In IEEE International Conference on Web
Services (ICWS-06), pages 673–680, 2006.

[11] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Y aron Goland, Satish Thatte, "Business Process
Execution Language for Web Services Version 1.1", 5 May 2003

[12] Service oriented architectures: approaches, technologies and research issues Mike P. Papazoglou •
Willem-Jan van den Heuvel

[13] Service-Oriented Architecture Concepts, Technology, and DesignThomas Erl
[14] ESB Infrastructure’s Autonomous Mechanism of SOA Rui Wen1, 2, Yaping Ma1 and Xiaoqing

Chen1 2009 International Symposium on Intelligent Ubiquitous Computing and Education
[15] Luis Garc´es “Building an Enterprise Service Bus for Real-Time SOA: A Messaging Middleware

Stack” -Erice 2009 33rd Annual IEEE International Computer Software and Applications Conference
[16] a b c Bell, Michael (2008). "Introduction to Service-Oriented Modeling". Service-Oriented Modeling:

Service Analysis, Design, and Architecture. Wiley & Sons. pp. 3.ISBN 978-0-470-14111-3.
[17] Bell_, Michael (2010). SOA Modeling Patterns for Service-Oriented Discovery and Analysis. Wiley

& Sons. pp. 390. ISBN 978-0470481974.

Authors Short Biography

Mr. D.R. Ingle (ISTE LM’2004) is Professor of Computer Engineering Department at
Bharati Vidyapeeth College of Engineering, NaviMumbai, Maharashtra state, India
received bachelor degree, and Master degree in computer engineering. He has
participated in more than 10 refresher courses to meet the needs of current technology.
He has contributed more than 25 research papers at national, International Journals. He
is life member of Indian Society of Technical Education. His area of interest are in
Databases, intelligent Systems, and Web Engineering.

Dr. B.B.Meshram (CSI LM’95, IE ’95) is Professor and head of Computer Technology
Department at VJTI, Matunga, Mumbai, Maharashtra state, India. He received bachelor
degree, Master degree and doctoral degree in computer engineering. He has
participated in more than 30 refresher courses to meet the needs of current technology.
He has chair more than 15 AICTE STTP Programs and conferences. He has received the
appreciation for lecture at Manchester and Cardip University, UK. He has contributed
more than 200 research papers at national, International Journals. He is life member of
computer society of India and Institute of Engineers. His current research interests are in Databases, data
warehousing, data mining, intelligent Systems, Web Engineering and network security.

