
International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

DOI : 10.5121/ijwsc.2011.2304 43

EVALUATIONOFCOMPUTABILITY
CRITERIONS FORRUNTIMEWEB SERVICE

INTEGRATION
Thirumaran.M1, Dhavachelvan.P2, Aranganayagi.G3 and S.Abarna4

1,3,4 Department of Computer Science and Engineering, Pondicherry Engg College, India.
2Department of Computer Science and Engineering, Pondicherry University, India.

ABSTRACT

T Today’s competitive environment drives the enterprises to extend their focus and collaborate with their
business partners to carry out the necessities. Tight coordination among business partners assists to share
and integrate the service logic globally. But integrating service logics across diverse enterprises leads to
exponential problem which stipulates developers to comprehend the whole service and must resolve
suitable method to integrate the services. It is complex and time-consuming task. So the present focus is to
have a mechanized system to analyze the Business logics and convey the proper mode to integrate them.
There is no standard model to undertake these issues and one such a framework proposed in this paper
examines the Business logics individually and suggests proper structure to integrate them. One of the
innovative concepts of proposed model is Property Evaluation System which scrutinizes the service logics
and generates Business Logic Property Schema (BLPS) for the required services. BLPS holds necessary
information to recognize the correct structure for integrating the service logics. At the time of integration,
System consumes this BLPS schema and suggests the feasible ways to integrate the service logics. Also if
the service logics are attempted to integrate in invalid structure or attempted to violate accessibility levels,
system will throw exception with necessary information. This helps developers to ascertain the efficient
structure to integrate the services with least effort.

Keywords

Business Logic Model, Service Integration, Business Logic Property Evaluation System, Computability
and Traceability Evaluation.

1. INTRODUCTION

With the trend in economic globalization and enormous development in information technology,
the demand for information and logic sharing has become more serious which urges the
companies to collaborate closely with their business partners to gain access to needed information
and business logic. Over the past decade, the companies have been using various technologies
and products in an attempt to support collaboration. These solutions vary from basic point-to-
point connection approach such as EDI, expensive ERP systems such as Rossetanet, ebXML, etc.
The current technologies semi-automatically integrate the services and it needs manual
intervention in number of areas. It requires developers to analyze the service to identify possible
way for integration. It is a complex task which needs developers to understand both service and
identify better way for integration. Also the present technologies does not consider how to
composite of services and how to describe the service contracts. We proposed Business Logic
model to face these brutal challenge and complexities.

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

44

The proposed model enables the automation of service integration by coordinating sequences of
tasks and supports sophisticated exception management. The proposed Business Logic Model
uses property evaluator method to evaluate the service to ascertain correct structure for
integration. It analyses at which level service fulfills particular property in functionality level and
also as per contract, accordingly develops flow diagram as it reflects property evaluation
outcome. Then BLP (Business Logic Property) schema is generated from this diagram holding
necessary information for integration. While integration, System utilizes this BLP schema to
identify proper structure for integration and to spot various actions can be carried out with the
service. With this flocked information from BLP schema, it integrates the service automatically.
If services are integrated as violating contract or with invalid structure, the system will throw
exception with necessary information. End-to-end security is provided by annotating service
descriptions with security objectives used to generate convenient Quality of Protection
Agreements between partners. Conversely, agreements are processed by a dedicated matching
module with respect to security requirements stated by the SLA. In addition to this, we need a
mechanism to monitor the resource while sharing to adapt the modifications made by the
developers. Source control Management tracks the modification and facilitates impact analysis
between the existing and modified services that ensures computability criteria. The source control
management system allows us to see the historical background behind the changes made to the
business logic of the web services. This helps the developers to see where the changes have been
progressively made and include or remove the change as per the need. Thus this would be a
powerful and easiest model for developers to integrate the services. Here we demonstrated
service integration with BLP schema generation for banking application using Netbeans IDE.

2. RELATED WORKS
In this section, we discuss various research work and different solutions exist in the market for
service integration. Zuoren Jiang proposed a model called ‘Multi-layer Structure for Dynamic
Service Integration (MSFDSI)’ in SOA which adds authorized institution and a service
integration & analysis adapter to achieve the service authorization, service analysis and dynamic
service integration. Service integration & analysis adapter analyses and search the service that
can meet the service requestor’s requests according to service contracts stated by authorized
institution [1]. W.J.Yan proposed B2B integration approach for SME which provides a feasible
and cost-effective B2Bi solution for SMEs by leveraging the characteristics of Web Services. It
utilizes pull and push mechanisms for effective information exchange and sharing between
trading partners. This approach has been incorporated in a B2Bi Gateway which enables SMEs to
participate in business-to-business collaboration by making use of Web Services [2]. Liyi Zhang
proposed a model called WSMX (Web Service Modeling execution), a software system that
enables the creation and execution of Semantic Web Services based on the Web Service
Modeling Ontology (WSMO) for enterprise application integration. It improves Service
discovery, simplifies change management and supports semi-automatic service composition and
enhanced interoperability between services [3]. Thomas Haselwanter presented a model based on
the WSMX was build to tackle heterogeneities in RosettaNet messages by using the axiomatised
knowledge and rules. It supports communication between partners, data and process mediation
using WSMX integration middleware[4]. Jianwei Yin proposed an ESB framework for large
scale Service Integration, JTangSynergy adopts several mechanisms for providing effective and
efficient dependability. It enables automated recovery from component failures and robust
execution of composite services by checking service compatibility [5].

Gulnoza Ziyaeva proposed framework to enable the content-based intelligent routing path
construction and message routing in ESB which defines the routing tables and mechanisms of
message routings and facilitate the service selection based on message content [6]. Soo Ho Chang
proposed a framework for dynamic composition on Enterprise Service Bus which consists of four
elements; Invocation Listener, Service Router, Service Discoverer, and Interface Adapter. This

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

45

framework enables the runtime discovery and composition of published services without altering
the client side applications [7]. Liu Ying presents a unified service composition framework to
support business level service composition. An intelligent service composer based on this unified
service composition framework is developed to enable business level service composition by
business people under the help of some advanced technologies, including intelligent service
components searching, automatic service compliance checking, and template-based service
adaptation [8]. In addition, Companies use different solutions exist in the market for Business to
business application framework, including EDI, RosettaNet, ebXML etc. EDI: A seminal event in
B2B evolution was the development of electronic data interchange (EDI), whereby trading
partners established standard formats for the exchange of electronic documents to facilitate
electronic transactions. Trading partnerships between two firms using EDI are well defined and is
used for automated replenishment and efficient supply chains[9]. RosettaNet: The RosettaNet
consortium develops XML-based business standards for supply chain management in the
information technology and electronic component industries. It defines the business processes and
provides the technical specifications for data interchange. RosettaNet standards comprise
Dictionary, RNIF (RosettaNet Implementation Framework) and PIP (Partner Interface
Process)[10][11]. ebXML: The electronic business XML (ebXML) provides a complete
framework for setting up B2B collaborations. It is a set of documents, with several prototype
completed, enabling businesses of any size to do business electronically with anyone else. The
ebXML specifications cover almost the entire B2B collaboration process: collaboration Protocol
Profile (CPP), Collaboration Protocol Agreement (CPA), Business Process Specification
Schemas (BPSS), Messaging, Registry/repository and a core Component [12]. Above works
paves way to semi-automatically integrate the services across enterprise. But still there is no
mechanism to monitor the services while sharing and to routinely guide the developers to
integrate according to SLA. Here we demonstrated service integration with BLP schema
generation for banking application using Netbeans IDE.

3 BUSINESS LOGIC MODEL
Figure 1 depicts detailed architecture and illustrates how enterprises integrate their services
dynamically. Let Enterprise A sends request to share Enterprise B’s service, Message broker
receives and validates the request, identifies required services from service registry by applying
set of rules and delivers the necessary information regarding the identified services to
communication handler. Communication handler calls integration bus to deliver the created
service proxy to the requestor. Integration bus, a key component of SOA, supports asynchronous
messaging, document exchange and above all provides powerful platform for connecting different
applications together enabling seamless integration between components. Before delivering the
service proxy to the requestor, it assesses the security issue by firing the trigger to the Functional
analyzer.

Functionality analyzer analyzes Service Level Agreement (SLA) and policy defined between the
two enterprises, identifies the list of constraints for integrating the service. Through this it
scrutinizes the security gap between approved security policies and created service proxy and
transmits the result to integration bus. Subsequently, integration bus handovers the proxy to the
requestor. When requestor attempts to integrate the service, Property evaluation, heart of this
model, validates integrating service with various constraints listed out by Functional analyzer to
achieve the interoperability goals such as union, substitution, composition, finiteness,
enhancement and configuration, etc..,. We will see the process of property evaluation detailly in
next section. Evaluation metrics holds set of formulas to measure the activities and performance
of service integration in order to achieve the interoperability goals efficiently. Business logic and
rules are shared in such a way integration policy and interoperability goals are satisfied. Service
integration allows sharing the service according to the specified evaluation metrics and
integration policy through the created service proxy.

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

46

Fig 1. Detailed Architecture of Dynamic Web Service Integration

Message handler sends needed information about the service logic to the requestor. Work flow
decider evaluates the performance of service integration through formulated metrics and sends the
result to Exception handler. Runtime manager monitors the service logic while integrating with
theirs, if at any case service integration violates the integration policy or deviates the
interoperability goals, it calls exception handler. Exception handler handles and resolves the
exception in such a way metric evaluated is also improved. Runtime manger invokes dynamic
builder to build the newly integrated service dynamically and deploys the service in server. It
monitors the service whenever changes have been done and redeploys dynamically. Source
Manager monitors all these activities and adds necessary information to configuration and audit
log.

annotate

invo
ke

trig
ger send

contain

allows

send/rece
ive

deploy

control/moni
tor

shareshare

identify

resolve

apply

synchro
nize

validate

inclu
des

formula
te

get

s
e
t

monitorca
ll

per
mit

che
ck

fi
nd

stor
e

audit

Veri
fies

request/respon
se

fi
nd

fi
nd

invoke

Union

Substitutio
n

Computabi
lity

Compositi
on

Traceabilit
y

Decidabilit
y

Property
Evaluation

Constraint

Policy

Logic
exchange

Rule
Exchange

Interoperabilit
y Goals

G

Goal

Service
Level

Agreement

Enterpris
e [B]

Enterpris
e[A]]

Service
Registry

Message
broker

Servic
e[a]

Service
[b]

Source
anager

Configurati
on

Audit
Log

Change
Pattern
P

Authorizati
on
P

Access
Control
P

Service
Locator

G

Goal

Service
Schema

G

Goal

Integration
Bus

Communication
Handler

Security
Assessment

G

Goal

Service
Proxy

G

Goal

Service
Logic

G

Goal

Service
Integration

Runtime
Manager

Service Integration
Request

B2B Communication
System

Business
Analyst

Integrated
Service

Dynamic
Builder

Dependency
Analyzer

Message
Handler

Integration
Policy

Evaluation
Metrics

Service
Bus

Service
Bus

exte
nd

ca
ll

conne
ct

generat
e

contrac
t

evaluat
es

Co-
relate

compile/
build

call

Reducibilit
y

Security
Assessment

Functionality
Analyzer

Computationa
l

Criteria

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

47

4 Property Evaluation for Service Integration

4.1 Computability

Computability is an essential criterion in web service which determines whether the modified
service is computable with in time limit.

Example The requirement is to create a service, e-payment to calculate total price for the list of
purchased items and to transact the calculated amount. In the existing shopping application, we
have billing service which computes total cost for the purchased items and transaction service in
banking application transacts the amount. By integrating these two services, required new service
e-payment can be developed. Here integration should be done in such a way that the processing
time of the integrated service bounded within a time limit.

logic1

BL1: public string billing(){
BF1: String username=username.get();
String password=password.get();
DRf1: String sql="select * from shopping where username=”+username+” and
password="+password;
ResultSet rs=st.executeQuery(sql);
CRr1: if(rs.next()){
BFr1: double amount=calculateamount();
String accno=accountno.get();
BFr2 String accno1=123456;
BFf1: String result=”Amount to be paid=”+amount;
P1: return result;
}}
logic 2
BL2: public string transact(){
BF21 String accno=accno.get();
String accno1=accno1.get();
String amount=amount.get();
BF22 String transid1=transid.set();
DRf1 Statement st=con.createStatement();
ResultSet rs=st.executeQuery("select Balance from bank where Accountno=’"+ accno+’’”);
DRr1 double balance=rs.getDouble("Balance");
CRr1 if((balance-amount)>1000){
DRrr1 st.executeUpdate("update bank set balance= balance- "+amount+" where
Accountno='”+accno+”'";);
DRrr2 st.executeUpdate(update bank set balance= balance+"+amount+" where

Accountno='”+accno1+”'");
BFf1 String transid=” Amount”+amount+”transferred from”+accno+” to ”+accno1;
BFr2 String result= “Ur transaction id is ”+transid1+” Ur transaction completed successfully”;
P2 return result;}

Solution : Integrated logic
BL1 public string ebilling(){
BFl1 String username=username.get();
String password=password.get();
DRfl1: String sql="select * from shopping where username=”+username+” and

password="+password;

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

48

ResultSet rs=st.executeQuery(sql);
CRlfr1 if(rs.next()){
BFlfrr1 double amount=calculateamount();
String accno=accountno.get();
String accno1=123456;
BFlfrr1 transact(accno,amt,accno1);}
BL2 public String transact(String accno, double amt, String accno1){
BFl1 String transid1=transid.get();
DRlf1ResultSet rs=st.executeQuery("select Balance from bank where Accountno=’"+
accno+’’”);
DRlfr1 double balance=rs.getDouble("Balance");
CRlfrr1 if((balance-amount)>1000){
DRlfrrr1String sql="update bank set balance= balance- "+amount+" where

Accountno='”+accno+”'";
st.executeUpdate(sql);
DRlfrrrr1 sql="update bank set balance= balance+"+amount+" where Accountno='”+accno1+”'";
st.executeUpdate(sql);

Plfrrrr1String transid=” Amount”+amount+”transferred from”+accno+” to ”+accno1;
Plfrrr2String result= “Ur transaction id is ”+transid1+” Ur transaction completed successfully”;}
Logic Flow Diagram

P1

Plfrrff1 Plfrrff1

BL1{ BF1} BL2{[BFlf1,BF11]} BLT1{ BF11}
BF1{DRf1} BFlf1{ DRlfr1}BF11{BFlf1} BF11{DRlf1}
DRf1{ CRr1} DRlfr1 {CRlfrr1} DRlf1{ CRlfr1}
CRr1{ BFr1} CRlfrr1 {[DRlfrrf1],[BFlf1]} CRlfr1{ BFlfrr1}
BFr1{ BFf1} DRlfrrf1 {DRlfrrf1} BFlfrr1{BFlfrrf1}
BFf1 {P1} DRlfrrf1 { Plfrrf1} BFlfrr1{ BLT2}

BLT2{[BFlf1,BF11]},BF11= BFlfrr1

BFlf1{ DRlfr1}BF11{BFlf1}
DRlfr1 {CRlfrr1}
CRlfrr1 {[DRlfrrf1],[BFlf1]}
DRlfrrf1 {DRlfrrf1}
DRlfrrf1 { Plfrrf1}

billing{get} transaction{get,set} billing{get}
get {r:select} get{ r:select} get {r:select}
r:select{r:cmp} r:select{r:cmp} r:select{r:cmp}

BL
2

DRlf

1

CRlfrr

1

BF11

DRlfr

1

DRlfrr

f1

DRlfrr

f1

BFlf

1

BLT

1

DRlf1

BFlfrr

1

BF11

CRlfr

1

BFlfrrf

1

BLT

2

DRlf1

CRlfrr

1

BF11

DRlfr

1

DRlfrrf

1

DRlfrrf

1

BFlf

1

BL
1

DR1

BFr1

BF1

CRr1

BFf

1

BFf

2

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

49

r:cmp{compute} r:cmp{r:update1,r:update2} r:cmp{compute}
compute{store} {r:update1, r:update2}{store} compute{store}
store{return} store{return} store {transaction}

transaction{set,get}get=compute
get{ r:select}

r:select{r:cmp}
r:cmp{[r:update1, r:update2]}
{r:update1, r:update2}{store}
store{return}

BLPS of Logic 1

BLPS of Logic 2

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

50

Integrated Service

4.2 Traceability

Traceability in general is ‘ability to chronologically interrelate the uniquely identifiable entities in
a way that matters’. It verifies the flow, assesses the risk, checks completeness and helps to
improve the quality by tracing each and every step of the service.

Example: In the previous case, integrated service might fail due to transaction failure or
erroneous calculation of price. So it is necessary to trace the service and verify the transaction
status at the end of every transaction. Transaction id gives necessary information of that
transaction such as credit, debit, time, etc. So it is enough to trace the transaction id to verify the
whole service.

Plfrrff1

Plfrrff1 Plfrrff1

B
L1

DR1

BFr

1

BF1

CRr

1

BFf1

BL
2

DRlf1

CRlfrr

1

BF11

DRlfr

1

DRlfrrf

1

DRlfrrf

1

BFlf

1

BLT

1

DRlf1

BFlfrr

1

BF11

CRlfr

1

BFlfrrf1

BLT

2

DRlf1

CRlfrr

1

BF11

DRlfr

1

DRlfrrf

1

DRlfrrf

1

BFlf1

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

51

Input 1

Input 2

Service Integration Solution (BLP Schema)

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

52

4.3 Accessibility

Definition: Accessibility defines the extent to which one service can access the other service’s
logic.

Example:
The requirement is to create a new service, e-payment to calculate total price for the list of
purchased items and to transact the calculated amount. In the existing shopping application, we
have billing service which computes total cost for the purchased items and transaction service in
banking application transacts the amount. By integrating these two services, required new service
e-payment can be developed. Here integration should be done in such a way transaction service
could access only the information returned by billing service, it should not view customer’s
credential information.
logic1:
BL1: public string billing(){
BFl1: String username=username.get();

String password=password.get();
DRfl1: String sql="select * from shopping where username=”+username+” and

password="+password;
ResultSet rs=st.executeQuery(sql);

CRlfr1: if(rs.next()){
BFlfr1: double amount=calculateamount();

String accno=accountno.get();
String accno1=123456;

BFlfrf1: String result=”Amount to be paid=”+amount;
Plfrff1: return result;

}}
logic 2;
BL2: public string transact(){
BFl1 String accno=accno.get();

String accno1=accno1.get();
String amount=amount.get();
String transid1=transid.create();

DRlf1 Statement st=con.createStatement();
ResultSet rs=st.executeQuery("select Balance from bank where Accountno=’"+
accno+’’”);

DRlfr1 double balance=rs.getDouble("Balance");
CRlfrr1 if((balance-amount)>1000){
DRlfrrr1 st.executeUpdate("update bank set balance= balance- "+amount+" where
Accountno='”+accno+”'";);
DRlfrrr2 st.executeUpdate(update bank set balance= balance+"+amount+" where

Accountno='”+accno1+”'");
BFlf1 String transid=” Amount”+amount+”transferred from”+accno+” to ”+accno1;
BFlfrrrr2 String result= “Ur transaction id is ”+transid1+” Ur transaction completed

successfully”;
Plfrrrrf1 return result;
}

Integrated logic:
BL1 public string ebilling(){
BFl1 String username=username.get();

String password=password.get();

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

53

DRfl1: String sql="select * from shopping where username=”+username+” and
password="+password;
ResultSet rs=st.executeQuery(sql);

CRlfr1 if(rs.next()){
BFlfrr1 double amount=calculateamount();

String accno=accountno.get();
String accno1=123456;

BFlfrr1 transact(accno,amt,accno1);
}
BL2 public String transact(String accno, double amt, String accno1){
BFl1 String transid1=transid.get();
DRlf1ResultSet rs=st.executeQuery("select Balance from bank where Accountno=’"+

accno+’’”);
DRlfr1 double balance=rs.getDouble("Balance");
CRlfrr1 if((balance-amount)>1000){
DRlfrrr1String sql="update bank set balance= balance- "+amount+" where

Accountno='”+accno+”'";
st.executeUpdate(sql);

DRlfrrrr1 sql="update bank set balance= balance+"+amount+" where Accountno='”+accno1+”'";
st.executeUpdate(sql);

Plfrrrr1String transid=” Amount”+amount+”transferred from”+accno+” to ”+accno1;
Plfrrr2String result= “Ur transaction id is ”+transid1+” Ur transaction completed successfully”;}

Plfrrf1

Plffrrf1 Plffrrf1

BL1{ BF11} BL2{[BFlf1,BF11]} BL1{ BF11}
BF11{DRlf1} BFlf1{ DRlfr1}BF11{BFlf1} BF11{DRlf1}
DRlf1{ CRlfr1} DRlfr1 {CRlfrr1} DRlf1{ CRlfr1}
CRlfr1{ BFlfrr1} CRlfrr1 {[DRlfrrf1],[BFlf1]} CRlfr1{ BFlfrr1}
BFlfrr1{ BFlfrrf1} DRlfrrf1 {DRlfrrf1} BFlfrr1{BFlfrrf1}
BFlfrrf1 {Plfrrf1} DRlfrrf1 { Plfrrf1} BL2{[BFlf1,BF11]}

BFlf1{ DRlfr1}BF11{BFlf1}
DRlfr1 {CRlfrr1}
CRlfrr1 {[DRlfrrf1],[BFlf1]}
DRlfrrf1 {DRlfrrf1}
DRlfrrf1 { Plfrrf1}

BL
1

DRlf

1

BFlf

rr1

BF11

CRlf

r1

BFlfrr

f1

BL
2

BFlf

1

CRlfr

r1

BF1

1

DRlf

r1

DRlfrr

f1

BL1

DRlf

1

BFlf

rr1

BF11

CRlf

r1

BFlfrr

f1

DRlfrr

f1

BFlf

1

BL
2

BFlf

1

CRlfr

r1

BF11

DRlf

r1

DRlfrr

f1

DRlfrr

f1

BFlf

1

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

54

billing{get} transaction{get,set} billing{get}
get {r:select} get{ r:select} get {r:select}
r:select{r:cmp} r:select{r:cmp} r:select{r:cmp}
r:cmp{compute} r:cmp{r:update1, r:update2} r:cmp{compute}
compute{store} {r:update1, r:update2}{store} compute{store}
store{return} store{return} store {transaction}

transaction{set,get}get=compute
get{ r:select}
r:select{r:cmp}
r:cmp{[r:update1, r:update2]}
{r:update1, r:update2}{store}
store{return}

Logic 1

Logic 2

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

55

Here BL2 can access only the highlighted part of service BL1.
5. IMPLEMENTATION METHODOLOGY

The web service online payment system is developed by integrating existing billing service and
transaction service in banking application as discussed above. Computability and traceability
properties are verified as discussed in last section. BPEL diagram of newly developed service is
depicted in Fig 2.

Fig 2. Service Integration using BLP schema

International Journal on Web Service Computing (IJWSC), Vol.2, No.3, September 2011

56

6. CONCLUSION

The proposed model provides a powerful platform to share service logic dynamically and
securely in such way interoperability between the services is managed. This paper evaluates the
services to be integrated with properties such as computability, traceability and accessibility and
integrates in efficient way. Also, this model progressively monitors the changes made in the
source code and points out whether the changes made affect the computability and traceability
criteria’s of the web services. Examples given in this paper explains how properties are evaluated
for various situations. This would be a standard platform for service providers to share their
resources dynamically and securely.

References

1. Zhuoren Jiang, Yan Chen and Ming Yang, “A research on multi-layer structure for dynamic service
integration”, IEEE international conference, 2010.

2. W.J. Yan, P.S. Tan and E.W. Lee,” A Web Services-enabled B2B Integration Approach for SMEs”,
IEEE international Conference on Industrial Informatics, July 13-16, 2008.

3. Liyi Zhang and Si Zhou, “A Semantic Service Oriented Architecture for Enterprise Application
Integration”, Second International Symposium on Electronic Commerce and Security, 2009.

4. Thomas Haselwanter, Paavo Kotinurmi, Matthew Moran, Tomas Vitvar, and Maciej Zaremba,
“WSMX: A Semantic Service Oriented Middleware for B2B Integration”, available at
http://www.vitvar.com/tomas/!publications/icsoc2006-WSMX.pdf.

5. Jianwei Yin, Hanwei Chen, Shuiguang Deng and Zhaohui Wu, “A Dependable ESB framework for
Service Integration”, IEEE Internet Computing, 2009.

6. Gulnoza Ziyaeva, Eunmi Choi and Dugki Min, “Content-Based Intelligent Routing and Message
Processing in Enterprise Service Bus”, International Conference on Convergence and Hybrid
Information Technology, 2008.

7. Soo Ho Chang, Jeong Seop Bae, Won Young Jeon, Hyun Jung La, and Soo Dong Kim, ”A Practical
Framework for Dynamic Composition on Enterprise Service Bus”, IEEE international conference on
Service Computing, 2007.

8. Liu Ying and Wang Li, “An Intelligent Service Composer for Business-level Service Composition”,
Nineth international conference on Enterprise Computing, E-Commerce and E-Services, 2007.

9. http://en.wikipedia.org/wiki/Electronic_Data_Interchange.

10. Rossatanet, ”http://www.rosettanet.org”.

11. Jing Wang and Yeong-Tae Song, “Architectures Supporting RosettaNet”, Proceedings of the Fourth
International Conference on Software Engineering Research,2006.

12. ebxml,” http://www.ebxml.org ”.

http://www.vitvar.com/tomas/!publications/icsoc2006-WSMX.pdf
http://en.wikipedia.org/wiki/Electronic_Data_Interchange
http://www.rosettanet.org
http://www.ebxml.org

