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ABSTRACT 

 
In this paper, the performance assessment of five different detection techniques from spectrum sensing 

perspective in cognitive radio networks is proposed and implemented using the realistic implementation 

oriented model (R-model) with signal processing operations. The performance assessment of the different 

sensing techniques in the existence of unknown or imprecisely known impulsive noise levels is done by 

considering the signal detection in cognitive radio networks under a non-parametric multisensory detection 

scenario. The examination focuses on performance comparison of basic spectrum sensing mechanisms as, 

energy detection (ED) and cyclostationary feature detection (CSFD) along with the eigenvalue-based 

detection methods namely, Maximum-minimum eigenvalue detection (MMED), Roy’s largest Root Test 

(RLRT) which requires knowledge of the noise variance and Generalized Likelihood Ratio Test (GLRT) 

which can be implemented as a test of the largest eigenvalues vs.  Maximum-likelihood estimates a noise 

variance. From simulation results it is observed that the detection performance of the GLRT method is 

better than the other techniques in realistic implementation oriented model. 
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1.INTRODUCTION 
 

The demand for the radio spectrum is dramatically increasing and is estimated to rise rapidly in 

the near future with reference to the rapid development of different wireless communication 

applications. The radio frequency spectrum is a limited natural resource to enable wireless 

communication between transmitters and receivers and it is already very packed. It appears that it 

is tough to accommodate more wireless applications within this limited resource. The frequency 

bands of the wireless communication spectrum are not currently used very efficiently, mainly due 

to the current static spectrum allocation policy is based on a fixed frequency allocation policy in 

which the licensed spectrum bands remains underutilized. The report of Federal Communications 

Commission (FCC) [1], exposes that in some locations or at some times of day, almost 70% of 

the allocated spectrum may be sitting idle. To deal with the discrepancy between spectrum 

congestion and spectrum under-utilization, cognitive radio (CR) has been recently proposed as the 

capable solution for improving the utilization of the available spectrum to current low usage of 

licensed spectrum problem [2]. A CR sense and identify spectrum opportunities unoccupied by a 

primary user (PU) and improve the spectrum utilization while reducing the white spaces in the 

spectrum. Also it must prevent interference with the licensed PUs. The spectrum sensing is one of 

the main issues from the spectrum management perspective as the CR needs to sense the 

spectrum holes in wireless environments before accessing the channel. [3].  
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Major problems for CR like multipath fading, receiver uncertainty hidden terminals and 

correlated shadowing observed in a non-cooperative spectrum sensing can be solved by 

cooperative spectrum sensing techniques. Cooperative sensing decreases the probabilities of miss-

detection and probability of false alarm considerably. Furthermore the hidden PU problem can 

also be solved which results in decrease in sensing time [4]. The basic spectrum sensing 

mechanisms are matched filter detection (MFD) [5-8], energy detection [9-12] and 

cyclostationary feature detection [13-15]. Every technique is unique in itself with certain 

advantages and limitations. The basic knowledge of cyclic frequencies of the primary signal is 

essential in CSFD, which may not be available to the secondary users in practice. Also, it has 

high computational complexity. MFD is considered to be an optimal signal-detection method. 

The MFD is assumed to be an optimal signal-detection method. However the prior knowledge of 

the PU such as, modulation type, pulse shaping, and synchronization of timing and carrier is 

indispensable. And in MFD, for each PU, the CR will require a committed receiver and this 

requirement is makes it difficult for practical implementation [16]. From [17- 19] it is observed 

that the eigenvalue–based spectrum sensing techniques is found as the best amongst existing 

sensing methods. The eigenvalue-based spectrum sensing methods has overcome the limitations 

of the previously discussed methods. The prior knowledge of the transmitted signal is not 

essential in this method. Also the most basic sensing method the ED is reasonably sensitive to the 

accuracy of the expected noise variance [20]. We have considered the effect of impulsive noise 

for investigating the performance of the eigenvalue- based spectrum sensing scheme in 

perspective of spectrum sensing. 

 

Impulsive noise (IN) consists of repetitive or non-repetitive pulses with a random intensity, 

duration and occurrence. The major sources of IN generation are household appliances, heating 

systems, ignition devices and dropouts or surface degradation of audio recordings, clicks from 

computer keyboards [21-22]. Via selection and equal gain combining the performance of the ED 

is investigated and concluded that impulsive noise can degrade the sensing performance. The 

GLRT method of detection is also proposed. In the non-realistic conventional model no analysis 

has been made considering the different eigenvalue-based spectrum sensing methods. 

 

1.1. Conventional discrete time memory less linear MIMO fading channel model (C-

Model) 

 
It is static model in which channel remains idle, we consider Additive White Gaussian Noise 

(AWGN) channel. The memory-less linear discrete-time multiple input multiple output (MIMO) 

fading channel for single-receiver, multi-sensor and multiple-receiver, single-sensor cognitive 

devices is considered. It is also known as conventional model (C-model) [23]. Because of 

limitation of no signal processing performed by the C-model, it cannot be used for multiple CR 

receivers, as the samples collected by each CR are considered and forwarded to the fusion centre 

directly. Hence modifications are essential in the C-model.  

 

1.2. The Realistic Implementation oriented model (R-Model) 
 
The more realistic implementation- oriented MIMO (R-model), in which signal processing 

operations like filtering , quantization and automatic gain control (AGC) are used within  direct-

conversion CR receiver architecture as shown below [24-25].   
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 Figure 1.  CR Receiver Diagram  

 

Fig. 1 is considered for construction of the realistic model. In which the spectrum-sensing 

directed functions are combined with the direct conversion receiver (DCR). The wideband band-

pass filter (BPF), low-noise amplifier (LNA) and quadrature local oscillators (LO) and mixers are 

used for direct conversion of the desired channel to in-phase and quadrature (I&Q) baseband 

signals. The drawbacks like I&Q imbalance are present in the DCRs, because it suffers from, 

flicker noise and DC- offset [26]. The DC-offset can effortlessly saturate succeeding 

amplification stages [27]. It is a DC signal appearing at the mixer output is composed of a static 

and a dynamic part, primarily due to LO self-mixing processes and in-band interfering signals. 

The static part can be removed by the careful circuit design and modern DC-offset compensation 

algorithms, but still some residual dynamic DC-offset will always remain [28]. The signal is held 

in reserve within the dynamic range of the analog-to-digital converters (ADC) in I&Q signal 

paths which passed through the variable gain amplifier (VGA) with the help of the automatic gain 

control (AGC) method. The I&Q low-pass filters (LPF) is used to select the preferred bandwidth 

to be sampled. 

 

The effect of impulsive noise (IN) is considered for investigating the performance of the 

eigenvalue-based spectrum sensing scheme. Efforts are put in investigation about the influence of 

impulsive noise in the CR receivers in perspective of spectrum sensing. 

Various models are proposed to exemplify the IN [29-33]. The model presented in [30] is used for 

performance evaluation in which the white noise signal is used to generate the IN waveform and 

shown in Fig.2.  

 

 
Figure 2.  Impulsive Noise waveform 

 

Considering the above mentioned issues, it is clear that the IN can cause degradation in 

performance of eigenvalue based spectrum sensing. Our work focus point is to assess the 

performance of  spectrum sensing techniques by addressing the effect of IN and investigate the 

comparative performance in realistic implementation oriented model (R-model).The work 

contributes examination of the effect of impulsive noise in five different  detection techniques 

namely GLRT, RLRT, CSFD,  MMED and ED . 
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The rest of the paper is organized as follows. Section 2 briefly describes the system model for 

spectrum detection techniques under examination. Simulation setup for performance analysis of 

the five spectrum sensing techniques with configuration of parameters is presented in Section 3 

.Simulation results with comparative sensing performance is illustrated in Section 4. Finally 

conclusions are drawn in Section 5. 

 

2. SYSTEM MODEL 
 

The system model of detection is under the test of following two hypotheses H� and H� [34-35]. 

 

H�	: signifies the absence of the signal and presence of only noise.  

 

H�: signifies the presence of both signal and noise. 

 

Thus, for the two state hypothesis numbers of cases are:-      

  

1) Probability of Detection (P�): i.e P (H� / H�) , corresponds H� to be true for the presence of 

primary signal.   

2) Probabilty of Missed Detection (P��): i.e P (H� / H�) , corresponds  H�  to be true for the 

presence of primary signal. 

3) Probabilty of False Alarm (P�	 ): i.e P (H�/ H�) , corresponds H�to be true for the presence of 

primary signal. 

 

Probability of detection P� and Probability of false alarm P�	 can be expressed as [12], 

 

																																																						
� 	= 	
	(�	 > 	�	|��)                                       (1) 

 

																																																						
�� 	= 	
	(�	 > 	�	|��)                                      (2) 

 
Where, 
 denotes the probability of a given event, � is the detection-dependent test statistic and � 

is the decision threshold. The value of � is selected depending on the requirements for the 

spectrum sensing performance, which is typically evaluated through receiver operating 

characteristic (ROC) curves that show P�	 versus P� as they vary with the decision threshold �. 

For constructing test statics, the multi-sensor detection setting situation is considered, with 

K		sensors (receivers or antennas) and N time samples. Let y(n) = 	 �y1(n). . . yK(n)��	be the 

K	 × 	1 received vector at time	n, where the element	yk(n) is the discrete baseband complex 

sample at receiver	k. Under	H�, the received vector consists of K complex Gaussian noise 

samples with zero mean and variance	σ"
#. 

 

                        																											$(%)|�� 	= 	&(%)                                                            (3) 

 

Where 	v(n) ∼ 	NC(0+×�, 	σ"
#	I+×+. Under	H�, in contrast, the received vector contains signal plus 

noise, 

 

																														$(%)|�� 		= 	.(%) + &(%) = ℎ1(%) + &(%)                                        (4) 
 

The  s(n) , represent the transmitted signal sample, modelled as a Gaussian2 random variable 

with zero mean and variance 	σ3
# and		h is the K	 × 	1 unknown complex channel vector. The 
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assumption for the channel is made to be memory less and constant during the detection time. 

Under	H�, the SNR at the receiver is defined as,  

  

 

																																															5 ≅
7‖9(:)‖;

7‖<(:)‖;
=

	=>
;‖?‖;

	=@
;	A

,                                                           (5) 

 
where, ‖. ‖ denotes Euclidean (L2) norm. 

 
The received samples are stored by the detector in the K × N	matrix   

 

																																																Y ≅	, �y(1)	. . . y(N)� 	= 	hs	 + 	V	                                          (6) 

 

Where		,			s ≅	, �s(1). . . s(N)�	,		is a 1 × N signal vector and V ≅	, �v(1). . . v(N)�	is a K× N noise 

matrix. The sample covariance matrix R is then defined as, 

 

                                                               R ≅
�

G
YYH                                                                  (7) 

 

Let λ� ≥ ⋯ ≥ λ+ be the eigen values of R (without loss of generality, sorted in decreasing order). 

       

We focus on the difference in detection performance between the cases of known and unknown 

noise level. 

 

 The test statistics for GLRT, CSFD, MMED, ED and RLRT are respectively calculated 

according to [25]. 

 

																																										TMNO� =
PQ

Q

R
ST(O)

=
PQ

Q

R
∑ PV
R
VWQ

                                                           (8) 

 

																																																													TXYZ[ =
PQ
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																																																										T\\][ =
PQ
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																																																							T][ =
‖_‖`

;

�a^;
=

�

�^;
∑ λb
�
bc� ,                                               (11) 

 

																																																											TONO� =
PQ

	^d
;                                                                      (12) 

 

Where, σ#	 is the thermal noise power, expected to be known and with equal value in each sensor 

input, and tr(	) and ||	||Z are the trace and the Frobenius norm of the underlying matrix, 

respectively. 

 

3. SIMULATION SETUP 

 
With reference to receiver architecture shown in the Fig.1, the simulation setup is build and the, 

performance parameters configured are as follows, 
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• m:  Antennas in CR / CR with one antenna each.  

• n:	 Number of received samples collected from primary transmitter. 

•	Ne:	The number of Monte Carlo simulation events. 

•The sensing techniques under analysis are ED, MFD, CSFD, GLRT and RLRT. 

• The type of transmitted signal (noise, BPSK, QAM or user defined modulation). 

• Nj:	Number of quantization levels . 

•	D: ADC dynamic range. 

• fm�:	overdrive factor. 

 

For impulsive noise (IN) following additional parameters have to be set, 

 

• poG : Probability of IN occurrence. 

• 	pXO : Fractions of CR hits by IN. 

• N3 :   Number of IN blurts. 

• K : The ratio between average IN power and average thermal noise power. 

• β : The average number of samples between impulsive noise pulses. 

• A : The mean of the log-normal impulsive noise amplitudes. 

• B  : The standard deviation of the log-normal amplitudes. 

 

Two different simulation processes are carried out. For the first simulation type, the SNR is kept 

at fixed value in dB and the decision threshold range is varied between minimum and maximum 

threshold values. While the second process of simulation is carried out by defining three 

parameters,  like the fixed threshold level , and the minimum and the maximum SNR values in dB 

with the number of points within the SNR range. 

 

4. SIMULATION RESULTS 

 
Two major parameters used as a performance measurement metrics to analyse the performance of 

detection process are, Probability of Detection (P�) and Probability of False alarm(P�	). The 

performance of a spectrum sensing techniques is illustrated by the receiver operating 

characteristics (ROC) curve which is a plot of P� versus	P�	.  

 

The performance measurements parameters set for simulation type one as,	m = 8,		n = 50, 

SNR =	−10	dB,  no. of monte carlo events simulated = 1000 and minimum to maximum 

threshold levels set in the range from	γ = 0.78		to	γ = 1.1 with 8 different threshold events. In the 

second simulation scenario the threshold level is kept fixed at value	γ = 1.4 and SNR is varied in 

between the range of -10 dB to 20 dB. 
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Figure 3.  ROC curve with SNR=10dB for m=8 and n=50 

Fig. 3, represents the ROC curve for ED method, it is evident from the graph that for less 	P�	 

values, P� is comparatively high. But, as P�	 increased, there is increased significant 

improvement is observed in P� . Thus, it can be seen that the detection performance is improved 

in ED at low SNR values.  

 

 
Figure 4.  Pd, Pfa   Vs Threshold 

 

Fig.4. presents comparison of	P�		P�	, with respect to change in threshold levels. Fixed a given 

threshold, the behaviour of the P�	 is shown, it is evident from the results that the 	P� 	is improved. 
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Figure 5.  Pd, Pfa   Vs SNR 

 

In Fig.5 the relation between the 	P� , 	P�	  with SNR is verified. With increase in SNR the value 

of P	�	is also increased. Also as the value of P�	vary there is significant improvement in P	� is 

obtained. Although the results presented in Figure 3-5 are only for ED method, but we retried that 

this is valid for all detection techniques considered here. 

 
Figure 6.  ROC curve for ED method with m=8 and SNR=10dB 
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Figure 7.  ROC curve for GLRT method with m=8 and SNR=10dB 

 
Figure 8.  ROC curve for CSFD method with m=8 and SNR=10dB 

 
Figure 9.  ROC curve for MMED method with m=8 and SNR=10dB 
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Figure 10.  ROC curve for RLRT method with m=8 and SNR=10dB 

 

Fig. 6-10, shows ROC curve with effect of IN for all the detection methods under test. Different 

values of the number of collected samples (n), concerning the probability of false alarm (P�	) and 

the probability of detection (P	�) are measured. The results illustrate system performance 

under IN conditions. With reference to the number of collected samples (n),  we set different 

minimum to maximum threshold levels as follows. For  n = 	40 the threshold levels are  �|}: =
2.8 and γ�	� = 6.5 , for n = 50, γ�ba = 2.8 and γ�	� = 6.5			, and for n = 60	γ�ba = 2 to 

γ�	� = 4.5	. Also m = 8 and SNR is kept at -10 dB. The number of primary transmitters p 

=1,K = 0, L = 1 − 20	, D = 2, fm� = 1 − 2	and Nj is varied as 4,8 and 256. It is clear from the 

results that with reference to greater threshold value, the values of P	� and  P�	 are smaller. 

Similarly, for smaller threshold, P	� and  P�	  tends to 1. Increase in sensing performance is 

observed with increase in 	n . It can be further confirmed from ROC curves that, the influence of 

increasing the number n of collected samples per CR is a performance improvement, considering 

as fixed the remaining system are identified in the graph. 

 

 
Figure 11.  Pd Vs Threshold for all sensing methods 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pfa

P
d

 

 

n=40

n=50

n=60

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold (γ)

P
d

 

 

ED

GLRT

MMED

RLRT

CSFD



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 6, No. 6, December 2014 

 

67 
 

 
Figure 12.  ROC Curve for all sensing methods under parameter variations 

 

Fig. 11-12, illustrates the performance comparison of all the detection methods under test namely, 

GLRT, CSFD, MMED, ED and RLRT. Different threshold values from γ�ba = 0.5 and γ�	� = 5  

are used for plotting the probability of detection Pd in Fig.11. From the comparative plot, it is 

clear that the GLRT method demonstrate better detection performance than the other detection 

methods for variable threshold level with fixed SNR value. Fig.12 presents ROC curves relating 

(P�	) and the (P	�) for the investigated detection techniques, for p = 1, m = 6, SNR = −10 dB, and 

variable �� = 8, and for ��� and � ranging from 1 to 2, and 1 to 20, respectively. And analysis of 

the results indicates that, the sensing performance is improved in GLRT and MMED methods for 

realistic implementation oriented model in the presence of impulsive noise. 

 

5. CONCLUSIONS 
 

In this paper, performance of five different detection methods for spectrum sensing in cognitive 

radio networks is evaluated by implementing the realistic model with typical signal processing is 

involved in implementation. Closed form expressions for probability of detection and false alarm 

over different sensing methods are evaluated. Simulation results shows that, the effect of  

 

impulsive noise is less in GLRT method as compare to the other detection methods and thus the 

performance of GLRT method is improved in realistic implementation model.  

 

In comparison with the conventional model the realistic implementation oriented model provide 

reasonably better results. Moreover the comparison of results helps for performance evaluation 

and of sensing methods in cognitive radio networks. It is believed that the work carried out in this 

paper is useful to understand the performance in cognitive radio network for selection of best 

sensing method. In future work attention can be given on the computation of closed form analysis 

by using more realistic approach with typical CR signal processing tasks. 
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