
International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

DOI : 10.5121/ijwmn.2013.5601 01

�
� �������� � ���	
� � � �

�
�����	�
�� � ����� � �������� �
�

Sasa Savicand Hao Shi

College of Engineering and Science, Victoria University, Melbourne, Australia

ABSTRACT

The design and implementation of Intelligent Object Framework(IOF) aims to unite the communication and
device management through a platform independent management protocol in conjunction with a
management application. The Core Framework is developed using Microsoft Visual Studio, Microsoft’s
.NET Framework and Microsoft’s Windows Mobile SDK. Secondary Intelligent Object is developed using
Tibbo Integrated Development Environment (TIDE) and T-BASIC programming language that is loaded on
an EM1026 Embedded Device Platform running Tibbo Operating System (TiOS). The backend database is
based on Microsoft’s SQL Server.In this paper, protocols associated with Smart Living are first
reviewed.The system architecture and intelligent object management studio are presented. Then device
application design and database design are detailed. Finally conclusions are drawn and future work is
addressed.

KEYWORDS

Intelligent Object Framework, Intelligent ObjectManagement Studio, Wireless Network

1. PROTOCOLS

1.1.SNMP (Simple Network Management Protocol)

SNMP is an application-layer protocol defined in the RFC1157, for exchanging management
information between network devices. It is part of the TCP/IP protocol suite and it is one of
widely accepted protocols used to manage and monitor network elements. The basic SNMP
components are SNMP Manager, A managed device, An SNMP Agent, and Management
Information Base (MIB) as shown in Figure 1 [1].

Figure 1: SNMP High Level Diagram [1]

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

2

Whilst being a transparent request and response protocol that communicates certain management
information between two types of SNMP software entities, it fails to meet certain pre-emptive
actions and response times. Although it is majorly implemented in network devices and secondary
management interfaces, it has also been found on computers and printers. Despite its apparent
compatibility across distributed systems, it is considered a highly complicated protocol to
implement as it comes with numerous abstruse encoding rules and schemes. SNMP also lacks
efficiency as network bandwidth is exhausted with useless data [2, 3]

As described in RFC3411[3]Section 4.4.3, SNMP version is transmitted in every SNMP
datagram. In addition to the unnecessary data overhead at each datagram, multiple length and data
descriptors are being broadcasted throughout each message. The inefficiency in packet
encapsulation methodology yields in superfluous data handles which are across the network. This
effect is not felt in small to medium networks, although, networks that consist of large scale
distributed devices do. Furthermore, device failures are not detected in real-time and device that
succumb to network failures will not be noticed until the next polling cycle.

Software applications managing the SNMP enabled devices must be aware of the available
information that lies within the device. If there is a discrepancy in the schema, this must also be
changed in the management application. The proposed Intelligent Object Framework differs by
accepting device changes via adding functions, storing them to a database by conforming to a
common data model. Once the data exchange occurs, the functions and its data types become
available to any application, thus enabling a user to execute the new/amended function.

1.2. EXtensible Automation Protocol (xAP)

Another kind of network management and control protocol that has emerged since the late 90’s is
xAP. An open source protocol intended for support and integration of telemetry and control
devices within a home environment. While the framework and protocol definition [4] enables
multi-device control over UDP protocol, seen in Figure 2, it achieves this by multi broadcast
messages.

Figure 2.xAPMessage Broadcast Flow [5]

This approach must rely on independent applications and devices to drop unwanted packet data.
Moreover, failure to address the issue of centralized function management yields in complex
software and hardware design. XAP approach relies on each device implementation to vary its

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

3

schema, thus it does not conform to a framework standard, but rather rely on protocol
specification itself.

1.3. X-10 Home Automation

In the late 1970’s, Pico Electronics produced an inexpensive home automation equipment. The
simple idea was to use home’s power wiring to communicate from a controller to small remote
control modules. The X-10 technology is still widely used amongst household appliance control.
The technology behind X-10 works by sending brief bursts of 120 KHz signals over the power
lines, timing the bursts to coincide with the 60 Hz power line zero-voltage crossing. At the zero
voltage point, the power line noise level is at a minimum and the 120 KHz signal has a better
chance to be received by a remote control module [6]. At the highest level the X-10 messages are
comprised of three elements, Table 1.

Table 1. X-10 High Level Message [6]

The X-10 home automation system is developed using MBasic, a language specifically used for
PIC microcontrollers. The MBasic holds a library of functions related to X-10 protocol, thus
enabling the above House, Unit and Function code specifications to be standardized in the form of
X_A through to X_P, X_1 through to X_16 and X_On or X_Off . Controlled modules are
addressed by both house and unit codes. Devices are usually controlled by rotating switches that
have House and Unit code settings. By rotating the switches, the module’s address is set to the
desired house and unit codes.

Further looking at X-10 protocol, Parralaxstates that interface modules have limitations to how
well they may work in particular area [7]. During the testing of Xin and Xout commands,
Parallax found that the modules would not address some units in the same building. It was stated
that this may have been due to noise in the lines or faulty electrical wiring. The units did not work
well with filtering power strips either.

The rules of the protocol are hard-coded and the hardware functions must be statically assigned to
the protocol’s Function codes. Whilst the system may be useful for simple operations, it does
however fall short of the ability to be controlled via other means such as wireless or Ethernet
communication. Another issue that may arise from the operation of the units is the possibility of a
fault within the special module power plugs. The danger to that is that the user is playing around
high voltage devices. Since the tone bursts are scattered across the household, this in-fact scatters
along the entire power line grid in the vicinity of the house, thus there is a chance of somebody
else generating signal bursts and tampering with the internal house hold appliances, resulting in
damages or overriding of control.

1.4. MODBUS

MODBUS is a serial communications protocol, published by Modicon in 1979[8]. It is widely
used in industrial control applications. The MODBUS protocol defines the message structure and
the communication rules for interconnection of control systems that exchange supervisory control

House Code Unit Code Function Code

Within the X-10 protocol,
there are 16 possible house

codes and they are
identified as A through to P.

There are 16 possible unit
codes, and is

conventionally identified 1
through to 16.

There are 16 possible function
codes which are identified by
their operations such as “On”,

“Off”, “Dim”.

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

4

and data acquisition (SCADA) information for controlling industrial processes [9]. The
MODBUS comes in two different variants, serial communication and the TCP communication
version. MODBUS is an application layer messaging protocol and is positioned at level 7 of the
OSI model. It provides client/server communication between devices connected on different types
of buses or networks. The MODBUS communication stack is depicted in Figure 3.

Master / Slave

RS232 or RS485

Ethernet II / 802.3

Ethernet
Physical Layer

Other

Other

MODBUS+ / HDLC

Physical Layer

IP

TCP

MODBUS on TCP

MODBUS APPLICATION LAYER

�

Figure 3.MODBUS communication stack [8]

1.5. HAP (Home Automation Protocol)

HAP was developed in 2002 by Sriskanthan [10] of Nanyang Technological University in
Singapore. HAP facilitates the communication amongst the host and client modules in a home
automation system and the protocol is constructed above Bluetooth software stack [10, 11]. The
HAP protocol’s initialization process utilizes the Service Discovery Protocol to query device
information and services within Bluetooth’s Piconet illustrated in Figure 4.

Figure 4. Host and client modules Bluetooth Piconet [10]

The individual clients are shown in Figure 5. HAP protocol uses descriptor table definition to
store the information of all active network devices. The heavy lifting is done by the Device
Controller, as it respectively hosts the descriptor information. The Host Controller then searches

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

5

the device information from the Device Controller and it constructs the descriptor table, which the
Device Controller is responsible for.

Figure 5.Individual Client Module [10]
The protocol is implemented on Bluetooth enabled devices and it requires hardware development
backing in order for the devices to control a piece of appliance or equipment. The client module
only acts as the medium for communication and the transaction of the HAP packets.
2. SYSTEM ARCHITECTURE

WiFi

Application Layer

Middleware Layer

OS Layer

Hardware Drivers

Hardware Layer Semiconductor chipsets

Wi-Fi ZigBee 802 .15 Ethernet

OS Core (3rd party OS)

System InfrastructureNetworking

IOF Protocol

RS232

IOF Application

Operation Request

IOF Server

DBMS

Microsoft SQL Server

IO Parser

IODB

IOF S E R V I C E S

User PC

Management Application

IO Device

IO Protocol
(UDP)

Operation Response

Application Control

OS Control

HW Control

Figure 6. Intelligent Object Framework Block Diagram [12]

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

6

IOF system comprises of three component segments, the controller, service and the endpoint
devices. The three layers are architecturally separated, although maintain communication via
protocol services. The Services layer can further be separated in three layers outlining the core
components. Figure 7 shows the separation between the internal components of the services.
The implementation of the IProtocol interface is directly linked to the Protocol class. The
protocol, also defined as a service class parses to the Processing and Logic Layer. The Protocol
class does this by invoking a device instance. This process is further described in the IOF
Protocol section of the document. The device class inherits Device Data as the root instance with
the collection of Functions and the Function Parameters. If a new device is attempting to join the
IOF Service and is accepted, the device instance communicates directly with the database.
Furthermore, the separation of the networking, process and data layer allows device logic
separation enabled for further possible extension of the framework. To implement a new
functionality, the developer can focus on one logic section at a time. The methodology
implemented here is in-turn plug-in architecture based.

Figure 7.Framework Hierarchy

3. INTELLIGENT OBJECTMANAGEMENT STUDIO

Intelligent Object Framework Management Studio (IOMS) provides an easy to use interface for
managing devices attached to the network. Underneath the simplicity of the design lies an engine
that dynamically creates the controlling environment based on the function content received from
a particular device or set of devices. Figure 8 shows the Management Studio platform with the
basic set of features. It renders a mainstream application design with features as control panel,
status screen and the device viewing window

Network
Layer

Processing/Logic
Layer

Data
Layer

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

7

Figure 8. Intelligent Object Framework Management Studio [12]

Once the application has been started, the user of the application needs to start up the services.
This is accomplished by turning the services on, pausing and stopping the services fully by
utilization of the menu bar shown in Figure 9.

Figure 9. Menu Bar

By clicking the Play button, a service process is spawned that starts up the protocol service which
allows discovery and device communication.

The Object Requests section, shown in Figure 10 shows a device that is seeking a connection to
the network. Important device information is displayed upon connection request. The user can see
the device name and additional information. Another important factor is to display the function
number. This shows the number of functions the particular device has on offer. The data
underneath is used in setting up the function iteration loop which receives the functions from the
intelligent object. The Object Request information window also displays the MAC address as it is
a primary identifier that is used in distinguishing different devices from one another within the
framework itself and the database.

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

8

Figure 10. Object Request window [12]

Once a user accepts the device to be added to the IOF network, the framework initiates a function
download process that is described in Section 4, and further explained in the next few sub-
sections. Once the functions have been successfully downloaded from the intelligent object
device, and stored to the database, user can access them from the tree menu. Figure 11 shows the
menu which displays all the intelligent objects that are currently online and functions the users are
allowed to use on the device.

Figure 11. Available devices tree menu

Upon clicking on a particular function within a device menu, the IOF services fetch function data
from the database, dynamically rendering the Control Panel section of the application seen in
Figure 12.

Figure 12: IOF Studio Control Panel

The control panel section dynamically adds functions based on the function type which is later
explained in Section3.6. In the above example, the TIMR (Timer) function, which has been
derived from the Intelligent Object itself, has input parameters; Type (which is of type Boolean)
and Time (which is of type integer). This particular example function allows a timer to switch on
or off the Tibbo embedded device within a set time interval. The user can then execute the

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

9

function by clicking the Execute button in the top right corner. The remaining two functions that
have also been exposed by the framework are TRON (Turn ON) and TROF (Turn OFF).
Another feature of the IOF framework is the Object Status Information window, Figure 13. Vital
information that is being sent to the Intelligent Object (IO) device is logged in this window, but
more importantly replies from the device to the services are being constantly received.

Figure 13 Object Status Information

In the above example, the TIBBO Embedded Device is constantly synchronizing its
connectionless session with the server (since the IOF uses UDP protocol for device
communication). The device also sends status messages in regards to the current operation of the
device, where potential device faults can also be seen and monitored. This is an automated
process. This gives users the ability to trace the communication process and potentially see if
there are any communication glitches. UDP packets can sometimes be lost during the
transmission, and in those particular cases, if a reply has not been received by the device, it can be
a clear indication that there is a problem in the communication layer. This could further be
extended with an in-depth description of errors, where particular users can drill in further to find
out the exact causes of potential device disasters.

3.1. System Block Diagram

Intelligent Object Framework can be dissected in three main components from the service end as
shown in Figure 14. The Network Layer; defines the protocol and services, Processing and Logic
Layer; describing the device object and the parser needed to evaluate the data coming from the
Intelligent Object device, and Database Layer; that interacts with the database for storage and
retrieval of device functions. The Intelligent Object comprises of similar layers as the framework
itself, except it does not need data layer as storage of functions is only done on the service end.
The Intelligent Object does include an extra Execution Layer which interacts with applications,
peripherals or abstract controls. The interactions are defined as functions that are sent to the
Intelligent Object services, defined by the protocol.

3.2. UDP Protocol

User Datagram Protocol (UDP) is classified as the simplest OSI transport layer protocol that is
intended for client/server networking applications that are based on Internet Protocol (IP). Being
one of the oldest network protocols, it still remains one of the most popular, tuned specifically for
real-time performance systems and applications where prior communication setup is not required.
Intelligent Object Framework is based on UDP protocol as a simple solution to device
management and monitoring. The packet structure of the UDP protocol is relatively simple. Table
2 shows the structure.

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

10

��������	
����������

����������� 	����	
�������� �
����

�
�
�	
����
�
�
��

�����
�����������������
������

�
�
������

����
�
�
�
��

��������	
����������

����������	
������������
����

 !�������	
���

�����"��
� �����
���� �������

 !�������
�
����

�
Figure 14. IOF System Architecture block diagram [12]

Table 2. UDP Packet Structure

bits 0 – 15 16 – 31

0 Source Port Number Destination Port Number

32 Length Checksum

64 Data

The UDP header consists of four fields 2 bytes each field, with the fifth data field. The maximum
UDP packet size is approximately 65532 bytes (8 byte header + 65527 bytes of data). The 65527
bytes of payload data is sufficient enough for function transfer exchange without putting a big
overload on the transmission. The two fields highlighted in pink are optional to the header and
indicate the integrity and verification of the payload. In the particular case where transmission
reliability is needed, application must implement this [13]. Intelligent Object Framework
implements the reliability feature by asynchronous device status implementation. As defined
earlier, this allows the user and application do receive device specific replies in order to provide
the status of the application. On the above UDP header sits the IP packet that indicates the
destination and source address.

Dissecting a typical data transmission from Intelligent Object device to Intelligent Object server
and vice-versa, we can further investigate the behaviour of the UDP packet with data payload.
Figure 15 shows the packet trace of an Intelligent Object device sending device data right after a
successful authentication.

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

11

Figure 15. A packet trace of an Intelligent Object device [12]

The above packet trace shows the IP + UDP structure for the example transmission. Applying
packet filtering to the received data from the source port (IOF server) and destination port (IO
device), yields in extended data which one can use to further analyse the function exchange. The
graph in Figure 16 shows the packet throughput from the time when Intelligent Object gains
authentication to the Services, to the point where the last packet of data is received.

Figure 16. Function exchange transmission; byte/tick interval (0.1 sec)

0000 001f 3c 9b 57 8d 00 24 23 0c 7f 68 08 00 45 00 ..<.W..$ #..h..E.
0010 00 92 00 8e 00 00 ff 11 39 53 c0 a8 00 21 c0 a8 9S...!..
0020 00 08 27 c7 27 10 00 7e 39 a5 30 2e 33 36 2e 33 ..'.'..~ 9. 0.36.3
0030 35 2e 31 32 2e 31 32 37 2e 31 30 34 7c 33 7c 31 5.12.127 .104|3|1
0040 39 32 2e 31 36 38 2e 30 2e 33 33 3b 30 2e 33 36 92.168.0 .33;0.36
0050 2e 33 35 2e 31 32 2e 31 32 37 2e 31 30 34 3b 54 .35.12.1 27.104;T
0060 49 42 42 4f 20 49 6e 74 65 6c 6c 69 67 65 6e 74 IBBO Intelligent
0070 20 4f 62 6a 65 63 74 3b 54 49 42 42 4f 20 45 6d Object; TIBBO Em
0080 62 65 64 64 65 64 20 49 6e 74 65 6c 6c 69 67 65 bedded I ntellige
0090 6e 74 20 4f 62 6a 65 63 74 20 44 65 76 69 63 65 ntObjec t Device

Internet Protocol, Src: 192.168.0.33 (192.168.0.33) , Dst: 192.168.0.8
(192.168.0.8)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: De fault; ECN: 0x00)
 Total Length: 110
 Identification: 0x008b (139)
 Flags: 0x00
 Fragment offset: 0
 Time to live: 255
 Protocol: UDP (17)
 Header checksum: 0x397a [correct]
 Good: True
 Bad: False
 Source: 192.168.0.33 (192.168.0.33)
 Destination: 192.168.0.8 (192.168.0.8)
User Datagram Protocol, Src Port: 10183 (10183), Ds t Port: ndmp (10000)
 Source port: 10183 (10183)
 Destination port: ndmp (10000)
 Length: 90
 Checksum: 0xdd18 [validation disabled]
 Good Checksum: False
 Bad Checksum: False
Data (82 bytes)
 Data: 302e33362e33352e31322e3132372e3130347c337c313932...
 Length: 118

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

12

Further analysing the function exchange transmission graph shows significant peak at each
function exchange interval that reaches 500 bytes of data at each sending interval. In the
particular example above, each function exchange response is proportional to the next response.
The same statistics can be seen for function requests, where the peak request does not go over 250
bytes of data. In both request and response instances, entire bundle of packets are a frame. This
means that each request and response packet sent or received includes the Data Link Layer packet
(in this instance the Ethernet packet), the Internet Protocol packet followed by the UDP packet
with the payload. The physical layer packet is missing from the stack as it is stripped off by the
network hardware itself.

What is concluded from the analysis of function exchange is that the UDP payload inflicted by
the data embedded by the Intelligent Object device and the Intelligent Object Services is not
significant enough to make an impact on the network traffic, rendering this method as viable
solution to service to device communication. Furthermore, the next section of chapter analyses
the protocol layer from the application perspective. This includes the protocol layer of services
and device.

3.3. Intelligent Object Protocol Layer

The objective of Intelligent Object Framework Protocol (IOFP) is to reliably and efficiently
communicate with Intelligent Object (IO) devices. IOF Protocol is unconstrained of the selective
transmission subsystem, thus only requiring an ordered data stream channel.

The design of IOF Protocol is based on the following model of communication: as intelligent
object requests to communicate with Intelligent Object Services (IOS), the IOS establishes a
connectionless UDP communication channel. Intelligent object then acknowledges the
connection, initializing its device descriptor which holds device data. In response to the intelligent
object’s descriptor packet, IOS request further data from the intelligent object. Upon reception of
the next packet, intelligent object initializes its next set of data to send which are the functions
and function parameters. The IOS also sends IOS data to the intelligent object. This is the IOS
descriptor which devices stores and uses for communication purposes.

The IOF protocol commands define the service to device communication. IOF protocol is a text-
based protocol terminated by a <CRLF> (Carriage Return Line Feed). The commands themselves
are numerical based and can be easily defined in any programming language as a set of
enumerated properties. Each section of the corresponding command is delimited by a pipe
character “|” and must conform to receiver conventions. Both the services and intelligent object
conform to this standard as means of splitting streaming data and making sense out of it. Protocol
configuration can be summarized by Table 3.

Table 3. Protocol Configuration

IOF Services Port 10000

IOF Device Port 10001
Data Delimiter |
Function Delimiter ;
Parameter Delimiter :

Intelligent Object Framework services bind and listen on port 10000, whereas the Intelligent
Object devices bind and listen on port 10001.

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

13

Intelligent Object to IOF Services transactions involve several data objects that are defined as
additional arguments to the command. The arguments themselves are bound by delimiters and
must be transmitted together with the command. The only way the receiving system will know
how to handle incoming data in a particular pattern is by knowing the first arriving field, or the
command descriptor. Once the data is received in a chunk, it is split up and placed in distinct
array of buffers. The buffers will further be explained in this section.

The IOF Protocol command semantics further describe Request Types, Device Status and
Handshaking procedures for successful exchange and manipulation of received or sent data. The
detail of Protocol Definition on Handshake, Service Response Process (Service Side), Device
Request Process (Service Side), and Statuscan be defined [14].

Protocol class diagram consists of attributes, methods and events that are invoked when certain
conditions are met. There are six events operating in the Protocol services layer of Intelligent
Object Framework, Figure 17.

Figure 17. Protocol Services Diagram

The decision upon which event is to be fired is initiated by a ProcessData method in the
Intelligent Object instance. Since each device has an instance of an Object within the
DeviceCollection, they all are referenced by their separate events.

IAsyncResult interface is implemented in the Protocol class, since the class operates
asynchronously. The result which is derived from the ProtocolService.EndRecieve (res, ref

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

14

device) is the incoming data from the device. The objInstance.ProcessData method of the device
class processes the data accordingly. The ProcessData method parses the incoming data. The data
which is process is further defined in the protocol segment tables. Each table defines the data
packets earlier described in this section. Their fields are also further defined.Request Type
Protocol and Data Arrival Type Protocol Definitions can be found in [14].

3.4. Intelligent Object Device Layer

The Intelligent Object Framework device layer is essentially a business logic layer. The primary
job of the device layer is to relay data from the IOF protocol layer and process it accordingly. It
also communicates with the Data Access Layer for retrieval and storage of object information.
The device layer is also responsible for raising events
To understand this process better, Figure 18 shows the interactions between different methods
within the individual layer blocks. The sequence diagram illustrates the requesting procedures
from the components to the corresponding activation boxes. The method-invocation occurs as a
sequential process, although most processes are asynchronously defined, and are executed
respectively in their threads. The diagram shows distributed workload across the IOF Services
object and IOF Device object. This is due to the separation of services and device logic
components. This separation is required as IOF Device object directly interrogates the Data
Layer. Since the implementation of IOF Device is abstracted from the Services itself, the IOF
Device layer acts as an interface for the services processes.

�

Figure 18. IOF Sequence Diagram

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

15

3.5. Intelligent Object Data Access Layer

Intelligent Object Framework Data Access Layer (DAL) is responsible for writing to and reading
from database the relevant intelligent object function and device data. The specific DAL does not
contain business or displaying logic but is a part of a three tier architecture design that has the
following components:

• User Interface (UI) layer that contains the interface
• Business Logic Layer (BLL) which contain application’s business rules.

3.6. Dynamic User Interface Control Rendering

Functions inherited from the intelligent object are stored in the IOF database. It conforms to a
hierarchical structure where the function is the parent of a parameter. When the database is
queried via the Data Access Layer, it forms a Function object. An important step in managing the
intelligent object devices and executing functions (commands) is being able to visually present
the user with the right set of controls. Part of the device control process is user input, thus the user
must have a way of being able to input or select the type of information. Parameter types
supported by IOF are Boolean, Integer, String and Time as shown in Figure 19. The controls
displayed on the user interface are rendered based on the types supported. To better understand
how the rendering model works, figure below shows the block diagram of the process. The
parameter type is put through a Control Rendering Process which defines the control types. The
output that is produced by the rendering algorithm is a corresponding visual control type.
NumericalBox is created based on integer type, CheckBox is based on Boolean, TextBox is for a
string type and Time is of TrackBar

Figure 19. Parameter Type Control Rendering Process

To help support the process output, Figure 20depicts two control types based on the parameter
data types from the intelligent object. The TIMR (Timer) function has two parameters. The
MODE parameter and the TIME parameter are of type Integer and Boolean and are rendered
accordingly. When the user makes change to the parameter, it sets the parameter value
accordingly. Upon function execution, the arguments are bundled up and set to the device.

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

16

Figure 20. TIMR Function with parameters

4. DEVICE APPLICATION DESIGN

The HTC mobile device and the TIBBO Embedded Device design also conform to the rules of
IOF Services framework, except it does not interact directly with the IOF database.There are three
abstract layers on the devices as shown in Figure 21. The protocol layer is responsible for
receiving data from the IOF services and is also responsible for extraction of the data. Once the
data is properly parsed by the protocol process, it is passed to the Function Parser. The job of the
Function Parser is to determine which Function is to be executed. The framework relies on the
developer to specify the functions which are to be called. Furthermore, once the function has been
determined, and the parameters extracted, the result is passed to the execution layer. The
execution layer, based on the function results that have been passed to it, executes the function.

��������	
����������

����������	
������������
����

 !�������	
���

�����"��
� �����
���� �������

 !�������
�
����

Figure 21.Device Application Design

The developer is able to control three different types of controlling layers. Peripheral control
states that the device can control another peripheral on the device. This may be over an USB or
RS232 port. Intelligent Object Framework prototype focused on Application specific control and
generic control. Application specific control was proven by controlling HTC Mobile applications,
whereas generic control was achieved by controlling LED lights on the TIBBO Basic Embedded
Device.

The protocol layer of the devices mimics the IOF Service layer in its operation and it processes
the data in exactly the same way. This also adheres to the parsing of the IOF packet flags. Below
figures illustrate the difference in design of the portion of protocol layer. The data received from
the endpoint (IOF Services) is put into the data variable, and further parsed in the function. The
request flags are also checked, and Request = … PacketData[0]; grabs the first element of

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

17

the data array parsed by the protocol layer, and the request is determined. The type of request
conforms to the protocol specifications explained in the Chapter 5. The way that the functions are
passed from the Intelligent Object to the IOF framework is by iteration of Function object. Once
the functions have been defined, and placed in the Function object, they are sent to the IOF
Services.

Once the IOF services have sent a request to the Intelligent Object device to gather the device
functions and parameters, a for loop is initialized by the device that iterates through the function
collection. The post process, once the function is sent to the IOF Services, is to mark the function
as sent. Once the next function is due to be sent to the Services, it skips through the function that
has already been sent. The function data is set up in a function PrepareObjectData() .

The Function object is defined by the parameters. The function object attributes hold the very
function values and the func.Name is mapped to the Function Parser process, enabling the
particular command to be executed. Finally in the below figure, the CALL function is parsed and
further processed by the Object’s internal framework.

5. DATABASE DESIGN

The Database consists of five tables, i.e. Response, Object, Function, AccessType and Properties
as shown in Figure 22 and table schema are listed in Tables 4-8.

Figure 22. Intelligent Object Framework Database Model

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

18

Table 4. Objects table schema

Table – dbo.Objects

Column Name Data Type Description
ioid Varchar(MAX) Intelligent Object ID
Ip varchar(15) Intelligent Object IP Address
Mac Varchar(MAX) MAC (Media Access Control) Address
Name Varchar(MAX) Intelligent Object name
Version Varchar(MAX) Intelligent Object software version
Lastpoll Datetime Last time the device polled the services
isEnabled Bit Check flag to see if the device is enabled or disabled
accesTypeid Int Access type id. Links to the AccessType table.

Table 5. Functions table schema

Table – dbo.Functions
Column Name Data Type Description
Funcid Int Function ID
Ioid Int Intelligent Object ID
Name Varchar(MAX) Function Name
Description Varchar(MAX) Function Description
isEnabled Bit Specifies if the function is enabled or disabled
hasParameters Bit Has the function got parameters
hasRet Bit Does the function return a value

Table 6: Parameters table schema

Table – dbo.Parameters

Column Name Data Type Description
Paramid Int Parameter ID
Funcid Int Function ID
Name Varchar(MAX) Parameter Name
Description Varchar(MAX) Parameter Description
Type Varchar(MAX) Parameter Type
defVal Varchar(MAX) Default parameter value
isOptional Bit Is the parameter optional or explicit

Table 7. AccessType table schema

Table – dbo.AccessType

Column Name Data Type Description
accessTypeid Id Access type ID
Description varchar(15) Access type description

Table 8. Response table schema

Table – dbo.Response

Column Name Data Type Description
Responseid Int Response ID
Ioid Int Intelligent Object ID
Code Varchar(10) Response code
Description Varchar(MAX) Response Description

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

19

6. CONCLUSIONS

The design and implementation of Intelligent Object Framework proved to be a complex task as it
needed extensive research on communication models and protocol implementation specifications
design. The right set of devices needed to be chosen, that have the right platform features
allowing the implementation of core components, in order to design and develop the proof of
concept. It has achieved by introducing a function exchange model implemented in the structure
of the protocol and allowing devices to hand over their complete set of functions to be stored in a
database. Users can then use the management application to query those very functions and be
able to control the devices wirelessly.The IOF consists of a framework design enabling devices of
varied platforms to communicate by a common data exchange model via a device management
controller. The end product of the framework implementation is a single application managing
multiple devices.

7. FUTURE WORK

Intelligent Object Framework is a platform independent framework allowing different devices to
be controlled and monitored. Currently the model supports only the basic implementation of the
services and protocol allowing functions to be downloaded from an intelligent object device and
stored to a database. The framework also allows a user to load the functions of a particular device
and execute them.

The framework can be further extended by implementing a secure protocol with token based
authentication or equivalent. This would add an overhead on the UDP packet, although it would
provide a safe communication channel. The protocol definition can further be improved by
implementation of TCP protocol suite for critical devices that need a connection oriented
communication to be established. This would provide a logical connection that negotiates before
sending data to one another. That addition to the current solution would provide a reliable
communication between Intelligent Objects and Intelligent Management Services.

XML based function exchange model would provide a more descriptive function definition that
could be integrated as Web Services. This can in fact be defined using the standard Web Service
Definition Language. The device function access can be made available over a range of different
networks and available to different applications.

The research provided the opportunity to utilize and combine different skill sets ranging from
systems design, programming, implementation, database design, embedded device programming
and deployment of multiple components on multiple platforms. The skills and knowledge gained
throughout the research and development far outweighed the complexity and challenges posed by
the project.

ACKNOWLEDGEMENTS

Sasa Savic would like to thank Victoria University for offering the Research Training Scheme
(RTS) for his PhD study.

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 6, December 2013

20

REFERENCES

[1] ManageEngine. (2010). "A beginner's guide to SNMP."

http://www.snmplink.org/snmparticles/abeginnersguide, retrieved on 2 May 2010.
[2] WTCS.ORG (2013) "An Introduction to SNMP."http://www.wtcs.org/snmp4tpc/snmp.htm, viewed

on 10 November 2013.
[3] Harrington,D. and Wijnen B. (2002). "An Architecture for Describing SNMP Management

Frameworks." RFC3411: pp. 34-40.
[4] Patrick (2006) "xAP an Open Standard for Home",viewed on 10 November 2013,

http://www.xapautomation.org/index.php?title=Protocol_definition.
[5] XAP (2008). "Home Automation Protocol."http://www.xapautomation.org, viewed on 10 November

2013.
[6] Smith, J. R. (2005) “X-10 Home Automation. Programming the PIC Microcontroller with MBASIC”,

Burlington, Newnes: 453-486.
[7] Parralax (2002) “MBASIC for PIC Microcontrollers”, M. Basic: pp 203-207.
[8] MODBUS (2010) "MODBUS Datasheet", http://www.blackoakeng.com/ds_modbuster.htm, retrieved

on 2 May 2010.
[9] Huitsing, P., Chandia, R. et al. (2008). "Attack Taxonomies for the Modbus Protocols." International

Journal of Critical Infrastructure Protection 1: 37-44.
[10] Sriskanthan, N., Tan, F. and Karande, A. (2002). "Bluetooth based home automation system."

Microprocessors and Microsystems 26(6): 281-289.
[11] Committee, B. (1999). Profiles of the Bluetooth System. V1.0B.
[12] Savic, S. and Shi, H. (2011), "An Intelligent Object Framework for Smart Living", Procedia

Computer Science 5 (2011) 386–393.
[13] IETF (1980). User Datagram Protocol, RFC 768.
[14] Savic, S. (2010) " Intelligent Object Framework", thesis for Master of Science in Computer Science,

School of Engineering and Science, Victoria University, June 2010, 138 pages.

Authors

Sasa Savicis a PhD student at Victoria University in Melbourne, Australia. He obtained
Advanced Diploma of Computer Systems Engineering in 2002 from Royal Melbourne
Institute of Technology (RMIT). He received Bachelor of Science in Computer Science
and Master of Science in Computer Science from Victoria University in 2006and 2010,
respectively. He is currently working at Telstra, the largest Australian
telecommunications company, as a senior software engineer.

Dr. Hao Shi is an Associate Professor in College of Engineering and Science, Victoria
University, Melbourne, Australia. She completed her Bachelor of Engineering degree at
Shanghai Jiao Tong University, China and obtained her PhD in the area of Computer
Engineering at University of Wollongong. She has been actively engaged in R&D and
external consultancy activities. Her research interests include p2p Network, Location-Based Services,
Web Services, Computer/Robotics Vision, Visual Communications, Internet and Wireless Technologies.

