International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

Sasa Savicand Hao Shi
College of Engineering and Science, Victoria Unsitgr Melbourne, Australia

ABSTRACT

The design and implementation of Intelligent Obfaetmework(IOF) aims to unite the communication and
device management through a platform independenhagement protocol in conjunction with a
management application. The Core Framework is dged using Microsoft Visual Studio, Microsoft's
.NET Framework and Microsoft's Windows Mobile S3¢condary Intelligent Object is developed using
Tibbo Integrated Development Environment (TIDE) anBASIC programming language that is loaded on
an EM1026 Embedded Device Platform running Tibber@ing System (TiOS). The backend database is
based on Microsoft's SQL Server.In this paper, @rots associated with Smart Living are first
reviewed.The system architecture and intelligerjeatbmanagement studio are presented. Then device
application design and database design are detailédally conclusions are drawn and future work is
addressed.

KEYWORDS

Intelligent Object Framework, Intelligent ObjectMagement Studio, Wireless Network
1.PrROTOCOLS

1.1.SNMP (Simple Network Management Protocol)

SNMP is an application-layer protocol defined ire tRFC1157, for exchanging management
information between network devices. It is parttloé TCP/IP protocol suite and it is one of
widely accepted protocols used to manage and nronigbwork elements. The basic SNMP
components are SNMP Manager, A managed device, MMFS Agent, and Management

Information Base (MIB) as shown in Figure 1 [1].

Management Information
Base (MIB)

Management Information
Base (MIB)

SNMP Community
1P SET: -

NMP GET/GET NEX T e—

Network Management
Station

Network Element (Agent
Device)

@ SNMP TRAP (ALERT) @ = = o

Figure 1: SNMP High Level Diagram [1]
DOI : 10.5121/ijjwmn.2013.5601 01

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

Whilst being a transparent request and respondeqmicdthat communicates certain management
information between two types of SNMP software tegd] it fails to meet certain pre-emptive
actions and response times. Although it is majoniglemented in network devices and secondary
management interfaces, it has also been found oputers and printers. Despite its apparent
compatibility across distributed systems, it is sidered a highly complicated protocol to
implement as it comes with numerous abstruse engodiles and schemes. SNMP also lacks
efficiency as network bandwidth is exhausted wihkless data [2, 3]

As described in RFC3411[3]Section 4.4.3, SNMP wersis transmitted in every SNMP
datagram. In addition to the unnecessary data ewerht each datagram, multiple length and data
descriptors are being broadcasted throughout eaebBsage. The inefficiency in packet
encapsulation methodology yields in superfluous di@ndles which are across the network. This
effect is not felt in small to medium networks,haligh, networks that consist of large scale
distributed devices do. Furthermore, device faguaiee not detected in real-time and device that
succumb to network failures will not be noticediliite next polling cycle.

Software applications managing the SNMP enabledcdsvmust be aware of the available
information that lies within the device. If therea discrepancy in the schema, this must also be
changed in the management application. The proplrgetligent Object Framework differs by
accepting device changes via adding functionsjrgfdhem to a database by conforming to a
common data model. Once the data exchange octwwdunctions and its data types become
available to any application, thus enabling a ts@xecute the new/amended function.

1.2. EXtensible Automation Protocol (XAP)

Another kind of network management and controlgrrot that has emerged since the late 90’s is
XAP. An open source protocol intended for suppod @ntegration of telemetry and control
devices within a home environment. While the frarmdwand protocol definition [4] enables
multi-device control over UDP protocol, seen in Ufig 2, it achieves this by multi broadcast
messages.

XAP Display

XAP Sprinkler

Reject

Bridge XAP Fridge

<< UDP Broadcast [msg: temp=20]

XAP DVD XAP Airconditioner

Figure 2.xAPMessage Broadcast Flow [5]

This approach must rely on independent applicataors devices to drop unwanted packet data.
Moreover, failure to address the issue of cenedliflunction management yields in complex
software and hardware design. XAP approach reliegach device implementation to vary its

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

schema, thus it does not conform to a frameworkdstal, but rather rely on protocol
specification itself.

1.3. X-10 Home Automation

In the late 1970’s, Pico Electronics produced axpensive home automation equipment. The
simple idea was to use home’s power wiring to comigaie from a controller to small remote
control modules. The X-10 technology is still wiglelsed amongst household appliance control.
The technology behind X-10 works by sending briefsks of 120 KHz signals over the power
lines, timing the bursts to coincide with the 60 ptaver line zero-voltage crossing. At the zero
voltage point, the power line noise level is at imimum and the 120 KHz signal has a better
chance to be received by a remote control modudleAt&he highest level the X-10 messages are
comprised of three elements, Table 1.

Table 1. X-10 High Level Message [6]

House Code Unit Code Function Code
Within the X-10 protocol, | There are 16 possible unit There are 16 possible function
there are 16 possible house codes, and is codes which are identified by

codes and they are conventionally identified 1| their operations such as “On”,
identified as A through to . through to 16. “Off”, “Dim”.

The X-10 home automation system is developed ugiBgsic, a language specifically used for
PIC microcontrollers. The MBasic holds a library fahctions related to X-10 protocol, thus
enabling the above House, Unit and Function codeiBpations to be standardized in the form of
X_A through toX P, X 1 through toX 16 and X_On or X_Off. Controlled modules are
addressed by both house and unit codes. Devicassaedly controlled by rotating switches that
have House and Unit code settings. By rotatingsthigches, the module’s address is set to the
desired house and unit codes.

Further looking at X-10 protocoParralaxstates that interface modules have liroitatito how
well they may work in particular area [7]. Duringet testing ofXin and Xout commands,
Parallax found that the modules would not addressesunits in the same building. It was stated
that this may have been due to noise in the linéawty electrical wiring. The units did not work
well with filtering power strips either.

The rules of the protocol are hard-coded and thewvtere functions must be statically assigned to
the protocol's Function codes. Whilst the systernryrba useful for simple operations, it does
however fall short of the ability to be controlleth other means such as wireless or Ethernet
communication. Another issue that may arise froexdperation of the units is the possibility of a
fault within the special module power plugs. Thagkr to that is that the user is playing around
high voltage devices. Since the tone bursts argesed across the household, this in-fact scatters
along the entire power line grid in the vicinity the house, thus there is a chance of somebody
else generating signal bursts and tampering wighinternal house hold appliances, resulting in
damages or overriding of control.

1.4. MODBUS

MODBUS is a serial communications protocol, pul#dhy Modicon in 1979[8]. It is widely
used in industrial control applications. The MODBpI®tocol defines the message structure and
the communication rules for interconnection of coingystems that exchange supervisory control

3

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

and data acquisition (SCADA) information for codiirg industrial processes [9]. The
MODBUS comes in two different variants, serial coomication and the TCP communication
version. MODBUS is an application layer messagingtqrol and is positioned at level 7 of the
OSI model. It provides client/server communicati@iween devices connected on different types
of buses or networks. The MODBUS communicationksiadepicted in Figure 3.

MODBUS on TCP

Other MODBUS+/HDLC Master / Slave Ethernet 11/ 802.3

Ethernet
Physical Layer

Other Physical Layer RS232 or R485

Figure 3.MODBUS communication stack [8]
1.5. HAP (Home Automation Protocol)

HAP was developed in 2002 by Sriskanthan [10] ohydeg Technological University in
Singapore. HAP facilitates the communication amorige host and client modules in a home
automation system and the protocol is constructexe Bluetooth software stack [10, 11]. The
HAP protocol’s initialization process utilizes tt&ervice Discovery Protocol to query device
information and services within Bluetooth’s Picoitieistrated in Figure 4.

Figure 4. Host and client modules Bluetooth Pic$he}
The individual clients are shown in Figure 5. HARtpcol uses descriptor table definition to

store the information of all active network devicdhe heavy lifting is done by the Device
Controller, as it respectively hosts the descrifméormation. The Host Controller then searches

4

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

the device information from the Device Controlledat constructs the descriptor table, which the
Device Controller is responsible for.

<

|

Figure 5.Individual Client Module [10]
The protocol is implemented on Bluetooth enabledads and it requires hardware development
backing in order for the devices to control a pie€appliance or equipment. The client module
only acts as the medium for communication anddrestction of the HAP packets.

2.SYSTEM ARCHITECTURE

pr e ———— S ———
Application Layer ' IOF Application | 2 Application Control
Middleware Layer [! I Networking ‘ ‘ System Infrastructure U
0S Layer [! 05 Core (3" party OS) N5 .
! — OS Control
Hardware Drivers [!| wiFi | [ZigBee8o2 15 || Ethemet | | RSZSZIU
[L’
Hardware Layer I Semiconductor chipsets |'|
| Y
I} Ny = HW Control
Operation Request Operation Response

10 Protocol
(UDP) 10 Parser

10 Device

Management Application

User PC

Figure 6. Intelligent Object Framework Block Diagr§l?2]

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

IOF system comprises of three component segmdmscantroller, service and the endpoint
devices. The three layers are architecturally sgpdr although maintain communication via
protocol services. The Services layer can furtreséparated in three layers outlining the core
components. Figure 7 shows the separation betvweeanternal components of the services.

The implementation of the IProtocol interface igedily linked to the Protocol class. The
protocol, also defined as a service class pars#set®rocessing and Logic Layer. The Protocol
class does this by invoking a device instance. Thizcess is further described in the I0F
Protocol section of the document. The device dialserits Device Data as the root instance with
the collection of Functions and the Function Patanse If a new device is attempting to join the
IOF Service and is accepted, the device instanoemmicates directly with the database.
Furthermore, the separation of the networking, @ssecand data layer allows device logic
separation enabled for further possible extensibrthe framework. To implement a new
functionality, the developer can focus on one logiction at a time. The methodology
implemented here is in-turn plug-in architecturedsh

Network Processing/Logic Data
Layer Layer Layer
‘.-Device ¥ etatayer 2

4 I A
(Devicebata G
Interface §)
O M;MM %“ N
[e B) [Repys 5)

Class Class

74

s

«

| Parameters
Class

s w b

[IPratocol ¥ I Class

Figure 7.Framework Hierarchy

3.INTELLIGENT OBJECTMANAGEMENT STUDIO

Intelligent Object Framework Management Studio (I®Mprovides an easy to use interface for
managing devices attached to the network. Unddmurtbatsimplicity of the design lies an engine
that dynamically creates the controlling environingssed on the function content received from
a particular device or set of devices. Figure 8aghthe Management Studio platform with the
basic set of features. It renders a mainstreamicapipin design with features as control panel,
status screen and the device viewing window

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

& Inteligent Oject
1

%» Management Studio
@¥Q@ Ftehoent Object Framework Management Studi - Device Control Center

> @ &R
=1 TIBBO Inteligent Object “S7 Control Panel
¥ Security Tum the lights on I
. Settings Execdte TRON
=-m Functions
:
. TROF I|
= TIMR
- MODE = omectreguess |
| 5, TIME =
‘ Summary @ E]
| > Device Name: TIBBO
| i Hardware Name: TIBBO Embedded Inteligent Object Device
Firmware Version: 1.0
} g Function No#: 3 =
Endpoint IP: 192.168.0.33
MAC Address: 0.36.35.12.127.104
Device Sucessfully Added \ \||
Object Status Information
Ern
Time Device IP Addres Connection Cmd/Reply Message e
= 4/05/2010 1:54:58 AM TIBBO Intelligent Object 192.168.0.33 Incomming SYN EMBEDDED Is Alive
= 4/05/2010 1:55:59 AM TIBBO Intelligent Object 192.168.0.33 Incomming SYN EMBEDDED Is Alive @
< m »

Figure 8. Intelligent Object Framework Managemenid® [12]
Once the application has been started, the ustrechpplication needs to start up the services.
This is accomplished by turning the services oryspmey and stopping the services fully by
utilization of the menu bar shown in Figure 9.

%» Management Studio

4
Yo Intelligent Object Framework Management Studio - Device Control Center

b u @ &= @A

Figure 9. Menu Bar

By clicking the Play button, a service procespavaed that starts up the protocol service which
allows discovery and device communication.

The Object Requests section, shown in Figure 1@stadevice that is seeking a connection to
the network. Important device information is disf@dd upon connection request. The user can see
the device name and additional information. Anofingoortant factor is to display the function
number. This shows the number of functions theiqddr device has on offer. The data
underneath is used in setting up the function timmdoop which receives the functions from the
intelligent object. The Object Request informatwindow also displays the MAC address as it is
a primary identifier that is used in distinguishidigferent devices from one another within the
framework itself and the database.

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

Figure 10. Object Request window [12]

Once a user accepts the device to be added tOtHhadtwork, the framework initiates a function
download process that is described in Section 4, farther explained in the next few sub-
sections. Once the functions have been succesdfiolynloaded from the intelligent object
device, and stored to the database, user can abessdrom the tree menu. Figure 11 shows the
menu which displays all the intelligent objectstti currently online and functions the users are
allowed to use on the device.

Figure 11. Available devices tree menu

Upon clicking on a particular function within a dex menu, the IOF services fetch function data
from the database, dynamically rendering the CorRemel section of the application seen in
Figure 12.

TIME Type: int
TRON o

TROF

TIMR
, MODE
\ Tive

! R
\ ’ TIBBO Embedded Intelligent Object Device () (=) [x]

Figure 12: I0OF Studio Control Panel

The control panel section dynamically adds fundibased on the function type which is later
explained in Section3.6. In the above example, THdR (Timer) function, which has been

derived from the Intelligent Object itself, has ungarameters; Type (which is of type Boolean)
and Time (which is of type integer). This particudxample function allows a timer to switch on
or off the Tibbo embedded device within a set timirval. The user can then execute the

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

function by clicking the Execute button in the taght corner. The remaining two functions that
have also been exposed by the framework are TRQK(ON) and TROF (Turn OFF).
Another feature of the IOF framework is the Obj8tatus Information window, Figure 13. Vital
information that is being sent to the Intelligerttj€t (10) device is logged in this window, but
more importantly replies from the device to thevsms are being constantly received.

Figure 13 Object Status Information

In the above example, the TIBBO Embedded Devicecanstantly synchronizing its
connectionless session with the server (since tB& luses UDP protocol for device
communication). The device also sends status messagegards to the current operation of the
device, where potential device faults can also &ensand monitored. This is an automated
process. This gives users the ability to tracedtmmunication process and potentially see if
there are any communication glitches. UDP packetsa sometimes be lost during the
transmission, and in those particular cases, éptyrhas not been received by the device, it can be
a clear indication that there is a problem in tlenmunication layer. This could further be
extended with an in-depth description of errorsesehparticular users can drill in further to find
out the exact causes of potential device disasters.

3.1. System Block Diagram

Intelligent Object Framework can be dissected reé¢hmain components from the service end as
shown in Figure 14. The Network Layer; definesphgtocol and services, Processing and Logic
Layer; describing the device object and the panseded to evaluate the data coming from the
Intelligent Object device, and Database Layer; tharacts with the database for storage and
retrieval of device functions. The Intelligent Offjeomprises of similar layers as the framework
itself, except it does not need data layer as geord functions is only done on the service end.
The Intelligent Object does include an extra Executayer which interacts with applications,
peripherals or abstract controls. The interactiares defined as functions that are sent to the
Intelligent Object services, defined by the protoco

3.2. UDP Protocol

User Datagram Protocol (UDP) is classified as ihgpkest OSI transport layer protocol that is
intended for client/server networking applicatighat are based on Internet Protocol (IP). Being
one of the oldest network protocols, it still rengadbne of the most popular, tuned specifically for
real-time performance systems and applications vpgor communication setup is not required.
Intelligent Object Framework is based on UDP protoas a simple solution to device
management and monitoring. The packet structuteeotJDP protocol is relatively simple. Table
2 shows the structure.

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

) =

| | |
Figure 14. IOF System Architecture block diagrar®][1

Table 2. UDP Packet Structure

[bits|| 0-15 | 16 — 31 |
[0][Source Port Number || Destination Port Numb
[32] Lengtr I Checksur |
[64] Date |

=

The UDP header consists of four fields 2 bytes dibth, with the fifth data field. The maximum
UDP packet size is approximately 65532 bytes (& Ingader + 65527 bytes of data). The 65527
bytes of payload data is sufficient enough for fiorctransfer exchange without putting a big
overload on the transmission. The two fields higiiéd in pink are optional to the header and
indicate the integrity and verification of the pagtl. In the particular case where transmission
reliability is needed, application must implememist [13]. Intelligent Object Framework
implements the reliability feature by asynchronalevice status implementation. As defined
earlier, this allows the user and application dmeiee device specific replies in order to provide
the status of the application. On the above UDRJ&easits the IP packet that indicates the
destination and source address.

Dissecting a typical data transmission from Ingellit Object device to Intelligent Object server
and vice-versa, we can further investigate the Wieba of the UDP packet with data payload.

Figure 15 shows the packet trace of an Intelligaiject device sending device data right after a
successful authentication.

10

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

Internet Protocol, Src: 192.168.0.33 (192.168.0.33) , Dst: 192.168.0.8
(192.168.0.8)

Version: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00: De fault; ECN: 0x00)

Total Length: 110
Identification: 0x008b (139)
Flags: 0x00
Fragment offset: 0
Time to live: 255
Protocol: UDP (17)
Header checksum: 0x397a [correct]
Good: True
Bad: False
Source: 192.168.0.33 (192.168.0.33)
Destination: 192.168.0.8 (192.168.0.8)
User Datagram Protocol, Src Port: 10183 (10183), Ds t Port: ndmp (10000)
Source port: 10183 (10183)
Destination port: ndmp (10000)
Length: 90
Checksum: 0xdd18 [validation disabled]
Good Checksum: False
Bad Checksum: False
Data (82 bytes)
Data: 302e33362e33352e31322e3132372e3130347¢337¢313932...

Length: 118
0000 001f 3c 9b 57 8d 00 24 23 Oc 7f 68 08 00 45 00 .<W.$#.h.E.
0010 0092 00 8e 00 00 ff 11 39 53 c0 a8 00 21 cO a8 ... 9S...L.
0020 0008 27 c¢7 27 10 00 7e 39 a5 30 2e 33 36 2e 33 L~ 9. 0.36.3
0030 352e31322e313237 2¢3130347c337c31 5.12.127 .104|3|1
0040 39 32 2e 31 36 38 2e 30 2e 3333 3b 30 2e 3336 92.168.0 .33;0.36
0050 2e33352e31322e31 32372e3130343b54 .35.12.1 27.104;T
0060 49 42 42 4f 20 49 6e 74 65 6¢C 6C 69 67 65 6€ 74 IBBO Intelligent
0070 20 4f 62 6a 65 63 74 3b 54 49 42 42 4f 20 45 6d Object; TIBBO Em
0080 62 65 64 64 65 64 20 49 6e 74 65 6¢ 6¢ 69 67 65 bedded I ntellige
0090 6e 74 20 4f 62 6a 65 63 74 20 44 65 76 69 63 65 ntObjec t Device

Figure 15. A packet trace of an Intelligent Objaevice [12]

The above packet trace shows the IP + UDP strudturéhe example transmission. Applying

packet filtering to the received data from the seuport (IOF server) and destination port (IO
device), yields in extended data which one cantadarther analyse the function exchange. The
graph in Figure 16 shows the packet throughput ftbentime when Intelligent Object gains

authentication to the Services, to the point wiieedast packet of data is received.

Figure 16. Function exchange transmission; byteititerval (0.1 sec)
11

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

Further analysing the function exchange transmisgimaph shows significant peak at each
function exchange interval that reaches 500 byteslata at each sending interval. In the
particular example above, each function exchangporese is proportional to the next response.
The same statistics can be seen for function régjuebere the peak request does not go over 250
bytes of data. In both request and response instamentire bundle of packets are a frame. This
means that each request and response packet seneived includes the Data Link Layer packet
(in this instance the Ethernet packet), the InteRretocol packet followed by the UDP packet
with the payload. The physical layer packet is miggrom the stack as it is stripped off by the
network hardware itself.

What is concluded from the analysis of functionhagge is that the UDP payload inflicted by

the data embedded by the Intelligent Object dewioe the Intelligent Object Services is not

significant enough to make an impact on the netwoeaKic, rendering this method as viable

solution to service to device communication. Furthere, the next section of chapter analyses
the protocol layer from the application perspectiVhis includes the protocol layer of services
and device.

3.3. Intelligent Object Protocol Layer

The objective of Intelligent Object Framework Piab (IOFP) is to reliably and efficiently
communicate with Intelligent Object (I0) device®H Protocol is unconstrained of the selective
transmission subsystem, thus only requiring anredidata stream channel.

The design of IOF Protocol is based on the follgvnodel of communication: as intelligent
object requests to communicate with Intelligent €@a@bjServices (10S), the IOS establishes a
connectionless UDP communication channel. Intefligeobject then acknowledges the
connection, initializing its device descriptor wiikolds device data. In response to the intelligent
object’s descriptor packet, 10S request furtheadaim the intelligent object. Upon reception of
the next packet, intelligent object initializes itext set of data to send which are the functions
and function parameters. The 10S also sends I0& tdathe intelligent object. This is the I0S
descriptor which devices stores and uses for conation purposes.

The IOF protocol commands define the service taodewommunication. IOF protocol is a text-
based protocol terminated by a <CRLF> (CarriageiRetine Feed). The commands themselves
are numerical based and can be easily defined yn programming language as a set of
enumerated properties. Each section of the corneipg command is delimited by a pipe
character “|” and must conform to receiver conv@rgi Both the services and intelligent object
conform to this standard as means of splittingastieg data and making sense out of it. Protocol
configuration can be summarized by Table 3.

Table 3. Protocol Configuration

IOF Services Pa 1000(
IOF Device Pol 10001
DataDelimiter |

Function Delimite ;
Parameter Delimiter

Intelligent Object Framework services bind andelisibn port 10000, whereas the Intelligent
Obiject devices bind and listen on port 10001.

12

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

Intelligent Object to IOF Services transactionsoire several data objects that are defined as
additional arguments to the command. The argumtbetnselves are bound by delimiters and
must be transmitted together with the command. dilg way the receiving system will know
how to handle incoming data in a particular patterby knowing the first arriving field, or the
command descriptor. Once the data is received d¢huak, it is split up and placed in distinct
array of buffers. The buffers will further be expled in this section.

The IOF Protocol command semantics further descRieguest Types, Device Status and
Handshaking procedures for successful exchangeramipulation of received or sent data. The
detail of Protocol Definition on Handshake, ServResponse Process (Service Side), Device
Request Process (Service Side), and StatuscarfibedIgL4].

Protocol class diagram consists of attributes, odghand events that are invoked when certain
conditions are met. There are six events operatintpe Protocol services layer of Intelligent
Object Framework, Figure 17.

Figure 17. Protocol Services Diagram

The decision upon which event is to be fired idiatéd by a ProcessData method in the
Intelligent Object instance. Since each device has instance of an Object within the
DeviceCollection, they all are referenced by tisejparate events.

IAsyncResult interface is implemented in the Protoclass, since the class operates
asynchronously. The result which is derived frone tRArotocolService.EndRecieve (res, ref

13

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

device) is the incoming data from the device. Thignstance.ProcessData method of the device
class processes the data accordingly. The Processizdhod parses the incoming data. The data
which is process is further defined in the protosegment tables. Each table defines the data
packets earlier described in this section. Thedtdf are also further defined.Request Type

Protocol and Data Arrival Type Protocol Definitiocen be found in [14].

3.4. Intelligent Object Device Layer

The Intelligent Object Framework device layer iserttially a business logic layer. The primary
job of the device layer is to relay data from tld-Iprotocol layer and process it accordingly. It
also communicates with the Data Access Layer foteral and storage of object information.

The device layer is also responsible for raisingnes

To understand this process better, Figure 18 shbwdnteractions between different methods
within the individual layer blocks. The sequencagiam illustrates the requesting procedures
from the components to the corresponding activatioxes. The method-invocation occurs as a
sequential process, although most processes archaeyously defined, and are executed
respectively in their threads. The diagram shovesributed workload across the IOF Services
object and IOF Device object. This is due to theasation of services and device logic

components. This separation is required as IOF dgewbject directly interrogates the Data
Layer. Since the implementation of IOF Device istedcted from the Services itself, the IOF

Device layer acts as an interface for the seryicesesses.

-10Collection

i i i
I I I
FindService() ! ! !
I I I
Connect(network_ip) | DeviceExists(device_id) ! ! !
L | > | |
return boolean ! !
S e] : !
> true FetchDeviceData()] 1
== | L L I
Ty, false | GetDeviceDa‘ta(device_id, database) |
- | | o !
| DeviceObject()
i S
OBJ_DATA_REQ I AddToCollection(DeviceObject) |
Kommmmmmmoo oo S T i
ObjectData T !
I I
ObjectData ! !
I
1 (data) 1
| >
! return bool U
- [pammag — — — —— — = === = === 0
FetchFunctions() |
eSS !
FUNC_DATA_REQ 1 |
S ' = : :
FunctionData ! !
I I
FunctionData !
t I
} InsertFunctionData(data) }
| >
! return bool U
! K== ;
FetchParameters() |
S B i haet !
PARAM_DATA_REQ | |
s : :
ParameterData i |
I I
ParameterData |
| |
I
i (data) !
= | >
; o ! return bool U
| | | K—————m— e m e
1] | AddToCollection(DeviceObject) 1
| e B et T T T p——— L !
i i i i
I I I I
I I I I I
I I I I I
I I I I I

Figure 18. IOF Sequence Diagram
14

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

3.5. Intelligent Object Data Access Layer

Intelligent Object Framework Data Access Layer (DAd responsible for writing to and reading
from database the relevant intelligent object fiomcand device data. The specific DAL does not
contain business or displaying logic but is a dra three tier architecture design that has the
following components:

« User Interface (UIl) layer that contains the inteefa
« Business Logic Layer (BLL) which contain applicati® business rules.

3.6. Dynamic User Interface Control Rendering

Functions inherited from the intelligent object atered in the IOF database. It conforms to a
hierarchical structure where the function is theept of a parameter. When the database is
gueried via the Data Access Layer, it forms a Honobbject. An important step in managing the
intelligent object devices and executing functiggemmands) is being able to visually present
the user with the right set of controls. Part & device control process is user input, thus tlee us
must have a way of being able to input or seleet tiype of information. Parameter types
supported by IOF are Boolean, Integer, String amdeTas shown in Figure 19. The controls
displayed on the user interface are rendered baisdte types supported. To better understand
how the rendering model works, figure below showws block diagram of the process. The
parameter type is put through a Control Renderiregéss which defines the control types. The
output that is produced by the rendering algoritima corresponding visual control type.
NumericalBox is created based on integer type, KBeax is based on Boolean, TextBox is for a
string type and Time is of TrackBar

Boolean :> CheckBox

Figure 19. Parameter Type Control Rendering Process

To help support the process output, Figure 20depied control types based on the parameter
data types from the intelligent object. The TIMRinG€r) function has two parameters. The
MODE parameter and the TIME parameter are of tygeger and Boolean and are rendered
accordingly. When the user makes change to thenpses, it sets the parameter value
accordingly. Upon function execution, the argumemesbundled up and set to the device.

15

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

Figure 20. TIMR Function with parameters
4.DEVICE APPLICATION DESIGN

The HTC mobile device and the TIBBO Embedded Devesign also conform to the rules of
IOF Services framework, except it does not intediretctly with the IOF database.There are three
abstract layers on the devices as shown in FigireTRe protocol layer is responsible for
receiving data from the IOF services and is alspoasible for extraction of the data. Once the
data is properly parsed by the protocol process,passed to the Function Parser. The job of the
Function Parser is to determine which Functioroibé executed. The framework relies on the
developer to specify the functions which are tcliked. Furthermore, once the function has been
determined, and the parameters extracted, thetresytassed to the execution layer. The
execution layer, based on the function resultstihae been passed to it, executes the function.

Figure 21.Device Application Design

The developer is able to control three differemety of controlling layers. Peripheral control
states that the device can control another pergbluer the device. This may be over an USB or
RS232 port. Intelligent Object Framework prototfpeused on Application specific control and
generic control. Application specific control wa®yen by controlling HTC Mobile applications,
whereas generic control was achieved by controliB® lights on the TIBBO Basic Embedded
Device.

The protocol layer of the devices mimics the IOFvide layer in its operation and it processes
the data in exactly the same way. This also adtierttee parsing of the IOF packet flags. Below
figures illustrate the difference in design of fiation of protocol layer. The data received from
the endpoint (IOF Services) is put into the dataakde, and further parsed in the function. The
request flags are also checked, &sduest = ... PacketData[0]; grabs the first element of

16

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

the data array parsed by the protocol layer, aedréiguest is determined. The type of request
conforms to the protocol specifications explainedhie Chapter 5. The way that the functions are
passed from the Intelligent Object to the IOF framk is by iteration of Function object. Once
the functions have been defined, and placed inFinection object, they are sent to the IOF
Services.

Once the IOF services have sent a request to te#ligent Object device to gather the device
functions and parametersfa loop is initialized by the device that iteratesotigh the function
collection. The post process, once the functicsei#t to the IOF Services, is to mark the function
as sent. Once the next function is due to be sethiet Services, it skips through the function that
has already been sent. The function data is sit ajunctionPrepareObjectData()

The Function object is defined by the parametetge function object attributes hold the very
function values and thé&nc.Name is mapped to the Function Parser process, enaltfiag

particular command to be executed. Finally in telol figure, the CALL function is parsed and
further processed by the Object’s internal framéwor

5. DATABASE DESIGN

The Database consists of five tables, i.e. Respdisgct, Function, AccessType and Properties
as shown in Figure 22 and table schema are list@albles 4-8.

Figure 22. Intelligent Object Framework Databased®io

17

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

Table 4. Objects table schema

Table — dbo.Objects
Column Name | Data Type Description
ioid Varchar(MAX) | Intelligent Object I
Ip varchar(15 Intelligent Object IP Addre:
Mac Varchar(MAX) | MAC (Media Access Control) Addre
Name Varchar(MAX) | Intelligent Object narr
Versior Varchar(MAX) | Intelligent Object software versi
Lastpol Datetime Last time the device polled the servi
isEnable: Bit Check flag to see if the device is enabled or déi
accesTypei Int Access type id. Links to the AccessType te

Table 5. Functions table schema

Table — dbo.Functions
Column Name | Data Type Description
Funcid Int Function ID
loid Int Intelligent Object 1D
Name Varchar(MAX) | Function Name
Description Varchar(MAX) | Function Description
isEnabled Bit Specifies if the function is enabtedlisabled
hasParameters Bit Has the function got parameters
hasRet Bit Does the function return a value

Table 6: Parameters table schema

Table — dbo.Parameters
Column Name | Data Type Description
Paramit Int Parameter |
Funcic Int Function IC
Name Varchar(MAX) | Parameter Nan
Descriptior Varchar(MAX) | Parameter Descriptit
Type Varchar(MAX) | Parameter Tyf
defval Varchar(MAX) | Default parameter vall
isOptiona Bit Is the parameter optional or expl

Table 7. AccessType table schema

Table — dbo.AccessType

Column Name

Data Type Description

accessTypeid

Id Access type ID

Description

varchar(15)| Access type description

Table 8. Response table schema

Table — dbo.Response

Column Name | Data Type Description
Responseid Int Response ID

loid Int Intelligent Object ID
Code Varchar(10) Response code
Description Varchar(MAX) | Response Description

18

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

6. CONCLUSIONS

The design and implementation of Intelligent Objecmework proved to be a complex task as it
needed extensive research on communication moddlprmtocol implementation specifications

design. The right set of devices needed to be chasat have the right platform features

allowing the implementation of core componentspider to design and develop the proof of
concept. It has achieved by introducing a funceanhange model implemented in the structure
of the protocol and allowing devices to hand oweirtcomplete set of functions to be stored in a
database. Users can then use the management &pplicaquery those very functions and be
able to control the devices wirelessly.The I0OF ¢stef a framework design enabling devices of
varied platforms to communicate by a common dathaxge model via a device management
controller. The end product of the framework impdgrtation is a single application managing

multiple devices.

7.FUTURE WORK

Intelligent Object Framework is a platform indepentdframework allowing different devices to

be controlled and monitored. Currently the modglpsuits only the basic implementation of the
services and protocol allowing functions to be dimaded from an intelligent object device and
stored to a database. The framework also allovseato load the functions of a particular device
and execute them.

The framework can be further extended by implenmgnta secure protocol with token based
authentication or equivalent. This would add anrlbeged on the UDP packet, although it would
provide a safe communication channel. The prota&inition can further be improved by
implementation of TCP protocol suite for criticabvices that need a connection oriented
communication to be established. This would proddegical connection that negotiates before
sending data to one another. That addition to timeent solution would provide a reliable
communication between Intelligent Objects and ligeht Management Services.

XML based function exchange model would provide @endescriptive function definition that
could be integrated as Web Services. This candnlia defined using the standard Web Service
Definition Language. The device function accesslsamade available over a range of different
networks and available to different applications.

The research provided the opportunity to utilizel @ombine different skill sets ranging from
systems design, programming, implementation, datlasign, embedded device programming
and deployment of multiple components on multigegfprms. The skills and knowledge gained
throughout the research and development far ouheeighe complexity and challenges posed by
the project.

ACKNOWLEDGEMENTS

Sasa Savic would like to thank Victoria University offering the Research Training Scheme
(RTS) for his PhD study.

19

International Journal of Wireless & Mobile Networt3WMN) Vol. 5, No. 6, December 2013

REFERENCES

[1] ManageEngine. (2010). "A beginner's guide to MEN"
http://www.snmplink.org/snmparticles/abeginnersguicktrieved on 2 May 2010.

[2] WTCS.ORG (2013) "An Introduction to SNMP."httpvww.wtcs.org/snmpdtpc/snmp.htm, viewed
on 10 November 2013.

[3] Harrington,D. and Wijnen B. (2002). "An Architire for Describing SNMP Management
Frameworks." RFC3411: pp. 34-40.

[4] Patrick (2006) "XAP an Open Standard for Homieived on 10 November 2013,
http://www.xapautomation.org/index.php?title=Pratbdefinition.

[5] XAP (2008). "Home Automation Protocol."http:Mw.xapautomation.org, viewed on 10 November
2013.

[6] Smith, J. R. (2005) “X-10 Home Automation. Pragnming the PIC Microcontroller with MBASIC”,
Burlington, Newnes: 453-486.

[7] Parralax (2002) “MBASIC for PIC Microcontrollgt, M. Basic: pp 203-207.

[8] MODBUS (2010) "MODBUS Datasheet", http://wwwackoakeng.com/ds_modbuster.htm, retrieved
on 2 May 2010.

[9] Huitsing, P., Chandia, R. et al. (2008). "Attataxonomies for the Modbus Protocols." Internaion
Journal of Critical Infrastructure Protection 1-84.

[10] Sriskanthan, N., Tan, F. and Karande, A. (300Bluetooth based home automation system."
Microprocessors and Microsystems 26(6): 281-289.

[11] Committee, B. (1999). Profiles of the Blueto@®ystem. V1.0B.

[12] Savic, S. and Shi, H. (2011), "An Intellige@bject Framework for Smart Living", Procedia
Computer Science 5 (2011) 386-393.

[13] IETF (1980). User Datagram Protocol, RFC 768.

[14] Savic, S. (2010) " Intelligent Object FrameWwyr thesis for Master of Science in Computer Soén
School of Engineering and Science, Victoria Uniitgrsune 2010, 138 pages.

Authors

Sasa Savicis a PhD student at Victoria Universityvielbourne, Australia. He obtained
Advanced Diploma of Computer Systems Engineerin@002 from Royal Melbourne

Institute of Technology (RMIT). He received Bachetd Science in Computer Science
and Master of Science in Computer Science fromadvigtUniversity in 2006and 2010,

respectively. He is currently working at Telstrahet largest Australian

telecommunications company, as a senior softwagaeaer.

Dr. Hao Shi is an Associate Professor in CollegeEngineering and Science, Victoria

University, Melbourne, Australia. She completed Bachelor of Engineering degree at

Shanghai Jiao Tong University, China and obtained PhD in the area of Computer

Engineering at University of Wollongong. She hagrbeactively engaged in R&D and

external consultancy activities. Her research @gty include p2p Network, Location-Based Services,
Web Services, Computer/Robotics Vision, Visual Caminations, Internet and Wireless Technologies.

20

