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ABSTRACT 

Hierarchical Genetic Algorithms (HGA) as a tool for search and optimizing methodology have now 

reached a mature stage. The minimum resource facility to carry user traffic, termed a channel unit (CU), 

is composed of a one time-slot and one code in the TD-CDMA/TDD system. The control of the number of 

CUs depends on the traffic load solves varied and asymmetrical traffic problems in the 3G system. In a 

cellular network, the call arrival rate, call duration and the communication overhead between the base 

stations and the control center are vague and uncertain, regardless of whether the criteria of concern are 

nonlinear, constrained, discrete or NP hard. In this paper, the HGA is used to tackle the neural network 

(NN) topology as well as the fuzzy logic controller for the dynamic CU allocation scheme in wireless 

cellular networks. Therefore, we propose a new efficient HGA CUs Allocation (HGACA) in cellular 

networks. It aims to efficiently satisfy the diverse quality-of-service (QoS) requirements of multimedia 

traffic. The results show our algorithm has a lower blocking rate, lower dropping rate, less update 

overhead, and shorter channel-acquisition delay than previous methods. 
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1. INTRODUCTION 

Code Division Multiple Access (CDMA) can be categorized as frequency division duplex 

(FDD) and time division duplex (TDD) modes. CDMA in the TDD (TDD-CDMA) mode will 

be based on the harmonization between UMTS Terrestrial Radio Access in the TDD mode 

(UTRA TDD) and Time Division-Synchronous CDMA (TD-SCDMA). There have been several 

proposals for supporting real-time and multimedia application services and so on [1-3]. TDD-

CDMA uses a combined time division and code division multiple access schemes, therefore the 

signals of different users separated in both the time and code domains TDD mode can flexibly 

cope with the traffic asymmetry by changing the number of time-slots allocated to the downlink 

(DL) and uplink (UL). The minimum resource facility to carry user traffic, termed a channel 

unit (CU), is composed of one time-slot and one code. Multiple CUs are allocated when the 

traffic load exceeds one CU capability. The control of the number of CUs depending on the 

traffic load solves varied and asymmetrical traffic problems in the TD-CDMA system [3,4]. 

This is one of the fundamental problems in the wireless cellular network. In fact, increasing the 

bandwidth of a cell can increase the system capacity but not increase the efficiency in dealing 

with the time varying imbalance in traffic.  

There are two strategies for allocation of channels to cells [5-10]: Fixed Channel Allocation 

(FCA) [10] and Dynamic Channel Allocation (DCA) [9,11-14]. The advantage of FCA is its 

simplicity. It does not, however, reflect real scenarios where the load may vary from cell to cell. 

DCA schemes can dynamically assign or reassign channels and are thus more flexible. In the 
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centralized DCA schemes [11-12,15], all channels are placed in a pool and assigned to the new 

calls as required, and all the allocation jobs are performed by the control center. In the 

distributed DCA schemes, BSs must be involved [16].  

The channel allocation for load balancing usually uses some fixed threshold values to 

distinguish the status of each cell [11-12]. A cell load is marked as “hot”, if the ratio of the 

number of available channels to the total number of channels allocated to that cell is less than or 

equal to some threshold value. Otherwise it is “cold”. The drawback is the threshold values are 

fixed. Since the load state may display sharp distinction state levels, series fluctuation like the 

ping-pong effect may occur when loads are around the threshold. This results in wasting a 

significant amount of effort in transferring channels back and forth [11,12]. This is achieved by 

efficiently transferring channels from lightly loaded cells (cold status) to heavily loaded ones (hot 

status). While the great advantage of GAs is they find a solution through evolution [17-18], this 

is also the biggest disadvantage. Evolution is inductive in nature. Life does not evolve towards a 

good solution, rather it evolves away from bad circumstances, and search and optimizing are 

very slow. This can cause a species to evolve into an evolutionary dead end. Likewise, GAs risk 

finding a suboptimal solution, such as not always finding the exact solution but always finding 

the best solution. [Editor: I don’t know if the previous sentence keeps your intended meaning.] 

The load information collection can not only estimate the time-varying traffic load for the 

cellular networks, but also provide useful information in making the channel-reallocation 

decisions. 

Traditional channel allocation approaches can be classified into update and search [19]. The 

fundamental idea is a cell must consult all the interference cells (IN(C)) within the minimum 

reuse distance before it can acquire a channel. Both approaches have advantages and 

disadvantages. The update approach has a short acquisition delay but a higher message 

complexity, while the search approach has a lower message complexity but a longer acquisition 

delay. Due to this nature, using HGACA is the best way to approach the problem. The concept 

of the fuzzy number plays a fundamental role in formulating quantitative fuzzy variables. The 

fuzzy numbers represent the linguistic concepts, such as very hot, hot, and moderate etc [20-21]. 

The fuzzy expert system approach has also been applied to forecasting where the advantage of 

an operator's expert knowledge is used. We adopt the number of available channels and cell 

traffic load as the input variables for fuzzy sets and define a set of membership functions. In 

addition, our scheme allows a requesting cell to borrow multiple CUs at a time, based on the 

traffic loads of the cells and channel availability, thereby further reducing the channel allocation 

overhead. Fig. 1 shows the block diagram of our HGACA.  

Our HGACA consist of six modules: a fuzzy rule base, a fuzzy inference engine, 

fuzzification, defuzzification modules, genetic algorithm, and neural networks. The HGACA 

consists of cell load decision making, cell involved negotiation, and multi-CUs migration 

phases. The structure of a dynamic channel borrowing for a wireless cellular network is 

composed of three design phases by applying HGACA to them. The main purpose of a HGACA 

is to obtain an optimal neural network topology, and neural network learning techniques to find 

and tune the parameters. In this parameter learning phase, the possible parameters to be tuned 

include those associated with membership functions such as the center, widths, and slope; the 

parameters of the parameterized fuzzy connectives; and the weights of the fuzzy logic control 

rules. The performance of our HGACA is compared with the simple borrowing [10,22], directed 

retry [23], CBWL [24], and LBSB [11]. The experimental results reveal our proposed scheme 

performs better than conventional dynamic channel allocation schemes. Our HGACA for CUs 

algorithm not only effectively reduces the blocking rate and the dropping rate but also provides 

significant improvement in overall performance, such as fewer update messages and shorter 

CUs acquisition delay. The rest of this paper is organized as follows. In Section 2, we provide 

the structure of the cellular system model and channel allocation strategy. The design issues of 

our proposed HGACA wireless cellular system are in Section 3. The experimental results are 

given in Section 4, and concluding remarks are given in Section 5.  
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Fig. 1: Block diagram of HGACA. 

2. System Model and Channel Allocation Strategy 

The universal mobile telecommunication system (UMTS) consists of the radio network 

controller (RNC) that owns and controls the radio resources in its domain and the base stations 

(BSs) connected to it. The RNC is the service access point for all services. The UMTS 

Terrestrial RAN provides the core network (CN) and management of the connection to the user 

equipment (UE). The concept also applies to the radio network controller in the next generation 

of wireless cellular systems, and a BS directly communicating with all mobile stations (MSs) or 

mobile equipment (ME) within its wireless transmission radius. The cellular system model in 

this paper is assumed as follows. A given geographical area consists of a number of hexagonal 

cells, each served by the base station (BS). The base station and the mobile stations 

communicate through the wireless links using the channel. Each cell is allocated a fixed set of 

CUs and the same set of channels are reused by those identical cells, which channels are 

sufficiently far from one another to avoid interference, such as inter-cell and intra-cell 

interference [4,19].  

In the simple allocation strategy [10], this variant of the fixed assignment scheme proposes to 

borrow a channel from neighboring cells provided it does not interfere with the existing calls 

and locks in the co-channel cells of the lending one. In the directed retry with the load sharing 

scheme [23], it is assumed the neighboring cells and the users overlap the region. The main 

drawback of this scheme includes the increased number of hand-offs and co-channel 

interference, as well as the load sharing  depending on the number of users in the overlap region. 

 The channel borrowing without locking (CBWL) scheme [24] proposes channel borrowing 

when the set of channels in a cell is exhausted; but it uses the borrowed channels under reduced 

transmission power to avoid co-channel interference. Also, only a fraction of the channels in all 

neighboring cells are available for borrowing. In the load balancing with selective borrowing 
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(LBSB) [11], a cell is classified as “hot”, if its degree of coldness defined as the ratio of the 

number of available channels to the total number of channels allocated to that cell is less than or 

equal to some threshold value. Otherwise the cell is “cold”. Aided by a channel allocation 

strategy within each cell, it has been presented in that the centralized LBSB achieves has almost 

perfect load balancing and leads to a significant improvement over FCA, simple borrowing, 

directories and CBWL schemes in case of an overloaded cellular system. The LBSB scheme has 

two disadvantages: (1) Too much dependency on the central server maintenance of continuous 

status information of the cells in an environment. The traffic load changes dynamically, leading 

to an enormous amount of updating traffic, consumption of bandwidth and message delays. (2) 

The strategy of the channel allocation for load balancing usually uses fixed threshold values to 

distinguish the status of each cell. However, the [insert noun] are fixed and cannot indicate the 

degree of the load. Since the load status may display a sharp distinction state level, the channel 

borrowing or lending action will be made frequently around the threshold, possibly resulting in 

ping-pong series fluctuation. This results in wasting a significant amount of effort in 

transferring channels back and forth. In this paper, the performance of a DCA strategy will 

depend on how the state information has been decided at the BSs. Achieving this estimation, 

however, is difficult and time-consuming. The relationship between the communication 

resources is too complex to define a good rule for estimating the cell load.  

3. HGACA Wireless Cellular System 

Some of the techniques used to load balancing in heuristic techniques involve a threshold used 

to determine where the load is cold or hot. This binary-state makes the system load state 

fluctuate between the hot and cold load when the cell load is near the threshold value. It will 

cause frequent channel reallocation because of the load change. Simulation techniques have 

been widely used by researchers. Although it provides more flexibility and freedom, it has its 

own limitations and drawbacks. For example, the load is usually artificial and predetermined. 

Some methods use a simple queuing model of a mobile cellular system [10-13,15,19,23-24]. 

Those proposed schemes completely ignore resources other than the traffic load. Therefore, 

while it may be reasonable to detect the performance of purely available channels, the utility of 

this is questionable for channels that use the other resources of contention. We recognize it is 

difficult, perhaps impossible, to find the cell load information that satisfies all the above 

requirements. Moreover, they may be contradictory. But the cell load information may be 

judged by the degree to which it meets the above criteria. The problem with such methods is 

many unrealistic assumptions must be made to make the study feasible. For example, most 

models use exponential distributions for the arrival and service times.  

The typical architecture of fuzzy logic control includes four principal components: fuzzifier, 

fuzzy rule base, inference engine and defuzzifer. The fuzzifier has the effect of transforming 

crisp measured data into suitable linguistic values. The fuzzy rule base stores the empirical 

knowledge of the operation of the process of the domain experts. The inference engine is the 

kernel of fuzzy logic control: it also has the ability to simulate human decision making by 

performing approximated reasoning to achieve a desired control strategy. Finally, the 

defuzzifier is utilized to yield a non-fuzzy decision of control action from an inferred fuzzy 

control action by the inference engine [19,21,25-26]. 

HGACA is based on the optimum size of a neural network to reduce the enormous search 

spaces in learning and using mathematical methods to determine the architecture and parameters 

of the neural network [27]. The advantage of this approach is genes of the chromosome are 

classified into categories in a hierarchical form. The HGA differs from the standard GA with a 

structure where each chromosome consists of multiple levels of genes. Each consists of two 

types of genes, and the control genes and connection genes. The control genes in the form of a 

bit are the genes for layers and neurons for activation. The connection genes, a real value 

representation, are the genes for connection weightings and neuron bias. A neuron consists of an 
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activity level, a set of input and output connections with a basic value associated to each 

connection. 

Fig. 2 shows a typical neuron with n-input connections and a single output connection. The 

output of the neuron is determined as: ∑ +=
=

n

1i
ii )xf(y ηω , where n21 x,...,x,x are input signals, 

n21 ,...,, ωωω are connection weightings, η is the basic value, and f is output function. 

The GA processes imitate natural evolution, and therefore include biomimetic operation such 

as reproduction, crossover, and mutation. 

(1) Population: The choice of an appropriate population size is a fundamental decision to be 

taken in all GA implementations. If the population sizing is too small, the GA will usually 

converge too quickly. If the population size is too large, a population will take a very long time 

to evaluate. In the study, the population of at k-th generation, (k)
p , is divided into several 

connection subgroups, ji ,GG and P...GG
(k)
j

(k)
i

(k)(k)
M

(k)
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(k)
1 ≠∀=∩=∪∪ φ , where M is the maximum 

number of possible connections represented by HGACA, and (k)
iG  is the subgroup of 

chromosomes representing those networks with i active connection at k-th generation.  

(2)Objective functions: The objective of training the network is to minimize two different 

parameters, the accuracy of the network (f1) and the complexity of the network (f2). The 

accuracy of the network (f1) is defined as: ∑=
=

N

1i

2
i

T
i1 )y-(y

N

1
f , where N is the size of the testing 

vector, T
iy and iy are the network output and desired output for the i-th pattern of the test vector 

respectively. 

(3) Selection process: Parent selection is a routine to emulate the survival of the fittest 

mechanism of nature. Chromosomes in the population are selected for the generation of new 

chromosomes using certain selection schemes. There are two different objective functions, (f1) 

and (f2) of the problem optimization process.  

(4) Control and Connection, Genes Crossover: Crossover operates on two solution strings 

and results in other two strings. A typical crossover operator exchanges the  

segments of selected strings across a crossover point with probability. There are two steps 

producing two offspring by crossover operator.(1) A given number of crossing sites are 

uniformly selected along the parent strings at random. (2) Two new exchanging alternate pairs 

of sections between the secreted forms string crossing sites.  

(5) Mutation: The mutation operator prevents irreversible loss of certain patterns by 

introducing small random changes into chromosomes. Change each bit value with the 

probability. 

(6) Fitness function: The intended insect uses the GA evolutionary process, and the feature of 

this particular chromosome must be specified. The programmed will proceed and each of the 

generated chromosomes will be checked according to this ideally specified chromosome. The 

measure of this checking mechanism represents the fitness function. This can be a combination 

of the genes, and the genetic algorithm is only able to optimize the characteristics explicit in the 

fitness function. Fig. 3 shows the hybrid structure parameter learning of the HGACA. 
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Fig. 2: A single neuron. 
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Fig. 3: Hybrid structure parameter learning of the HGACA. 
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Fig.4: Membership functions of the fuzzy input and output. 

The system has a total of four layers. The nodes in layer 1 are linguistic nodes representing 

input linguistic variables; layer 4 is the output layer. There are two linguistic nodes for each 

output variable. One is for desired output to feed into the network; the other is for actual output 
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to be pumped out of the network. The nodes in layers 2 and 3 are term nodes, which act as 

membership functions representing the terms of the respective linguistic variables. Actually, 

layer 2 nodes can be either a single node performing a triangle-shaped membership function or 

one performing a complex membership function. Each node in layer 3 is a rule node 

representing one fuzzy rule. Also, the links between the rule nodes and the output term nodes 

are initially fully connected. Only a suitable term in each output linguistic variable's term set 

will be chosen after the learning process, where 0
coaY represents the number of migrating 

channels, and dy  is our desired output. 

3.1 Cell Load Decision-Making 
This section addresses our strategy of estimating load status in a wireless cellular network. 

This measure is vital for us to determine the most suitable site for migrating channels to share 

the load in the system. We can construct different available channels membership functions, and 

traffic load membership functions. The distributed channel assignment schemes have received 

considerable attention because of their reliability and solvability. Many researchers use 

available channels as the single load index for BS in cellular systems [11,14]. Although the 

number of available channels is the obvious factor affecting system load, other factors are also 

influential, including system load, call arrival rate and call duration. For the accuracy of 

evaluating the load state of a cell, we employ the used available channel and traffic load as the 

input variables for the fuzzy sets.  

The fuzzification function is introduced for each input variable to express the associated 

measurement uncertainty. We consider an interval of the real number and the 

notation ( )∫=
u iie aaue /* , and ( )∫=

u iie bbue / , where e is denoted as the available channel and 

*
e is denoted as the traffic load, ia and ib are actual input values, respectively. Let ia  represent 

the center value of the linguistic labels of available channel membership function for 20 ≤≤ i , 

and let ib  stand for the center value of the linguistic labels of traffic load membership function 

for 40 ≤≤ i . The status of *
e may be very cold (VC), cold (C), moderate (M), hot (H) or very 

hot (VH) for different value of traffic load and the status of e  may be low (L), moderate (M) or 

high (H) for different values of available channels. The fuzzified information is then passed on to 

the fuzzy inference engine. Fig. 4 shows the membership function for the number of available 

channels and the system parameter traffic load. These functions are defined on the interval ],[ 4,0 aa  

],[ 20 bb . 

3.2 Cell Involved Negotiation 
After the cell load level of each BS has been decided by the load information, the objective of 

the cell negotiation is to select the cell to or from which channels will be borrowed when the 

cell load reallocation event takes place. The traditional channel allocation algorithm in 

negotiation can be classified into update and search methods [19]. In the search approach, a cell 

does not inform its neighbors of its channel acquisitions or releases. When a cell requires a 

channel, it searches all neighboring cells to calculate the set of currently available channels, and 

then acquires one according to the underlying DCA strategy. In the update approach, a cell 

always informs its neighbors whenever it acquires or releases a channel, so each cell knows the 

set of channels available for its use and the underlying DCA strategy.  

Both approaches have advantages and disadvantages. The update approach has short 

acquisition delay and good channel reuse, but it also has higher message complexity. In other 

words, the search approach has lower message complexity, but it has longer acquisition delay 

and ineffective channel reuse [19]. Our research took advantage of HGACA and presented an 

enhanced version of the negotiation scheme, termed cell involved negotiation. When the load 

state is hot, it plays the role of the borrowing channel action; in contrast, it plays the role of the 

lending channel action when its load state is cold. The moderate cells are not allowed to borrow 

any channels from any other cell nor lend any channels to any other cell. At each BS, an 
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augmented load state table is maintained. The entries of the table are the current load status of 

every cluster cell as well as the co-channel cells. The cell operation types of load state 

information exchanges among cells, and each BSs keeps the state information of the cells and runs 

the channel borrowing algorithm to update the load state. 

The knowledge pertaining to the given control problem is formulated in terms of a set of fuzzy 

inference rules. We use five load actions; very cold, cold, moderate (stabilized-state), hot, and 

very hot. The BS keeps the load-state information of the cells and runs the fuzzy based channel-

borrowing algorithm to borrow free channels from the very cold or cold cells for the very hot 

or hot cells whenever it finds any very hot cells or hot cells. The moderate cells are neither 

allowed reallocation to or from any channels, nor to any other cells or update interfering 

neighborhood cells. [Editor: I don’t know if the previous sentence keeps your intended 

meaning.] Further, assume the following seven linguistic states are selected for migrating 

channels of the variables: Negative large (NL), negative medium (NM), negative small (NS), 

approximately zero (AZ), positive large (PL), positive medium (PM), and positive small (PS). 

This paper has 15 rules, as shown in Table1. 

 

Table 1 .IF-THEN rule. 

 Cold

Very Cold

Moderate

 Hot

Very Hot

HighModerate Low

(Lending)

NM (4)

(Lending)

NS
(Lending)

NM

(Lending)

NS

(Stable)

AZ

(Lending)

NS
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AZ 

(Borrowing)
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(Borrowing)

PS

(Borrowing)

PM

(Borrowing)

PS

(Borrowing)

PM

(Borrowing)
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(Lending )

NL 

e

e*

 

3.3 Multi-CUs Migration 
The new channel allocation with multi-CUs transferring, can reallocate CUs well, especially 

in an unpredictable variation of cell load. Our mechanism for multi-CUs transfer calculates the 

amount of transferred channels by these two values. The number of available CUs and traffic 

load are the values, representing the average during the recent minutes. The HGACA we 

discussed in the previous section has a common property; when a requesting cell and a probed 

cell are decided, the number of reallocated channels is just one channel in each iteration. It is 

very inefficient if the cell load of these two cells greatly differ. We propose the idea of 

allocating several CUs instead of only one between two cells whose BS load greatly differ. For 

example, in the next generation multimedia mobile network, a call may require multiple CUs at 

one time. Under our proposal, the cell load between two cells could be made more balanced. To 
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accomplish this, we use five load values, which are very hot, hot, moderate, cold and very cold 

to distinguish the difference in cell load on two cells. If one cell is in the “very hot” state (PL), it 

will borrow several channels from the cell in the “very cold” state (NL). Defuzzification is a 

mapping from a space of fuzzy control actions defined over an output universe of discourse into 

a space of non-fuzzy (crisp) control actions. This process is necessary because in many practical 

applications, a crisp control action is required for the actual control. Fig. 5 shows the 

membership function for channel borrowing or lending a quantity control number of the 

channels range [-C, +C] of the fuzzy output. The function is defined in the interval [0,+c] for 

the borrowing action, and in the interval [0,)c] for the lending action. 

We used the center of area (COA) method because it supports real-time software fuzzy 

controls to distinguish the difference in the load of two cells. This value is calculated by the 

formula: 

( )cIN
w

Bw
Y

n
1i i

n
1i iio

coa −


























∑

∑ ×
=

=

=                      (1) 

Where 0
coaY  represents the number of migrate channels,  

iW  = The antecedent degree of the ith control rule  

iB  = The consequent center value of the ith control rule 

Thus, the defuzzified value 0
coaY  obtained by the formula can be interpreted as an expected value 

of variable. Finally, we obtain 

Migrate Channels =Min [Borrowing cell ( 0
coaY ), Lending cell ( 0

coaY )]. 

After multi-CUs are reallocated, we use GA to tune the output fuzzy membership function. 

The genetic operation should be used in a way to rapidly achieve high fitness individuals in the 

population without leading to total convergence. In this paper, we used the part random method 

to achieve high fitness for a short time interval. There are two main factors to be considered in 

the GA, one is the fitness function and the other is the encoding scheme. The fitness function F 

uses the following formula for the load index. Note, the parameter gene remained unaltered and 

merely changes the interpretation of its form. In this way, the complexity of tuning the fuzzy 

memberships and rules can thus be optimized and the overall structure can be greatly reduced. 

Each string included in a population is evaluated by the fitness function using the following 

formula: 

MESACQBPDP

1
F

×+×+×+×
=

δγβα
        (2) 

Where α : the weight for parameters of DP, 

β : the weight for the parameters of BP, 

:γ  the weight for the parameters of ACQ, 

:δ  the weight for the parameters of MES, 

DP: the handoff call-dropping rate, 

BP: the new call-blocking rate, 

ACQ: the channel acquisition delays and 

MES: the average number of update messages overhead. 

4. Experimental Results 

The problem domain naturally lends itself to simulating multiple threads since there are a lot 

of concurrences and global resource management issues in the system. The simulated model 

consists of 14 clusters with 7 homogeneous cells each. This experiment used the number of 

channels CH = 100 in a cell, total of N = 98 cells in the system. \The amount of requested CU 

[specified of minimum basic a channel unit (CU)] is 30Kbps of multi-channels migration.] 

[Editor: I don’t understand this part of the previous sentence.] We assume oλ  = 100 calls/per 
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hour~ 2000 calls/per hour is the call originating rate per cell, 01.0( ×= oh λλ ~ )1×oλ  is the 

hand-off traffic density per cell, d = 1 sec the communication delay between cells, and each 

handoff and new call request delay constraint (DC=5) is five seconds. So, from the simulation 

result, the value of the traffic load is chosen randomly and non-linearly. The maximum numbers 

of hand-off calls are queued at 10 for the first-class priority, with new calls queued at 10 for the 

second-class priority, respectively. [Editor: Does the previous sentence keep your intended 

meaning.] Let the density of simulation be 500 people/per cell. We define the time of the 

sample interval as 3 minutes and the sampling time will influence the previous one. The CU 

acquires messages transmitted between the hot cell i  and cold cell j . In our simulation, three 

types of traffic services are assumed: voice service, videophone and video on demand. These 

types are defined on the CUs requirement 30 Kbps, 256 Kbps and interval 1 Mbps to 3 Mbps, 

respectively. The assumptions of four performance metrics for our simulation study are as 

follows. (1) Blocking calls: If all the servers are busy, the cell does not succeed to borrow a CU 

from its cluster cells and its waiting time (delay constraint) is over then the calls must be 

blocked, otherwise they receive a service. (2) Dropping calls: When an MS moves into a 

neighboring cell, the call must be transferred to the neighboring BS. This procedure is a hand-

off. If a channel cannot be assigned at the new BS and the particular cell does not borrow a 

channel from its cluster cells, then the call generated at this particular cell are stored in the 

queue. Its waiting time (delay constraint) will be over and the calls must be dropped, otherwise 

they receive service. (3) Update-message complexity: Each cell needs to communicate with the 

co-channel and cluster cells to exchange the set of load state information. (4) CUs-acquisition 

delays: For the values it acquires before the selected channels, the cell must simultaneously 

ensure the selected channels will not be acquired by any of its cluster cells and interference 

cells. When a cell receives a channel request from an MS, it assigns a free channel, if any, to the 

request. Otherwise, the cell will need to acquire a new channel from its cluster cells and then 

assign channels to the request. The performance of our HGACA is compared with the simple 

borrowing (SB), and existing strategies like channel borrowing directed retry (DR), CBWL, and 

LBSB. The hand-off call dropping probabilities for HGACA and other methods are plotted in 

Fig. 5 against the hand-off dropping probability at different traffic loads. In every case, when 

the hand-off dropping probability is fixed, the HGACA has a lower hand-off call dropping 

probability than other methods. The improvement in the performance of the HGACA over other 

methods, however, decreases as the traffic load goes up. Fig. 6 compares the channel-

assignment algorithms according to the new call-blocking probability of channel request for the 

multimedia services.  Fig. 7 shows the hand-off call-dropping probability for various schemes at 

various multimedia services. The number of multimedia requirements on the horizontal axis has 

different meanings for voice service, videophone and video on demand. The HGACA scheme 

always has a lower hand-off dropping rate than the existing channel-assignment schemes with 

the same number of channels required. It also indicates the HGACA scheme can improve 

performance over the other methods with the number of reserved channels by further reducing 

the hand-off dropping probability. Fig. 8, which depicts the messages of different CU allocation 

schemes, shows our proposed DCA scheme has the fewest updated messages. Our proposed 

scheme performs especially well when the numbers of hot cells are large. The channel 

acquisition delays are also discussed in our experiment. Fig. 9 shows our proposed scheme has 

the shortest channel acquisition delays. This results in a channel-allocation scheme with 

efficient channel use in all traffic conditions. 
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Fig. 5: Compare dropping probability and traffic arrival rate. 
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Fig. 6: Blocking probability and multi-CUs requirement of multimedia service. 
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Fig. 7: Dropping probability and multi CUs requirement of multimedia service. 
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Fig. 8: Average number of update message overhead in our scheme and others. 
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 Fig. 9: The CUs acquisition delay of various schemes 

5.  Conclusion 

HGACA are complementary technologies in designing an intelligent wireless cellular 

network. Neural networks are essentially low level computational structures and algorithms 

offering good performance in dealing with sensory nonlinear input data, while fuzzy logic 

techniques deal with reasoning on a higher level than networks. This is the first attempt to 

formulate the dynamic CUs allocation problem with HGACA and with simulation for various 

traffic loads and numbers of hot-cell nodes. Since fuzzy logic controls are constructed using 

linguistic variables, intuitive knowledge is easily integrated into the control system. We believe 

a HGACA for the control and managing cellular networks is more appropriate than the 

conventional probabilistic models. It also can efficiently determine the suitable cell for 

allocation CUs. The performance of the proposed scheme is better than conventional schemes in 

the blocking rate, dropping rate, message complexity and channel acquisition delay. 
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