
International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

49

EFFECTIVE REPLICATED SERVER ALLOCATION

ALGORITHMS IN MOBILE COMPUTING SYSTEMS

Jin-Woo Song
1
, Kwang-Jo Lee

1
, Taek-Hun Kim

1
, Sung-Bong Yang

1

1
Department of Computer Science, Yonsei University, Seoul, Korea
{fantaros, kjlee5435, kimthun, yang}@cs.yonsei.ac.kr

ABSTRACT

In mobile environments, mobile device users access and transfer a great deal of data through the online

servers. In order to enhance users’ access speed in a wireless network, decentralizing replicated servers

appropriately in the network is required. Previous work regarding this issue had focused on the

placement of replicated servers along with the moving paths of the users to maximize the hit ratio. When

a miss occurs, they simply ignored the file request. Therefore, we suggest a solution to take care of such a

miss by sending a file request to a replicated server nearby in the network.

This paper is to propose new cost-effective wireless access algorithms incorporating a present replicated

server allocation algorithm with more keen analysis of the moving patterns of mobile device users. We

propose four different algorithms that allocate available replicated servers in the network so as to

minimize the communication costs. The experimental results show that, among the proposed algorithms,

the replicated server clustering algorithm allocated replicated servers with near optimal communication

costs.

KEYWORDS

Replicated Server Allocation, Shared Data, Communication Cost, Moving Pattern, Mobile Network

1. INTRODUCTION

Recently the number of mobile device users has increased explosively worldwide, owing to the

technological advances in mobile devices and wireless networking (WIBRO, 3G LTE, and

4G) [1]-[3]. Mobile device users are now able to access a great deal of information through

wireless communication devices such as cell phones and PDAs. Such easy accessibility through

mobile communications has influenced our daily life tremendously from both economic and

social perspective.

Although we are enjoying the benefits from the technological advances, the current mobile

devices still have insufficient computing capability and storage. Hence, data replication is

important in the design of a mobile computing system. In general, mobile computing systems

rely on decentralized server systems [4], [5]. Data replication provides faster accessibility

towards the shared data by reducing costly accesses to the online servers. However, maintaining

replicated servers in the network requires the operating expenses due to the data storage and

maintenance of the shared data. Hence, proper placement of available replicated servers in a

mobile computing system is a very critical issue [6]-[7].

When a mobile device user tries to access some shared data, the user can get the data either

from the replicated server in the cell at which the user is currently located or from the replicated

server nearest to the current cell if there is no replicated server at the current cell. We assume

that the online servers do not provide any services for accessing the shared data, due to the fact

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

50

that the communication cost for accessing them is much more expensive than that for accessing

a nearby replication server.

In this paper we propose new cost-effective replica server allocation algorithms incorporating a

present algorithm with more careful analysis of the moving patterns of mobile device users. The

proposed algorithms minimize the communication cost in accessing the shared data at the

replicated servers in a wireless network. First, we propose the vertex occurrence count

algorithm (VOC) which is based on the number of visits, call it the occurrence count, to each

cell made by all the users. VOC maps the network into a graph in which a vertex is a network

cell and an edge represents adjacency between a pair of neighboring cells in a network. VOC

selects greedily one vertex at a time that has the largest occurrence count among the unselected

vertices and allocates a replicated server into the selected vertex. The ties are broken in such a

way that the vertex with the largest sum of the occurrence counts of its adjacent vertices is

selected for a replicated server.

We modify VOC by lowering the vertex occurrence counts of the neighbors of the cells selected

by VOC. We reduce the occurrence counts of the neighboring cells in the hope that replicated

servers are not likely to be allocated to the adjacent cells. We call this modified algorithm the

VOC-neighbor reduction algorithm. A similar algorithm, called the greedy set-cover algorithm,

also allocates replicated servers so that they are not allocated to the cells adjacent to each other.

Finally we present the replicated server clustering algorithm that utilizes the k-means

clustering. The algorithm returns a set of clusters; the center of each cluster becomes the

location for a replicated server.

In order to compare the performances of the proposed algorithms, we have implemented two

edge-based occurrence count algorithms that were modified from the algorithms in [6]. Their

algorithms utilize the user occurrence and the movement occurrence counts under the condition

that when a file request is not satisfied the request simply fails. Hence we have modified their

algorithms so that no failure occurs; that is, we search a nearby cell with a replicated server in

the network.

We have also implemented randomly guided search techniques for finding the locations for

replicated servers: a simulated annealing algorithm and a genetic algorithm. Their solutions are

used to compare the performances of the proposed algorithms. Note that although the qualities

of their solutions are better than those of the proposed algorithms, they cannot be implemented

in practice due to their long execution time. The experimental results showed that all the

proposed algorithms outperformed the edge-based occurrence count algorithms, and the

replicated server clustering algorithm allocated the replicated servers with near optimal

communication costs.

The rest of the paper is organized as follows. Section 2 discusses the basic knowledge on mobile

computing systems and related work. Section 3 describes the edge-based occurrence count

algorithms, the proposed algorithms, and the random guided search techniques in detail. The

experimental results are given in Section 4. Finally, Section 5 concludes the paper.

2. BACKGROUND

2.1. Replicated Servers in Mobile Computing Systems

In mobile computing systems, a server determines a bounded area called a service area that

consists of generally more than one cell. If a mobile device user enters into a service area, data

communications are made through the server in the service area. So they can access the shared

data from the online server through the infra-network consisted of servers. Fig. 1 shows a

sample path on which a mobile device user moves around the service areas. In this paper, we

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

51

assume that a service area consists of a single cell. This assumption is not unrealistic because

we can always map a cell into a group of cells that are actually covered by a service area.

In Fig.1, a couple of replicated servers are decentralized at cells D and I, respectively. The

shared data from a replication server at cell I can be accessed only while the user is within cell I.

The user cannot access the data from the cells that do not have replicated servers. It is obviously

profitable to allocate replicated servers at the cells where a lot of mobile device users are

expected to visit. Recently researchers presented various research results on this issue by

exploiting the moving patterns of the users [6]-[9].

Fig. 1. A sample user path on a mobile computing system.

2.2. Wireless Access to Replicated Servers in a Mobile Computing System

Traditionally, data replication has been used for decentralized systems to speed up the shared

data access [10]-[12]. In mobile computing systems, mobile devices suffer from restricted

memory space, shortage of battery as well as slower system performance; because users ever

demand smaller size devices with more added functionality and enhanced system performance.

Therefore, data replication for mobile computing systems should be dealt in a different way

from the traditional one and can be generally classified into two types.

In the first type, some of the mobile devices themselves serve as replicated servers. The mobile

devices hold the shared data for faster access and for less server communication traffic.

However, the sizes of replicated data are quite limited because the storage size of a mobile

device is relatively small. Therefore, a system of this type can hardly support large-sized data

[4], [5].

The second type distributes replicated servers throughout the network as in Fig. 1. A mobile

device user can access quickly the shared data from a replicated server at the cell in which the

user is currently located. A hit is said to occur for such a case. When a user in a cell without a

replicated server requests the shared data, the request can be processed through an online server.

But usually a limited number of replicated servers are deployed in a network due to the cost

factor. Thus available replicated servers should be decentralized appropriately. [6]-[8]

Peng and Chen [6] proposed a shared data allocation algorithm that utilizes the moving patterns

of mobile device users. Their algorithm focuses on the placement of replicated servers along

with the moving paths of the users to maximize the hit ratio. Lim and Kim [13] proposed server

replication schemes to reduce the location management cost in cellular networks. Their

algorithm simply divides a network into sub-networks uniformly and places replicated servers

in the center of each sub-network. They did not consider the moving patterns of mobile users.

3. COMMUNICATION COST-BASED REPLICATED SERVER ALLOCATION

3.1 Problem Definition

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

52

In this paper, we study the replicated server allocation problem in a wireless network. For the

problem we adopt a data replication system of the second type with a slight modification. When

a user is at a cell without having a replicated server and requests some shared data, we say that a

miss has occurred. A user should request an online server when a miss occurs. In this paper,

however, we let the user get the data from a replicated server at the nearest cell instead of from

an online server. We assume that the server communication cost is more expensive than the

neighbor communication cost for the problem, since an online server is usually available for

several service areas.

Fig. 2 gives an example that a user at cell 23 tries to access the shared data from a replicated

server when four replicated servers are located at cells 1, 10, 13, and 20, respectively. It is

obvious that it takes the least communication cost when the user communicates with the nearest

replicated server. Therefore, in this example, the user should access the replicated server at cell

13. The ties can be broken arbitrarily.

Fig. 2. Access to a nearest replicated server

We assume that the communication cost for accessing a replicated server from the current cell is

the distance between the cell with the replicated server and the current cell. For example, in Fig.

2 the communication cost between cells 13 and 23 is 2 units, while the cost between 20 and 23

is 3 units. Note that the cells located at the diagonal directions are not supposed to be adjacent to

the current cell. In accordance with these assumptions, we now define the problem of allocating

replicated servers for minimizing the communication cost.

Assume that there are n users and each user i, i=1, … , n, has a sequence of operations (or

requests), opi(C1), opi(C2), …, opi(Cm), where C1, C2, …, and Cm are the cells that user i moved

in sequence. For example, if user 8 made 10 file requests at cell A, 6 requests at cell D, 20

requests at cell G, and 9 requests at cell E, then C1=A, C2=D, C3=G, and C4=E. Also, op8(C1)=10,

op5(C2)=6, op5(C3)=20, and op5(C4)=9. Let opCosti(Cj) denote the communication cost of user i

for processing opi(Cj). Then

),,()()(rjjiji CCdistCopCopCost ×=

where dist(Cj, Cr) is the shortest distance between Cj and Cr in the network and Cr is a nearest

cell with a replicated server. We treat dist(Cj, Cr) as the communication cost between Cj and Cr

for a single access. Although the communication cost could be calculated with the number of

hops along with other factors in a network, dist() does reflect the communication cost, since it is

proportional to the communication cost between a pair of cells. opCosti(Cj) is 0, if cell Cj has a

replicated server, i.e., dist(Cj, Cj)=0.

Let commCost(i) be the communication cost of user i for processing all the operations in the

request operation sequence of the user. Then

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

53

∑ =
=

m

j ji CopCosticommCost
1

)()(

Therefore, the total communication cost totalCommCost for all the users can be calculated as

follows

∑ =
=

n

i
icommCostosttotalCommC

1
)(

The replicated server allocation problem can now be defined as finding the cells into which the

available replicated servers should be located in order to minimize totalCommCost for

satisfying the requests of all the users in the network.

3.2 The Edge-based Occurrence Count Algorithms

Peng and Chen presented a couple of replicated server allocation algorithms that consider the

user occurrence count and the movement occurrence count [6]. Note that their algorithms do

nothing when a miss occurs and concern only maximizing the hit ratios. Hence we modify their

algorithms so that when a miss occurs for a request, the algorithms should search a nearest

replicated server in the network.

The user occurrence and movement occurrence counts are extracted from the users’ moving

patterns given as input. Each count can be regarded as the weight of the edge in the graph that

corresponds to a given network. For example, if the moving pattern of a user is {ABCG, AE},

where A, B, …, and G are cells in the network and if the user passes through edge AB 80 times,

BC 40 times, CG 5 times, and AE 50 times, then the user occurrence count of each edge of AB,

BC, CG and AE is 1 since the user traversed from cell A to B, B to C, and then to G as well as

from A to E, regardless of the frequency of traversals. The movement occurrence count of an

edge is the number of times that a user traverses the edge. So the movement occurrence counts

for edges AB, BC, CG, and AE are 80, 40, 5, and 50, respectively, for the user.

Among their algorithms, the first algorithm, called the EUOC algorithm, is based on the user

occurrence counts. EUOC counts the total number of occurrences of each edge for all n users

and then selects greedily two vertices (cells) that are the endpoints of the edge with the largest

user occurrence count, and allocates a replicated server to each of the selected cells. EUOC

selects the next vertices in the same manner repeatedly until there is no more replicated server

left. The ties are broken by selecting the vertex of the edge whose other endpoint has already a

replicated server. The second edge-based occurrence count algorithm, called the EMOC

algorithm, behaves in the same way as EUOC except it utilizes the movement occurrence

counts.

Table 1 shows the moving patterns of six users as an example. In the table, the moving pattern

of user 1 is {AB, BC, CG, AE} and the numbers of moves are 80, 40, 5, and 50, respectively. Fig.

3 depicts two graphs representing a given network with the user and movement occurrence

counts, respectively. Suppose that we have four replicated servers to be allocated, EUOC selects

{B, C, D, G}, while EMOC selects {A, B, J, K}.

Table 1. Sample mobile users’ moving patterns

 user 1 user 2 user 3 user 4 user 5 user 6

moving

patterns

of users

 AB 80

 BC 40

 CG 5

 AE 50

 BC 10

 CD 10

 CG 20

 BC 10

 CG 10

 FG 50

 FJ 30

 JK 20

 JK 20

 KL 30

 CD 10

 CG 5

 GK 20

 KL 10

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

54

 (a) (b)

Fig. 3. (a) User occurrence counts (b) Movement occurrence counts with respect to Table 1.

3.3 The Proposed Replicated Server Allocation Algorithms

We now propose various replicated server allocation algorithms that utilize the occurrence

counts on vertices instead of on edges.

3.3.1 The Vertex Occurrence Count Algorithm

VOC utilizes the movement occurrence counts on vertices, not on edges, since users request

while they stay within the cells, not on the edges. The vertex occurrence count of each vertex is

calculated by summing all the movement occurrence counts of the edges incident with the

vertex. In Fig. 4, a number on each vertex indicates the vertex occurrence count of the vertex

according to the moving patterns in Table 1.

Fig. 4. The vertex occurrence counts for the moving patterns in Table 1.

VOC selects greedily a vertex with the largest vertex occurrence count among the unselected

vertices and allocates a replicated server to the vertex, and repeats such greedy selection until

there is no more replicated server available. The ties are broken in such a way that the vertex

with the largest sum of the vertex occurrence counts of its adjacent vertices is selected for a

replicated server. Suppose that we have four replicated servers to be allocated in the network.

Then VOC will select the cells B, A, C, and G in sequence as shown in Fig. 4.

3.3.2 The VOC-Neighbor Reduction Algorithm

In order to improve the performance, we propose a modified VOC algorithm called the VOC-

neighbor reduction algorithm (VOC-NR). There are tendencies that the selected cells by VOC

are close to each other in the network. Hence we decrease on purpose the vertex occurrence

counts of the neighboring cells of the cell chosen by VOC in the hope that the replicated servers

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

55

are allocated to the cells more dispersedly. The decrease amount d of a neighboring cell X with

respect to the cell Y chosen by VOC is determined by the following equation; note that vX and vY

are the vertex occurrence counts of cells X and Y, respectively.

≠

−
×

=

otherwisev

vvif
vv

v
d

X

YX

YX

,

,
||

1
max (Eq.1)

where vmax is the largest vertex occurrence count among all the cells in the network. Hence the

new value vX becomes vX – d. As the value of |vX-vY| gets smaller, we subtract a larger value from

the vertex occurrence count. With such decrements, the adjacent cells to the cells chosen by

VOC are not likely to be selected for replicated servers. In case when the value of |vX-vY| is large,

d becomes so small that the algorithm cannot change the original vertex occurrence count too

much.

3.3.3 The Greedy Set-Cover Algorithm

The third algorithm, called the greedy set-cover algorithm (GSC), utilizes the greedy

approximation algorithm in [14] for selecting the cells. GSC first selects a cell with the largest

vertex occurrence count, and allocates a replicated server into the cell. Then GSC ignores the

neighboring cells to the selected cell, even if one of the neighbor cells has the second largest

vertex occurrence count. Note that GSC works as if VOC-NR decreases the vertex occurrence

counts of all the neighbors to zeroes. The algorithm greedily selects the cell with the largest

count among the rest of cells and so on. The ties are broken arbitrarily.

Fig. 5. The first cell selection of the greedy set-cover algorithm.

Fig. 5 shows that GSC selects cell B as the first cell for a replication server since it has the

largest count. Then the neighboring cells, A, C, and F, won’t be considered any more by the

algorithm, even if one of those has the second largest count in the network. GSC then selects G,

J and E in sequence.

3.3.4 The Replicated Server Clustering Algorithm

Both VOC-NR and GSC try to allocate replicated servers considering only neighboring cells in

order to scatter the replicated servers in the network. However, such attempts may not fully

contribute toward the performance improvement as the size of a wireless network increases.

That is, both algorithms merely look at adjacent cells myopically (locally) rather than globally.

The fourth algorithm, called the replicated server clustering algorithm (RSC), is proposed to

solve the problem globally by utilizing the k-means clustering method in [15]. The algorithm

first selects k centers randomly but places them as far apart as possible. Such placement can be

obtained with the k-clustering approximation algorithm in [16]. And then the algorithm

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

56

recalculates a new center for each cluster with the k-means clustering method repeatedly until

no center is changed. RSC uses the following objective function to be minimized.

,),(
}{∑ −∈

×=
i

i YGX XvYXdistδ (Eq.2)

where Y is the presumed center of cluster Gi, i = 1, 2, ..., k, and X, Y�Gi.

That is, we try each cell Y in Gi as if it were the center, compute δ for Y, and then we choose the

cell with the lowest δ as the new center of Gi. Notice that a new clustering with (Eq.2) may not

guarantee to get better communication cost than the previous clustering, because the operation

count on each cell was not considered. Therefore, the algorithm will change the current

clustering only if the new clustering improves the communication cost. The algorithm is

described formally below.

//Input: the moving patterns of the users and the number k of available replicated servers

//Output: the set R of cells to which the replicated servers are allocated

1. Calculate the vertex occurrence count and operation count of each cell based on the

input moving patterns;

2. R ← the set of k cells selected as the centers with the k-clustering approximation

algorithm;

3. Repeat the following until no centers are changed;

a) Partition the cells in the network into k clusters whose centers are in R;

b) R’ ← the recalculated centers with the k-means clustering method using (Eq.2);

c) If the communication cost of R’ is less than that of R, then R ← R’;

Algorithm 1. The replicated server clustering algorithm.

3.4 The Random Guided Search Techniques

3.4.1 The Simulated Annealing Algorithm

Simulated annealing is a well-known search technique as one of the generic randomized

searches for global optimization problems [17]. The next algorithm, called the simulated

annealing algorithm (SA), solves the problem with the simulation annealing technique. SA

selects the first ‘candidate’ solution with VOC which provides a good starting position in the

search space. Each step of SA replaces the current solution R with a ‘nearby’ solution randomly;

that is, SA tries to change each cell in R to a cell in the left, the right, up, or down only if the

new solution has a smaller cost than that of R. On the other hand, we unconditionally replace R

with a new solution using the following probability

),1,0(/
randeP

kTostc

temp >=
∆−

 (Eq.3)

where △cost denotes the difference between the communication costs of R and the new solution,

T is a synthetic temperature, and rand(0,1) is a random number chosen from the interval [0,1].

Such a change provides chances to escape from local optima during the search. SA uses a

cooling schedule Ti that is the temperature for cycle i, where i increases from 0 to z, and z is the

number of cycles.

z

i

z
i

T

T
TT)(

0

0=

 (Eq.4)

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

57

The initial temperature T0, final temperature Tz, and the value of z are determined through

various experiments. SA is described in detail below and its control parameters used for the

experiments are given in Table 2.

//Input: the moving patterns of users and the number k of available replicated servers

//Output: the set R of cells to which the replicated servers are allocated

1. Calculate the vertex occurrence count and operation count of each cell based on the

input moving patterns;

2. Initialize R with the output returned from VOC with the input;

3. Repeat the following until the termination condition is met;

a) Obtain a new solution R’ by selecting one of the neighboring (left, right, up, down)

cells with respect to each cell in R only if the selected cell improves the cost most;

// If none of the neighboring cells improves the solution, no changes in the cells will

be made.

b) R ← R’ with Ptemp in (Eq.3);

c) If the communication cost of R’ is less than that of R, then R ← R’;

Algorithm 2. The simulated annealing algorithm.

Table 2. Control parameters for the simulated annealing algorithm

parameter value

 number of cycles (z) 70,000

 initial temperature (T0) 20,000

 final temperature (Tz) 1

 Boltzmann’s constant (k) 1

3.4.2 The Genetic Algorithm

The genetic algorithm [18] is yet another powerful randomized search technique for

optimization problems. The genetic algorithm might be useful in the problem domains that have

complex fitness landscapes and is designed to escape from local optima, while a traditional hill

climbing might get stuck in. The last algorithm is called the genetic algorithm (GA).

First, GA prepares the initial population, in which each individual candidate solution is

constructed with randomly chosen k cells. Next, GA evaluates the fitness (the communication

cost) of each individual solution in the population. The calculation of the communication cost is

done as if we have assigned k replicated servers at the cells in each candidate solution. GA

selects a set of candidate solutions from the current population whose fitness values are lower

than those of others for the succeeding generation by a roulette wheel method. Next, crossover

and mutation operations are performed with the probabilities of Pc and Pm, respectively. GA

uses an one-point crossover as follows. For example, if {2, 4, 9, 11} and {5, 8, 13, 15}, are a

pair of candidate solutions for crossover when k=4 and if the crossover point is 2, all cells

beyond the second cell are swapped. Therefore, the results of the crossover are {2, 4, 13, 15}

and {5, 8, 9, 11}. In case when crossover causes duplicate cells, the duplicate cells are not

swapped. Mutation is performed by replacing a cell in individual solutions with the one that

leads to less communication cost. GA is described in detail below.

//Input: the moving patterns of users and the number k of available replicated servers

//Output: the set R of cells to which the replicated servers are allocated

1. Calculate the vertex operation count of each cell based on the input moving patterns;

2. Construct the initial population randomly;

3. Repeat the following until no more progress is expected;

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

58

a) Evaluate the fitness of each individual solution in the population;

b) Perform a roulette wheel selection;

c) Perform the one-point crossover for individuals with probability Pc;

d) Perform mutation with probability Pm;

4. R ← the individual solution with the lowest cost;

Algorithm 3. The genetic algorithm.

In the algorithm Step 3 is repeated for a fixed number of times. When the loop is terminated, the

individual solution with lowest communication cost is returned as the final solution. The control

parameters for GA are given in Table 3.

Table 3. Control parameters of the genetic algorithm

parameter value

 population size 400

 number of generations 1,000

 crossover rate (Pc) 0.6

 mutation rate (Pm) 0.008

4. EXPERIMENTAL RESULTS

4.1 Simulation Model and Results

Each algorithm was implemented in C++ and executed on a PC with Core2 Quad 2.4 GHz and 4

GB main memory. In generating the inputs, the round trip model in [8] was used for the moving

behaviors of mobile device users. The length of each moving path was chosen randomly with a

uniform distribution on the interval [8, 12]. The number of data accesses (operation counts)

made by a user was also chosen randomly with a uniform distribution on the interval [30, 70]. A

user is supposed to move to one of its adjacent cells right after the user completes all the data

accesses at the current cell. We tested 300 users and compared the communication costs of the

proposed algorithms with those of EUOC and EMOC. We also compared the results with the

optimal communication costs that were computed exhaustively.

Fig. 6 compares the average communication costs as the number of replicated servers varies and

when the number of cells is 64. The average communication costs of all the algorithms are

decreased as the number of replicated servers increases, because more replicated servers in the

network help reduce the communication costs. VOC showed better performance than both

EUOC and EMOC. VOC-NR and GSC further improved the average communication costs

while they showed almost the same performance; both algorithms selected almost the same

outputs. VOC-NR and GSC showed almost the same results throughout the experiments. Since

lowering the vertex occurrence counts of the neighboring cells in VOC-NR showed the same

effect as lowering the counts to zeroes in GSC. RSC demonstrated outstanding results compared

with other algorithms, since it selects the cells globally; other algorithms are greedy algorithms

that select a cell myopically in each iteration.

Fig. 7 compares the average communication costs as the number of the cells increases from

25(=5x5) to 81(=9x9). The number of the replicated servers was fixed to four during the

experiments. The average communication costs increase for all the cases as the number of cells

increases. It means that the coverage with four replicated servers is getting more difficult as the

number of cells increases. However, VOC still showed better performance than EUOC and

EMOC consistently. The results also showed that the algorithms performed in the almost same

order of the communication costs as in Fig. 6.

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

59

Fig. 6. The average communication costs as the number of replicated servers varies and when

the number of cells is 64.

Fig. 7. The average communication costs as the number of cells increases and the number of

replicated servers is 4.

Fig. 8. The average communication costs for the algorithms.

Fig. 8 shows the average communication costs while the number of replicated servers varies

from 4 to 10 and the number of cells from 25 to 81. EUOC and EMOC showed larger average

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

60

communication costs than VOC. It is verified that the vertex occurrence counts give more

valuable information for replicated server allocation than the edge-based occurrence counts,

since the file requests of each user are made at the cells, not on the edges (in-between cells).

However, VOC could not produce better solutions than other proposed algorithms, because it

does not consider the occurrence counts of the neighboring cells to the cells in its solution. Both

VOC-NR and GSC improved the performances over VOC by trying not to allocate replicated

servers to adjacent cells. RSC showed better performance than both VOC-NR and GSC,

because RSC adjusted its solutions more globally.

Fig. 9 shows the average percentage of the gaps between the optimal cost and the cost obtained

by each algorithm over all the inputs. Such a gap exhibits how accurately each algorithm

allocated the replicated servers in the network to minimize the communication cost. Note that

the optimal costs were obtained exhaustively for comparisons. RSC showed near optimal

performance except SA and GA. Such performance was possible since RSC obtains the

solutions with more global consideration. Both SA and GA found the solutions whose costs

were almost the same as the optimal ones.

Fig. 9. The average percentage of a gap between the optimal values and the communication cost

of each algorithm.

We compared the average execution times of SA and GA while the number of replicated servers

varies from 4 to 10 and the number of cells from 5x5 to 9x9. SA and GA took about 6.4 seconds

and 4.3 seconds, respectively. The average execution time of SA is longer than that of GA by

about 2.1 seconds. This is because that SA searches candidate solutions more extensively than

GA. The simulation results showed that SA and GA are not suitable for realistic environments

since they take too much time. Note that each of other algorithms took less than one second.

5. CONCLUSIONS

In mobile computing system environments, decentralizing the replicated servers is a very

critical issue for the system performance. However, previous researches on this issue did not

consider the communication when a miss occurs. It is more natural that users are allowed to

access the shared data through the replicated servers nearby in the network, rather than through

the online servers.

We had proposed four replicated server allocation algorithms that utilize the moving patterns of

the mobile device users to minimize the communication cost in accessing the shared data at the

replicated servers in a wireless network. VOC selects greedily to allocate replicated servers

based on the vertex occurrence counts. The experimental results showed that the vertex

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

61

occurrence counts give more helpful information for allocating replicated servers. VOC-NR and

GSC improved successfully the performances over VOC by considering the neighbors to the

cells in the solutions of VOC. RSC showed better performance among the aforementioned

proposed algorithms, since it considers other cells throughout the entire network.

SA and GA allocated replicated servers with very near optimal communication costs since they

search the solution space globally. However, they are not suitable solutions in practice due to

long execution time. From the comparative research, we have found that RSC allocated

replicated servers with near optimal communication costs.

ACKNOWLEDGEMENTS

This work was supported in part by the Korea Science and Engineering Foundation (KOSEF)

for the research (2009-0073072).

International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009

62

REFERENCES

[1] S. Frattasi, H. Fathi, F.H.P. Fitzek, R. Prasad, M.D. Katz, "Defining 4G technology from the

users perspective," IEEE Network, 2006.

[2] Changi Nam, Seongcheol Kim, and Hyeongjik Lee,"The role of WiBro: Filling the gaps in

mobile broadband technologies," Vehicular Technology Magazine, 2008

[3] Kan Zheng, Lin Huang, Gang Li, Hanwen Cao, Wenbo Wang, Dohler, M.,"Beyond 3G

Evolution," Vehicular Technology Magazine, 2008.

[4] Takeshita, K., Sasabe, M., and Nakano, H. 2008. "Mobile P2P Networks for Highly Dynamic

Environments", In Proceedings of the 2008 Sixth Annual IEEE international Conference on

Pervasive Computing and Communications, 2008.

[5] Jung-Suk Han , Kwang-Jo Lee, Jin-Woo Song, Sung-Bong Yang, “Mobile Peer-to-Peer systems

using Super Peers,” The International Conference on Information Networking 2008, June 2008.

[6] W. Peng and M. Chen, “Shared Data Allocation in a Mobile Computing System: Exploring

Local and Global Optimization,” IEEE Transactions on Parallel Distributed Systems, Vol.16,

No.4, pp.374-384, Apr. 2005.

[7] E. Pitoura and G. Samaras, “Locating Objects in Mobile Computing,” IEEE Transactions on

Knowledge and Data Engineering, Vol.13, No.4, pp.571-592, July 2001.

[8] N. Shivakumar, J. Jannink, and J. Widom, “Per-User Profile Replication in Mobile

Environments: Algorithms, Analysis and Simulation Results,” Mobile Network Applications,

Vol.2, No.2, pp.129-140, Sept. 1997.

[9] O. Wolfson, S. Jajodia, and Y. Huang, “An Adaptive Data Replication Algorithm,” ACM

Transactions on Database Systems, Vol.22, No.2, pp.255-314, June 1997.

[10] B. Ciciani, D. Dias, and P. Yu, “Analysis of Replication in Distributed Database Systems,”

IEEE Transactions on Knowledge and Data Engineering, Vol.2, No.2, pp.247-261, June 1990.

[11] S. March and S. Rho, “Allocating Data and Operations to Nodes in Distributed Database

Design,” IEEE Transactions on Knowledge and Data Engineering, Vol.7, No.2, pp.305-317,

Apr. 1995.

[12] S. Jajodia, “Data Replication Gaining Popularity,” IEEE Concurrency, Vol.7, No.2, pp.85-86,

Apr. 1999.

[13] S. Lim and J. Kim, “Optimal Server Replication Schemes to Reduce Location Management

Cost in Cellular Network,” IEICE Transactions on Communications, Vol.E89-B, No.10,

pp.2841-2849, Oct. 2006.

[14] V. Chvatal, “A Greedy Heuristic for the Set-Covering Problem,” Mathematics of Operations

Research, Vol.4, No.3, pp.233-235, Aug. 1979.

[15] J. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observations,”

Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University

of California Press, Vol.1, pp.281-297, 1967.

[16] S. Dasgupta, C. Papadimitriou, and U. Vazirani, ed. Algorithms, McGraw-Hill, pp.279-281,

2006.

[17] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by Simulated Annealing,” Science,

Vol.220, No. 4598, pp.671-680, May 1983.

[18] J. Periaux, and G. Winter, ed. Genetic Algorithms in Engineering and Computer Science, John

Wiley & Son, 1995.

