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ABSTRACT 

Reliable transport protocols are tuned to perform well in traditional networks where packet losses occur 

mostly because of congestion. However, in networks with wireless links in addition to wired segments this 

assumption would be insufficient, as the high wireless bit error rate could become the dominant cause of 

packet loss. The main reason of this poor performance for TCP is that TCP cannot distinguish between 

packets losses due to wireless errors from those due to congestion. Moreover, TCP sender cannot keep 

the size of its congestion window at optimum level and always has to retransmit packets after waiting for 

timeout, which significantly degrades throughput and end-to-end performance of TCP.   

In this work, a novel protocol, called DLN (Data Loss Notification), is be proposed. By changing the 

ACK format of TCP, we could successfully distinguish packet losses incurred by congestion and channel 

error which will improve both throughput and delay performance of TCP in wireless environment 

significantly. This mechanism has been demonstrated to provide performance improvements across a 

range of bit-error rates.  
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1. INTRODUCTION 

TCP is a protocol developed on wired Internet, some of the algorithm is based on characteristics 

of wired network.  One most important aspect is that TCP host may think packet loss as network 

congestion.  This assumption is pretty reasonable in wired Internet, because the wired 

transmission media has quite a small packet loss ratio; the main reason for packet loss is 

network congestion. 

The thing is not that right in the rapid developing wireless network.  The media of wireless 

network has totally different characteristics.  The wireless channel is an error prone media; the 

packet transmitted through wireless link may be lost due to wireless error.  The TCP host may 

judge the packet lost due to network congestion, and then take the action of reducing size of the 

transmission window or waiting for long idle time for retransmitting the lost packet.  The result 

is degraded end-to-end performance.  In addition, packet losses that occur due to use mobility 

cause the TCP sender to remain idle for long periods of time even after the handoff is 

completed, resulting in unacceptably low throughput. 

Link layer protocols are an alternative for improving the poor performance of TCP over wireless 

link.  In those methods usually forward error connection (FEC) or automatic repeat request 

(ARQ) are used to improve the performance.  Independent timer reaction at link and transport 

layers that may result in unnecessary retransmission, fast retransmission interaction, and large 

round-trip variation are considered as major problem with link-layer approaches. Split-
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connection protocols attempt shield the sender from the wireless link by explicitly terminating 

the wired connection at the base station and using a separate transport connection over the 

wireless link.  However, they do not preserve end-to-end semantics because data may be 

acknowledged to the sender even before it reaches the receiver, complicate handoff procedures 

because they involve hard state in the network, and do not usually provide the best possible 

performance. Another enhancement to TCP for wireless channel reviewed here is called Snoop 

protocol.  In this method, the base station is equipped with a module called snoop agent, which 

its function is to monitor the TCP packets transmitted from a fixed host to a mobile host and 

vice versa.  The agent caches all those packets locally and in the case of receiving duplicate 

acknowledgements (ACKs), retransmits the packets promptly and suppresses duplicate ACKs.  

The Snoop protocol performs retransmission of lost packets locally (at the base station) and 

hence avoids lengthy fast retransmission and congestion control at the sender side.  By this 

method, end-to-end semantics of TCP is maintained and performance of TCP is improved.  The 

Snoop protocol is mainly used for the fixed host to mobile host direction, explicit loss 

notification algorithms complementing the Snoop on the mobile host to fixed host direction.  

Our approach, called the Data Loss Notification (DLN) protocol, explicit optimization to 

improve performance.  We design a mechanism that can successfully distinguish between 

congestion and channel error-induced packet losses to substantially enhance end-to-end 

performance.  The DLN protocol uses only soft state at agent in the network, which is 

periodically refreshed upon the arrival of data segments and ACKs. 

Another aspect of Internet packet we analyse in this paper is that of packet delay.  Delay 

variation is arguably the most complex element of network behaviour to analyse with loss, for 

example, the packet either shows up at the receiver or it does not, while with delay there are 

many shades of possibility and meaning in the time required for a packet to arrive.  Likewise, 

delay variation is potentially the richest source of information about the network. 

Small TCP transmission window prevent the sender from recovering from losses without 

incurring expensive timeouts that keep the connection idle for long periods of time.  As a result, 

Delay for packet from sender host to receiver host is high due to the time for waiting for timeout 

and retransmission.  Thus, a key challenge is in enhancing TCP’s loss recovery algorithms when 

large wireless packet loss rate leads to numerous timeouts. 

Based on an extensive analysis, we show that not only are current loss recovery techniques 

grossly inadequate at preventing sender timeouts, but that proposed enhancements like Selective 

Acknowledgements (SACK) are not likely to significantly change this because typical Internet 

transmission window are not larger than a few segments. Based on the results of our analysis, 

the DLN has the function of judge the reason of packet loss, which can efficiently retransmit 

lost packet without unnecessarily reducing the transmission window. 

2. BACKGROUND AND RELATED WORK 

The purpose of this section is to give an introduction of reliable transmission protocol and the 

application of reliable data transmission in wireless network.  We begin in section 2.1 from 

discuss how reliable transport protocol developed, and then give a detailed description of 

various transport protocol discussed in the literature.  In section 2.2, we give an introduction of 

Transmission Control Protocol, which is the main protocol used in the Internet.  In section 2.3, 

we discuss several end-to-end TCP protocols developed in these years.   

2.1 Reliable transport Protocols 

Today’s Internet is a best effort transmission network.  Packet is transmitted in the network 

without guarantee of in order and reliable transmission, this is a big difference compared with 

traditional telephone transmission.  The transmission host sends out the packet into the network, 
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then the packet passes through a series of routers to its destination, these routers determined the 

routing of the packet.  Packet may be lost due to network congestion.  While this architecture of 

Internet ensured a simple and effective Internet protocol, which expedited the rapid grow of 

Internet.  It sends the mission of reliable packet transmission to the higher layer of protocols.  

Applications like the World Wide Web [1], file transfer [2], remote terminals and electronic 

mail [3] that need reliable and ordered data delivery require a transport protocol to provide this 

functionality, freeing them of the need to achieve reliability on a per-application basis.  

Several reliable transport protocols have been proposed in the literature for best-effort networks:    

Delta-t [4], NETBLT [5], VMTP [6], OSI/TP4 [7], XTP [8] and TCP [9]. In all these protocols, 

data items are identified by sequence numbers that are either byte-based or packet-based.  These 

sequence numbers are used to detect losses, reordering and data duplication.  Packet-based 

sequence numbers are simple to implement but are less flexible because they often constrain the 

sender to use fixed-size packets.  Byte-based sequence numbers indicate to the receiver the 

exact amount of missing data and permit the sender to precisely identify and retransmit lost 

data. 

2.2 Transmission Control Protocol (TCP) 

In the Internet today, TCP is now the standard for reliable data transport.  Measurements made 

in 1999 show that over 95% of all bytes, 90% of all packets and 75% of all flows use TCP.  This 

section discusses its salient features and highlights its main weaknesses. 

While the original formal specification of TCP is in RFC793, numerous variants of it have been 

developed over the past several years, such as TCP-Tahoe, TCP-Reno, Vegas etc.  This section 

discusses the TCP-Reno variant of TCP, which is the predominantly deployed version today.  

2.2.1 Cumulative Acknowledgments 

TCP is an ARQ-based reliable transport protocol that uses cumulative ACKs and byte based 

sequence numbers for reliability.  TCP provides a fully reliable, in-order; byte-stream delivery 

abstraction to the higher-layer application, which typical uses a socket interface to interface with 

the transport layer.  The basic unit of transmission is called segment, which is a contiguous 

sequence of bytes identified by its 32-bit long start and end sequence numbers.  The transmitted 

segments are smaller than or equal to the connection’s maximum segment size (MSS), which is 

negotiated at the start of the connection. 

2.2.2 Loss Recovery 

When the TCP sender discovers that data has been lost in the network, it recovers from it by 

retransmitting the missing segments.  TCP has two mechanisms for discovering and recovering 

from losses: timer-driven retransmissions and data-driven retransmissions. 

Time-driven recovery:  When the TCP sender does not receive a positive cumulative ACK for 

a segment within a certain time-out interval, it retransmits the missing data. To determine the 

timeout interval, it maintains a running estimate of the connection’s round-trip time using an 

exponential weighted moving average (EWMA) formula, srtt=a*rtt+(1-a)*srtt, where ‘srtt’ is 

the smoothed round-trip time average, rtt is the current round-trip sample, and ‘a’ the EWMA 

constant set to 0.125 in the TCP specification. It also estimates the mean linear deviation, 

‘rttbvar’, using a similar EWMA filter, with a set to 0.25.  A time-out occurs if the sender does 

not receive an ACK for a segment within ‘srtt+4*rttvar’ since the arrival of the last new 

cumulative ACK. Furthermore, the retransmission timer is exponentially backed off after each 

unsuccessful retransmission.  The details of the round-trip time calculations and timer 

management can be found in [10,11,12]. 
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Data-driven recovery:  TCP’s data-driven retransmission mechanism uses a technique called 

Fast Retransmission.  It relies on the information conveyed by cumulative ACKs and takes 

advantage of the receipt of later data segments after a lost one.  Because ACKs are cumulative, 

all segments after a missing one generates duplicate cumulative ACKs that are sent to the TCP 

sender.  The sender uses these duplicate ACKs to deduce that a segment is missing and 

retransmits it. 

However, the sender must not retransmit a segment upon the arrival of the very first duplicate 

ACK.  This is because the Internet service model does not preclude the reordering of packets in 

the network; such reordering cause’s later segments to be received ahead of earlier ones, and 

triggers duplicate ACKs in the same way that losses do.  Furthermore, the degree of packet 

reordering on the Internet seems to be increasing, thus, to avoid prematurely retransmitting 

segments, the sender waits for three duplicate ACKs, the current standard fast retransmit 

threshold. 

This is followed by the fast recovery phase, where additional packets are transmitted after the 

sender is sure that at least half the current window has reached the receiver, based on a count of 

the number of received duplicate ACK.  Fast recovery ensures that a fast retransmission is 

followed by congestion avoidance and not by slow start.  Since the arrival of duplicate ACKs 

signals to the sender that data is indeed flowing between the two ends, there is no reason to 

suddenly throttle the sender by invoking slow start. 

2.2.3 Congestion Avoidance and Control 

TCP’s congestion management is based largely on Jacobson’s seminar paper [10]. TCP uses a 

window-based algorithm to manage congestion, where the window is an estimate of the number 

of bytes currently unacknowledged and outstanding in the network. 

The TCP sender performs flow control by ensuring that the transmission window does not 

exceed the receiver’s advertised window size.  It performs congestion control by using a 

window-based scheme, where the sender regulates the amount of transmitted data using a 

congestion window.  When a connection starts or resumes after an idle period of time, slow start 

is performed.  Here, the congestion window is initialized to one segment and every new ACK 

increases the window by one MSS.  After a certain threshold (called the slow start threshold, 

‘ssthresh’) is reached, the connection moves into the congestion avoidance phase, in which the 

congestion window effectively increases by one segment for each successfully transmitted 

window.  In response to a packet loss, the sender halves its congestion window; if a timeout 

occurs, the congestion window is set to one segment and the connection goes through slow start 

once again.   

2.3 End–to-End TCP Enhancements 

Over the past decade, TCP has been tuned to work well in wired networks in the face of 

network congestion, reacting to congestion by reducing its rate, recovering from lost segments, 

and probing for bandwidth in a careful way.  In this section, we survey some proposed 

enhancements to TCP that improve its ability to recover from losses in a timely manner and/or 

perform better congestion control. 

2.3.1 Selective Acknowledgments (SACK) 

It is well known that TCP performance suffers due to coarse-grained timeouts when multiple 

segments are lost in a single window because it uses only cumulative ACKs.  There has 

therefore been recent interest in adding selective acknowledgements (SACK) to the standard 

TCP specification to reduce the time it takes to recover from multiple losses in a window. 
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TCP Selective Acknowledgements can be implemented in many ways.  One possible approach 

is to use Keshav and Morgan’s SMART (Selective Mechanism to Aid Retransmission) scheme, 

where the receiver communicates the segment number that just arrived in addition to the 

cumulative ACK, whenever it sends a duplicate ACK.  A second approach, described in 

RFC2018, is currently on track to become an Internet standard.  In this scheme, the receiver 

reports up to three of the last received, out-of-order, maximal contiguous blocks of data, in 

addition to the cumulative ACK, so that the sender can accurately deduce which segments have 

reached the receiver. 

2.3.2 NewReno 

Hoes’ NewReno modification to TCP-Reno reduces the number of timeouts incurred by the 

TCP sender when multiple losses happen in a transmission window [13].  When multiple losses 

occur in TCP-Reno, a fast retransmission occurs after three duplicate ACKs arrive.  Later 

duplicate ACKs are ignored until half the window is acknowledged, after which fast recovery 

sends a new segment for every incoming duplicate ACK. Now, when a new ACK arrives after 

the successful fast retransmission, its value will be within the original window (recall that there 

were multiple losses in the original window).  In many cases TCP-Reno would time out for this 

second loss if the second loss is “close” to the location of the first one, because the sender’s 

window would now have been reduced to half its original value and the sliding window not 

have shifted the original window to beyond the original right edge. 

In NewReno, however, the sender remains in fast recovery when this happens, when the new 

ACK arriving after a fast retransmission is partial.  A partial ACK is defined as a cumulative 

ACK that does not acknowledge the original window completely.  By remaining in fast 

recovery, the sender continues to send new segments, which would elicit more duplicate ACKs 

and eventually trigger another fast retransmission without incurring a timeout. 

2.3.3 Forward Acknowledgments 

Mathis and Mahdavi’s TCP with forward Acknowledgments (FACK) [14] uses SACK 

information at the sender to perform better congestion management.  Rather than assume that 

the receiver on every duplicate ACK has received a MSS-worth of data, FACK calculates this 

precisely using information from the SACK field. It explicitly maintains an “available window” 

variable, awnd, that keeps track of the number of bytes that are unacknowledged, to perform 

better congestion control.  As long as awnd is smaller than cwnd, the sender is permitted to 

transmit more data. 

2.3.4 NetReno 

Concurrent with our work, Lin and Kung [15] discuss some mechanisms for improving TCP 

loss recovery and propose some modifications to TCP.  They argue that their modifications are 

more sensitive to network conditions than current TCP is motivating the name NetReno (for 

“Network Sensitive Reno”). 

2.3.5 Snoop Protocol 

Snoop protocol improves TCP performance by deploying an agent at the base station.  The 

agent mainly performs the functions of loss detection and loss recovery via retransmission by 

taking advantage of the information conveyed in TCP acknowledgments (ACKs) from the 

receiver.  For transfer of data from a fixed host to a mobile host, the snoop agent used the loss 

indications conveyed by duplicate TCP ACKs and locally maintained timers to retransmit loss 

data from the base station.  The agent also suppresses duplicate ACKs corresponding to wireless 

losses from the TCP sender, Thereby preventing unnecessary congestion control invocations. 
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Snoop protocol can suppress duplicate acknowledgment for TCP segments lost and 

retransmitted locally, thereby avoiding unnecessary fast retransmission and congestion control 

invocations by the sender.  Also there are some disadvantages with it:  the agent must be TCP-

aware, as a result, this scheme is protocol dependent and cannot work for other existing 

protocols or future protocols when they become available.  Although a lost packet can be 

retransmitted locally by the base station, the generated three duplicated acknowledgment 

packets still reach the sender of the TCP connection and cause the sender to unnecessarily 

reduce it sending rate by 50%. 

2.3.6 Explicit Congestion Notification 

Explicit congestion Notification is provided by Internet router for indication of incipient 

congestion where the notification can sometimes be through marking packets rather than 

dropping them.  This would require an ECN field in the IP header with two bits.  The ECN-

capable Transport (ECT) bit would be set by the data sender to indicate that the end-points of 

the transport protocol are ECN-capable.  The bit would be set by the router to indicate 

congestion in the end nodes.  Routers that have a packet arriving at a full queue would drop the 

packet, just as they do now. 

When gateway en route is congested or close due to congestion, it sets a bit in the packet header 

and Forward it on.  A Random Early Detection (RED) gateway in marking mode is apt for this.  

A RED gateway detects incipient congestion by tracking the average queue size over a time 

window in the recent past.  If the average exceeds a threshold, the gateway selects a packet at 

random and marks it, by setting the Explicit Congestion Notification (ECN) bit in the IP packet 

Header.  This notification is echoed to the sender of the packet by the receiver.  For TCP, This 

echo is piggybacked on an ACK.  Now when the sender receives ACK with ECN, it reduces its 

congestion window, as it would if a packet loss had occurred.  Thus this mechanism with 

explicit support from gateways allows TCP to perform proactive congestion control, over and 

above the reactive one triggered by packet loss [16]. 

The ECN algorithm can avoid depending on packet drops alone as implement congestion 

avoidance mechanisms. 

3. PROPOSED DLN METHOD 

3.1 Protocol Description 

The algorithms proposed in this paper tried to improve the performance of TCP in wireless 

networks.  But none of these algorithms actually lets TCP sender know clearly whether the 

packet is lost due to wireless error or network congestion.  This makes the TCP sender 

retransmits the packet efficiently and then cannot keep the throughput high in the error prone 

environment. 

The Snoop protocol is a good scheme to improve the performance of TCP in wireless network.  

But the Snoop protocol retransmits the lost packet like other link layer solutions.  The Snoop 

protocol also suffers from not being able to completely shield the sender from the wireless 

losses. Based on Snoop protocol, we proposed a new protocol called Data Loss Notification 

(DLN) which can remedy limitations of the Snoop protocol. 

In order to implement DLN protocol we modify the ACK format and the networking software at 

the base station and the mobile host. 

3.1.1 DLN structure 

We use a new form of ACK named DLN.  In DLN we add the sequence number of the four 

most recently lost packets judged by the mobile host for each lost packet, and one bit (called 
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DLN bit) to indicate the reason of the lost packet.  1 indicates the packet is lost in the wired 

network congestion and 0 indicates the packet is lost due to wireless error.  The default value of 

DLN bit transmitted by mobile host is 1 (assuming the corresponding packet was lost due to 

network congestion).  The DLN bit is judged at the base station.  DLN agent at the base station 

checked the information it stored in it to see if the packet has lost before it is arrived in the base 

station.  If it found the packet had lost before it arrived in the base station, it remained the 

corresponding DLN bit to 1, or it would remain the DLN bit to 0.  After the DLN is processed 

by DLN agent at the base station, it continues to be transmitted back to the fixed host.  When 

the fixed host received the DLN, it would know the reason of packet loss from the DLN bit. 

3.1.2 DLN agent at the base-station 

The DLN agent at the base station has two main functions.  One is to judge and store the packet 

lost information transmitted from fixed host.  Like ordinary wired network, packet transmitted 

from fixed host to base station may be lost due to congestion.  If the base station does not 

receive the packet in sequence, it will store the corresponding packet information in the DLN 

agent.  Using the information stored in the agent, the base station can judge the reason of packet 

loss when it receive the DLN transmitted from mobile host.  The second function is to judge the 

value of DLN.  When the base station receives DLN, it will judge the lost packet based on the 

information it stored.  If it finds the lost packet is lost before it arrived in base station, it will fill 

the DLN bit with 1 to indicate the packet was lost due to congestion.  If the lost packet had 

arrived in the base station, it fills the DLN bit with 0 to indicate the packet was lost in the 

wireless channel. 

3.1.3 Fixed host TCP sender 

When the fixed host receives the DLN, it actions with the information contained in the DLN bit.  

If the DLN bit is 1, means the corresponding packet is lost due to wired congestion; TCP sender 

will proceed same as the window algorithm.  If the DLN bit is 0, it means the corresponding 

packet is lost due to wireless error and it retransmits the packet immediately without window 

reduction.  

3.2 Model 

The DLN agent maintains a cache of TCP packets sent from the fixed host that have been 

forwarded to, but not yet been acknowledged by the mobile host.  This is easy to do since TCP 

has a cumulative ACK policy.  When a new packet arrives from the fixed host, the agent adds it 

to its cache and passes the packet on to the forwarding code, which performs the normal packet 

forwarding functions.  The DLN agent also monitors TCP ACKs sent from the mobile host, 

using new ACKs to clean its cache and maintain only unacknowledged packet there. 

The DLN agent has two main components:  data processing and ACK processing.  The 

flowcharts summarizing the salient features of the algorithms shown in Figure 1 and Figure 2. 

The remainder of this section describes the algorithm in detail. 



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 3, No. 5, October 2011 

102 

 

 

 

Figure 1. Flowchart for data processing in DLN 

 

 

Figure 2.  Flowchart for ACK processing in DLN 
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3.2.1 Data Processing 

In this phase, the DLN agent processes incoming data segments from the fixed host.  A TCP 

segment is identified by the sequence number of its first byte of data and its size.  At the base 

station, the DLN agent keeps track of the last sequence number seen for the connection.  At any 

stage in the protocol, one of the several kinds of packets can arrive at the base station from the 

fixed host, and the DLN agent processes them in different ways: 

A new packet in the increasing TCP sequence:  This is the common case, when a new packet in 

the normal increasing sequence arrives at the base station.  In this case the packet is added to the 

DLN agent cache and forwarded on to the mobile host.  The agent does not perform any extra 

copying of data while doing this. 

An out-of-sequence packet that has been cached earlier:  Although this is an uncommon case, it 

can happen.  If there have been multiple losses in a single window due to congestion on the 

wired path, there are times when a timeout and slow start occur after a fast retransmission.  This 

could lead to a sender retransmission of a previously cached segment.  If the sequence number 

is greater than the last ACK seen, it is very likely that this packet didn’t reach the mobile host 

earlier, and so it is forwarded on.  If, on the other hand, the sequence number is less than the last 

ACK, the mobile host has probably already received this packet.  At this point, there are several 

possible actions the agent could take.  One possibility would be to discard this packet and 

continue, but this is not always the best thing to do.  The reason for this is that the original ACK 

with the same sequence number could have been lost due to congestion while going back to the 

fixed host.  The second possibility, to facilitate the sender getting to the current state of the last 

ACK seen at the base station (with the source address and port corresponding to the mobile 

host) to the fixed host.  However, the disadvantage of this is that if the information in the DLN 

agent’s state is wrong for any reason, the correctness of the end-to-end protocol is 

compromised.  The third option is to simply forward the packet to the mobile host, and await 

information from subsequent ACKs to refresh the state at the agent. This is the option the agent 

uses, in keeping with our soft-state philosophies.  The agent also resets the number of local 

retransmissions to zero, and updates the transmission time of this segment to correctly estimate 

the round-trip time when its ACK arrives. 

An out-of-sequence packet that has not been cached earlier:  In this case the packet was either 

lost earlier due to congestion on the wired network, or has been delivered out-of-order by the 

network.   The former is more likely, especially if the sequence number of the packet (i.e., the 

sequence number of its first data type) is more than one or two packets away from the last one 

seen so far by the DLN agent.  The agent and then forward to the mobile host cache this packet.  

It is also marked as having been retransmitted by the sender.  The DLN processing algorithm 

uses this information to process DLN bit contained in ACKs that from the mobile host. 

3.2.2 DLN Processing 

The mobile host produces DLN if there is lost packet information contained in the receiving 

packet sequence.  Each DLN packet may contain at most three lost packets that are most near by 

the acknowledged packet.  Because the mobile host cannot judge if the packet is lost due to 

congestion or wireless channel error, it always fills the DLN bit corresponding to each lost 

packet for 1 (assume the packet is lost due to wired network congestion).  In the base station 

when DLN agent receive DLN packet, it can use the information stored in the cache to judge the 

reason of the packet loss. 

The DLN agent performs various operations depending on type of ACKs it receives.  These 

ACKs fall into one of the following categories: 

A new, expected ACK: This is the common case that occurs when no recent segments have 

been lost, and signifies an increase in the packet sequence received at the mobile host.  This 
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ACK initiates the cleaning of the DLN agent cache and all acknowledged segments are freed.  

Finally, the ACK is forwarded to the fixed host. 

An ACK contain DLN information: This is an ACK that contains one or several lost packet 

information.  The lost packet is the packet that was not received by the mobile host.  When the 

DLN agent received the ACK, it checks the information of data transmitted from fixed host.  If 

the lost packet contained in the DLN is also cached in the agent that means this packet was lost 

before it was transmitted to the base station, the DLN agent marks the DLN bit of the 

corresponding packet to 1.  If the lost packet contained in the DLN is not cached in the agent, 

that means this packet was lost after the base station, then it marked the DLN bit of the 

corresponding packet to 0. 

A spurious ACK: This is an ACK less than the last ACK seen by the DLN agent, and is a 

situation that rarely occurs.  We forward it to the fixed host, to guard against the possibility that 

the internal state of the DLN agent may be incorrect. 

3.3 Simulation and Performance Results 

We performed several simulations with the DLN protocol and compared the resulting 

performance with other algorithms using well known simulator ns-2.  We present the results of 

the experiments in this section.  We first introduce the simulation topology and parameters used 

in the simulation in Section 3.3.1.  Later we discuss a trace comparison of Reno with DLN in 

high wireless error environment in Section 3.3.2 and the results of detailed simulation on 

different TCP algorithm in different parameters in Section 3.3.3.  In section 3.3.4 we give 

simulation results of delay and window size in the Reno and DLN procession, and an analysis of 

the simulation results. 

3.3.1 Simulation Topology 

Figure 4 shows the network used for the simulations in this paper.  The circle indicates a finite-

buffer drop-tail gateway, and the squares indicate sending and receiving hosts.  In the 

simulation, some parameters can be set to indicate different network condition; the parameters 

are summarized as following: 1. Buffer size (B packets) in the base station, 2. Propagation delay 

( D msec) which includes: 1) the time between the release of a packet from the source and its 

arrival into the link buffer; 2) the time between the transmission of the packet on the bottleneck 

link and its arrival as its destination; and 3) the time between the arrival of the packet at the 

destination and the arrival of the corresponding acknowledgment at the source, 3. The 

bandwidth (U packets/msec) of bottleneck link from base station to mobile host. 

 

 
 

Figure 4. Simulation Topology 

3.3.2 Trace Comparison 

Figure 5 shows the sequence traces of TCP transfers over an error-free link, as well as TCP-

Reno and the DLN protocol over error-prone links.  The middle curve shows the progress of a 

transfer using the DLN protocol, which is a curve close to the ideal, error-free case.  The 

performance improvement in this transfer over TCP-Reno is a factor of four.  This is typical of 

the degree of improvement we obtain in our ns-2 simulation for reliable data transfers. 
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Figure 5. Sequence traces of TCP using an Ideal error-free links, as well as TCP Reno and the 

DLN protocol over error prone links 

3.3.3 Throughput Comparison 

Figure 6 to 9 show the throughput of algorithms under different wireless packet loss rate.  We 

perform simulation with different network condition by changing the parameters such as buffer 

size, propagation delay and the bandwidth of bottleneck link.  From simulation results we can 

see that throughput of TCP-Reno and TCP-Tahoe drop sharply when the error rate is increased 

to above 10-2.  Throughput of TCP-Reno and TCP-Tahoe drop to only 10%~20% compared 

with no error rate in wireless link, DLN scheme can keep the throughput as high as 80%~90% 

of error free environment.  There are significant performance benefits of using the DLN 

protocol.  The main advantage of DLN is that it helps maintaining a large TCP congestion 

window when wireless error rate is high. 

 
 

Figure 6. Simulation comparison (B=5; D=0.2; U=100) 
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Figure 7 Simulation comparison (B=5; D=0.2; U=50) 

 

 
 

Figure 8 Simulation comparison (B=8; D=0.2; U=50) 
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Figure 9 Simulation comparison (B=5; D=0.1; U=50) 

3.3.4 Delay and Loss Recovery Analysis 

In this section, we analyze the problems that arise due to small TCP transmission windows and 

long delay and discuss the function of DLN on solving this kind of problem [17]. 

TCP-Reno is the most popular TCP used in the Internet.  It contains a number of algorithms 

aimed at controlling network congestion while maintaining good user packet is dropped for a 

window of data, but can suffer from performance problems when multiple packets are dropped 

due to the wireless error.  In this section we illustrate the problem of TCP-Reno, show the end-

to-end performance degradation of TCP-Reno in high packet loss wireless channel.  We also 

compare the simulation results of the TCP-Reno algorithm with DLN to show the performance 

improvement of DLN. 

If the packet is successfully transmitted from sender host to the receiver, the end-to-end delay is 

mainly determined by propagation delay, service time and queuing at the base station.  But if 

the packet is lost due to network congestion or wireless packet loss, the TCP sender has to 

retransmit the lost packet by performing a loss recovery task and by waiting for time out.  As a 

result, the end-to-end delay becomes significantly long when timeout happens. 

Figure 10 to 12 show the delay of 200 packets transmission using TCP-Reno and DLN. 

The TCP-Reno has quite good performance when there is no wireless error in the wireless 

channel.  Figure 12 shows the end-to-end delay performance of TCP-Reno in error free 

environment.  The mean end-to-end delay is about 0.15~0.2 second.  There are two packets with 

delay around 0.5 second, this is due to network congestion, and these two packets are 

retransmitted by loss recovery mechanism. 

In Figures 10 and 11 the packet loss rate in wireless link is 0.1, which means in 200 packets 

transmission there are about 20 packets lost in the wireless channel. Based on the simulation 

result, in TCP-Reno, the mean transmission delay is about 0.15~0.25 second and we can see that 

in 200 packets transmission, there are 24 packets whose transmission delay is significantly 

above 0.2 second.  These packets are lost somewhere (because of network congestion or 
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wireless error) in the network.  Of the 24 retransmitted packets, 11 packets have the delay 

around 0.4 to 0.6 second; that means these packets are retransmitted by loss recovery 

mechanism without invoking timeout, 13 other packets have a delay around 1 to 1.4 seconds, 

which means these packets are time out.  The TCP sender always has to wait for time out to 

retransmit the lost packet, due to wireless packet loss.  The DLN algorithm can efficiently avoid 

the timeout by retransmitting the lost packet immediately.   Figure 12 we can see that the mean 

end-to-end delay for packet transmission is about 0.1~0.2 seconds.  There are 23 packets with 

end-to-end delay for packet transmission is about 0.1~0.2 seconds.  There are 23 packets with 

end-to-end delay between 0.4 to 0.6 seconds.  Most of these packets are lost in wireless channel 

when it is first transmitted by the TCP-sender.  Unlike TCP-Reno, the TCP sender knows these 

packets are lost due to wireless error but not network congestion.  The lost packet can be 

retransmitted efficiently without incurring any window deduction, which avoided long idle time 

to wait for timeout. 

 
 

Fig 10. End-to-end delay for TCP-Reno (Wireless packet loss rate = 0.1) 

 
 

Fig 11. End-to-end delay for DLN (Wireless packet loss rate = 0.1) 
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Fig 12. End-to-end delay for TCP-Reno (no wireless error) 

The main reason for the occurrence of heavy timeouts in the TCP-Reno algorithm is the small 

congestion window, which makes TCP sender not to get enough duplicated acknowledgement 

in the procession and that the number of arriving duplicate ACKs is not sufficient to trigger a 

fast retransmission.  The result is a timeout-driven transmission that keeps the link idle for long 

periods of time.  Figure 13 to 15 show the congestion window size in the procession of 

transmitting 200 packets.  From Figure 13 we can see the window cannot open big enough and 

always reduce to one due to timeout.  So in the high packet loss environment, the TCP-Reno 

cannot efficiently transmit packet. 

When there is no wireless packet loss, the only packet loss in transmission is due to network 

congestion.  The TCP-Reno sender retransmits packet by using loss recovery algorithm.  The 

window size is reduced to half when loss recovery happens, but no time out happens, because 

the congestion window (shown in Figure 15) is kept big enough and there are enough duplicated 

ACKs transmitted back to trigger the loss recovery. 

 
Fig 13. Window evolution for TCP-Reno (wireless packet loss rate=0.1) 
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Fig 14. Window evolution for DLN (wireless packet loss rate=0.1) 

 
 

Fig 15. Window evolution for TCP-Reno (no wireless error) 
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4. CONCLUSION 

In this paper, we identified fundamental challenges to improve the performance of TCP in 

wireless networks. TCP performance in many wireless networks suffers because bit-error-

induced packet losses, which occur in burst because of the nature of the wireless channel, are 

misinterpreted by the TCP sender.  TCP attributes these losses to network congestion because of 

the implicit assumptions made by its congestion control algorithms today.  This causes TCP to 

reduce its transmission window in response and often cause long timeouts during loss recovery 

that keep the connection idle.  Thus bit-error losses lead to degraded throughput and end-to-end 

delay performance. 

While TCP adapts well to network congestion, it does not adequately handle the above 

problems in wireless media.  This paper analysed the problems posed by the above challenges, 

and solved them by using modifications and enhancements to TCP at the sender and receiver. 

The DLN protocol is a general framework by which receiver, base station, or other elements in 

the network can inform the TCP sender of losses that occur for reason other than congestion.  

When combined with algorithms to distinguish congestion losses from corruption, this 

framework provides a powerful way by which TCP senders can separate congestion control 

from loss recovery and recover from non-congestion-related losses without invoking congestion 

control.  Simulation results and mathematical analysis indicate that the DLN protocol can keep 

the window open big enough without the affect of random wireless error. 

It is easy to find the main advantage of DLN compared with other algorithm is its ability to 

judge the reason of packet loss by using the information contained in the acknowledgement 

transmitted back from the TCP receiver, thereby avoiding long idle waiting time, this algorithm 

can significantly improve the end-to-end delay performance in packet transmission. 
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