
������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

�

10.5121/ijwmn.2010.2212 172�

���������	��
���	�������������������������

�������������������������������������	����

�����
����	����������������

Salman Abdul Moiz1 and Dr. Lakshmi Rajamani2

1Centre for Development of Advanced Computing, Bangalore, India
salman.abdul.moiz@ieee.org

2University College of Engineering, Osmania University, Hyderabad, India
drlakshmiraja@gmail.com

ABSTRACT

In mobile database environments, multiple users may access similar data items irrespective of their
physical location leading to concurrent access anomalies. As disconnections and mobility are the common
characteristics in mobile environment, performing concurrent access to a particular data item leads to
inconsistency. Most of the approaches use locking mechanisms to achieve concurrency control. However
this leads to increase in blocking and abort rate. In this paper an optimistic concurrency control strategy
using on-demand multicasting is proposed for mobile database environments which guarantees
consistency and introduces application-specific conflict detection and resolution strategies. The
simulation results specify increase in system throughput by reducing the transaction abort rates as
compared to the other optimistic strategies proposed in literature.

KEYWORDS

Concurrency Control, Serializability, Mobile Host, Fixed Host, Conflict detection & resolution.

1. INTRODUCTION

Mobile computing is widely used in many applications such as mobile banking, traffic status,
weather forecasting, etc., [10, 5]. In order to provide these services, required information is
retrieved from database server via a wireless channel and is passed on to the mobile hosts.

In literature two different approaches are used by which the fixed host (server) services the
request of the mobile client’s viz. On-demand method and broadcast method [1,3]. In the on-
demand method, data are transmitted only when client’s demand. This may lead to congestion
and bottlenecks in upstream link as many mobile hosts may request different data items
independently. In a wireless environment, generally, the downstream bandwidth is relatively
high as compared to the upstream bandwidth [2]. In broadcast based methods, the fixed host
transmits the data items to the mobile hosts periodically regardless of the client’s demands.

In the broadcast-based method, the server transmits data items to the clients periodically
regardless of their demands, then, the clients access and select the data items of interest through

������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

� ����

the broadcast channel [1, 2]. This method is known to be more efficient than the on-demand
method in a mobile database environment. However this approach doesn’t maintain data
consistency as different mobile transactions may access the same data item concurrently through
the broadcast channel [14]. Further the data which is of no importance is sent to few mobile
hosts. Optimistic Concurrency control techniques detect and resolve data conflicts in the
validation phase of the transaction execution. In most of the approaches the conflicting
transactions are aborted in the validation phase.

In this paper, optimistic approach is presented where the data items are not locked and can be
used by more than one mobile host at the same time. The transaction executes in two phases: In
the first phase the transaction is committed locally on mobile host using the on-demand
approach. In the second phase the results are updated onto the fixed host. Only those mobile
hosts (multicasting) that were using the similar data items will be informed about the updated
values by fixed host and the transaction will be restarted on the mobile host.

The remaining part of this paper is organized as follows: Section 2 summarizes the survey of
optimistic concurrency control approaches, section 3 describes the environment and the
elements of mobile databases, section 4 specifies the proposed concurrency control strategy,
section 5 describes the behaviour of the proposed strategy and section 6 concludes the paper��

2. RELATED WORK

Concurrency Control is one of the important components of transaction management. Several
valuable attempts were made to efficiently implement the concurrency control strategies in
mobile environment.

Most of these proposals are based on three mechanisms viz., locking, timestamps and optimistic
concurrency control. Though these schemes are well suited for traditional database applications,
they don’t work efficiently in mobile environments. Due to various constraints in the mobile
environment and nature of different online applications, traditional concurrency control
mechanism may not work effectively.

When two mobile clients access a data item concurrently where one client tries to read from the
data item while the other tries to write upon it, it may result in inconsistency. For this purpose
we might consider the two phase locking protocol, which requests the server to lock all the data
items demanded. However, this protocol requires the clients to communicate continuously with
the server to obtain the necessary locks and detect the data conflicts, and hence is not suitable to
the wireless environment where the capacity of communication bandwidth is highly variable
and unexpected disconnection may occur [6]. In order to avoid the problem of starvation due to
locking, timeout based approach is proposed [15]. Every mobile client may not be able to
execute the transaction within the specified time period, due to variation in bandwidth
disconnection etc. Hence a dynamic timer adjustment strategy is proposed [16]. To reduce the
frequent rollbacks in [15,16], a pre-emptive dynamic timer adjustment strategy[17] and a
predictive strategy[18] is proposed. As the offline processing capability for individual mobile
host may vary, it may execute the transaction faster even if it has requested for execution quiet

������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

� ����

later. For this reason, an optimistic concurrency control technique is frequently used in wireless
environments [13, 14, 22].

Optimistic concurrency control protocols (OCC) [7, 9, 21] are non-blocking and deadlock-free,
which make them efficient to use in mobile computing and have been adopted in the
Disconnected Operation [11] and Kangaroo Transaction model [12]. However, without locks to
data items, transactions might access conflicting data items under an optimistic concurrency
control protocol (OCC). Two concurrent transactions conflict if one of them performs a write on
similar data items. Therefore, approaches to terminate conflicting transactions are proposed [4,
6]. In these approaches if the conflict rate increases, more and more transactions get aborted. In
[8], author proposes A Timestamp-Based Optimistic Concurrency Control for Handling Mobile
Transactions”. However it [8,20,22] needs broadcasting of messages to send the invalidation
reports which might unnecessary flood the network thereby reducing the transaction throughput.
The approach followed in [8] uses broadcasting which is not suitable for some of the
applications because of the rise in abort rates and unnecessary flooding of invalidation reports.
A Hybrid strategy to propagate the invalidation reports [19] based on AVI was proposed.
However this strategy may still lead to blocking and suffers from computation overhead.
�

In this paper a mechanism to handle optimistic concurrency control is presented which doesn’t
terminate the transaction after detecting a conflict. Instead the new value of the conflicting data
item is multicasted and the transaction is restarted with the new data items without the need to
abort the transaction. Timestamp for the Global commit is maintained to know the time at which
the new updated value is multicasted to conflicting transactions. This also save the uplink
bandwidth as the mobile host may not request for the data items again for the execution of the
transaction locally.

3. MOBILE DATABASE MODEL

3.1 Mobile Database Architecture

The mobile computing environment generally consists of three entities Fixed Host (FH), Mobile
Hosts (MH) and Base Stations (BS) respectively. Terminals, desktop, servers are the fixed host,
which are interconnected by means of a fixed network.

������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

� ����

Figure 1. Mobile Database Architecture

Large databases can run on servers that guarantee efficient processing and reliable storage of
database. Fixed hosts perform the transaction and data management functions with the help of
data base servers (DBS). Mobile units are the portable computers which can retain the network
connections through the support of the Base Stations (BS).

Transactions are initiated at a mobile host may be executed at fixed host or mobile host. A
Mobile unit connects to a fixed host through a wireless link A Base station connects to a mobile
unit and is equipped with a wireless interface. It is also known as a Mobile Support Station.
Mobile Hosts (MH) may not always be connected to the fixed network. They may be
disconnected for different reasons. Mobile host may differ with respect to the computing power
and storage space; however MH can run a DBMS module.

In this paper we assume that the transaction is initiated at the mobile host. The data items
needed to execute the transaction are copied into mobile host from the fixed host. The
transaction is first executed locally. Once the transaction commits at mobile hosts the results are
validated at fixed host. When the transaction is being executed locally, the mobile host may be
disconnected and later the results may be reconciled with the fixed host.

3.2 Replication in Mobile Environment

Data Replication is the process that allows building a distributed environment through the
management of multiple copies of data. Changes submitted to one replica have to be applied at
the other replicas such that the different copies of the database remain consistent despite
concurrent updates.

In general, there are two types of replication strategies: Synchronous and Asynchronous
replication. In Synchronous replication, updates on a data item are performed on all replicas at
the same time. In Asynchronous replication, write operations performed on one site is stored
locally and later on it is updated to other replicas. Synchronous replication technology ensures

������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

� ����

highest level of data integrity but requires permanent availability of participating sites and
transmission bandwidth. Asynchronous replication provides more flexibility than synchronous
replication as single site could work even if a remote server is not reachable or down.

As disconnections are common characteristics in mobile environments, asynchronous
replication is better suited. If the mobile host holding a replica is disconnected for a longer time
then in synchronous replication the transaction can’t proceed unless the mobile host is
connected.�

Figure 2. Working Scheme for Replication

In the proposed optimistic approach, a fragment is copied onto mobile host for execution of a
transaction i.e. the transactions are first executed at mobile host and later the updates are
propagated to fixed host. In figure 2, local operations are the operations which could be
executed at mobile hosts and forwarded operations are the results propagated to fixed host. The
decision for successful completion of a transaction is made only when the forwarded operations
are successfully updated at fixed host. The fixed host acts as a master and the mobile hosts as
slaves. Though the write operations are first performed locally by mobile host, but the
transaction commits only when the write operation is successfully executed at fixed host. Hence
Master-Slaves strategy is adopted in implementation of proposed concurrency control
technique.

The fragment needed for execution of the transaction is copied at mobile host and the
transaction is executed locally. This fragment is usually a mixed fragment, a combination of
vertical and horizontal fragment. The locally committed transactions are forwarded to the fixed
host to make a final commit decision.

When multiple mobile hosts request for the same data items, the respective data items are read
from fixed host. When one mobile executes a transaction successfully and the results are
updated at fixed host, Conflict may occur leading to concurrency violation.

Two operations conflict if they operate on same data item and one of the operations being a
write operation (update conflict). As the mobile host has limited storage, the total relation is not
replicated instead only the read/write operations are propagated between mobile host and fixed
host. Hence the strategy used is transactional replication not the snapshot replication.

������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

� ����

An efficient strategy is needed in case of asynchronous replication in order to detect and correct
data conflicts due to concurrent modifications occurring at different mobile hosts between two
database synchronization events.

4 OPTIMISTIC CONCURRENCY CONTROL STRATEGY

Concurrency control deals with the issues involved in allowing Simultaneous accesses to shared
data items. Atomicity, consistency, and isolation of transactions are achieved in the database
through concurrency control mechanisms. In particular, mobile applications have to face
disconnections. It is expected that the transaction continues when the mobile host is
disconnected. Hence there is a need of optimistic replication techniques.

In optimistic replication, shared data is replicated on mobile hosts and users are allowed to
continue their work while disconnected. After successful completion of local operations at
mobile host, the results are later propagated to fixed hosts. In the earlier approaches whenever a
concurrency violation occurs i.e. data items are updated at fixed host the conflicting transaction
using the similar data items was aborted. In this approach the conflicting transaction is not
aborted but it is restated with new state of the data items.

4.1 Conflict Detection & Resolution

A transaction is initiated at mobile host and if it is committed the results are later on reconciled
at the fixed host. The proposed strategy uses two phase. In tentative phase the transaction is
executed at mobile host. If the transaction commits in tentative phase, then commit phase is
initiated to perform the write operations on fixed host. During the Tentative Phase, the conflicts
are detected when multiple hosts are accessing same data items. However in our approach the
conflicts detected are tolerated till it enters into the Commit Phase.

The approach followed for conflict resolution is dynamic. This is because a mobile host which
execute the transactions first will be committed. Hence the conflicts will be resolved when the
write operations are propagated to the fixed host.

In a distributed environment, the commit protocol uses Coordinator and Participants for
reaching to a final commit state. As mobile host is prone to disconnections and involves
mobility it can’t act as a coordinator. The Base Station (BS) to which a coordinator is registered
can be used as coordinator which is responsible for Conflict resolution when the concurrency is
violated.

Table 1. Elements of the Commit Protocol
Participant Coordinator Participant

Mobile Host Base Station DBS

������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

� ��	�

Since the Commit decision is made by the coordinator, even if the mobile host moves from one
cell to another cell consistency is preserved. If mobile host moves from cell 1 to cell 2, the
information regarding the Base station to which the mobile was registered is communicated to
the base station of next cell to which the mobile host is registered. If the transaction is executed
successfully in cell 2, the result of the sub transactions is sent to the cell1 base station to make
the final commit decision. To make a final commit decision when the mobile is moving, inter
base station communication is needed to reach the final state.

4.1.1 Tentative Phase

• Mobile host request for a particular data item for executing a particular transaction
identified by TransactionId or name (1)

• The fixed host checks for the required data items needed to execute a transaction (2)

Figure 3. Communication among mobile host and fixed host in tentative phase

• The information of current transaction is recorded by the base station in current
transactions relations. The state of shared data item in particular will help in identifying
the conflicts.

• The base station also scans the current transactions relations to know whether any other
mobile host has already requested for the same data items. This helps in detecting the
conflicts. However this is tolerated till the commit or validation phase. If so the
Arrival_Time of the transaction which arrived first is multicasted to mobile host which
requested for the same data items.

• The data items needed to execute the transaction are read by the mobile host (3)
• If the transaction commits got commit phase

4.1.2 Commit Phase

• Once transaction commits locally, the results are propagated to the coordinator(BS) for
making the final commit decision.(4)

������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

� ��
�

• The coordinator scans the Current transactions relations to check whether any other
mobile host is using the similar data items which are updated by committed
transactions.

• If so the updated values are propagated to the mobile hosts by updating the
Arrival_Time and requesting to restart the transaction. (7). (Conflict Resolution).

• The coordinator Base station updates the data items and removes that entry from
Current transactions relations (5) and informs the mobile host about the final commit
decision (4)

Figure 4. Communication among Fixed host and Mobile hosts in commit phase

There are basically two ways to perform the validation for detecting data conflicts, backward
validation and forward validation. Backward validation examines data items written by recently
committed transactions with data items of the transaction in question, whereas forward
validation resolves conflicts by examining data items of the transaction in question with those
data items read by the transactions currently active in the write phase [8]. The backward
validation technique seems is appropriate because it tries to resolve conflicts among already
committed transactions.

Though the mobile host which completed the tentative phase successfully can directly send the
updated values to another site executing the same transaction. However in order to avoid
multiple updates, we use the single control at fixed host. Further the fixed host has a mirror
copy such that in case of its failure the backup copy will be active.

4.2 Data Structures (Fixed Host)

In order to avoid blocking and to enhance the throughput for optimistic concurrency control, it
is proposed that the fixed host maintains 2 relations in addition to the base table

������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

� �	��

4.1.1 Transaction Info relation

This relation stores the list of possible transactions which can be executed on mobile host

Table 2. Structure of Transaction_Info relation

TransactionId Name Relation Data Item(s)

TransactionId : Every transaction has a unique Id

Name : A transaction can also be identified by name. For example, for a
mobile banking the name of the transactions could be transfer amt, withdraw amt etc.

Relation : This gives the name of the table whose data items are needed to
execute a transaction identified by TransactionId or Name

DataItem(s) : This specifies list of data items needed from the relation to execute
the transaction identified by TransactionId.

The advantage of using this relation is to reduce the lookup operation needed to know the data
items for execution of a transaction. Secondly this helps in quick extraction of the mixed
fragment needed to execute a transaction at mobile host.

4.1.2 Current Transactions relation.

This table contains the list of current transactions executed at site i

Table 3. Structure of Current Transactions Relation

Site_Id TransactionId Data_Items Arrival Time

Site id : represents a particular mobile host i which requested for execution of
 Transaction identified by Transaction_id
TransactionId : represents type of transaction

Data_Items : represents the shared items, whose values may conflict.

Arrival Time : Specifies the time at which the data items are copied into mobile host
 for execution.

This relation is used keep track of all sites, time at which data items were copied at mobile host.
This helps the coordinator in sending the modified state of the data items as a result of
successful completion of a transaction at a mobile host mi. It is also helpful for mobile hosts in
knowing the arrival time of the conflicting transactions so that the mobile hosts which acquired
the data items later has the knowledge that it may have to re-execute the transaction if new
updates are propagated.

������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

� �	��

The advantage of this approach is due to variable bandwidth and disconnections in mobile
environments, there might be a possibility that the data items which were acquired by a
particular mobile host quiet later, may commit the transaction, prior to the mobile host which
has requested the data item first. In this case the coordinator sends the new values of the data
items to mobile host which is not yet committed and updates the Arrival Time.

5 PERFORMANCE METRICS

The proposed optimistic concurrency control is simulated using, postgress as the database. The
front-end differs from application to application. A front-end for mobile banking with basic
transactions is designed. The simulator follows MVC (Model-View- Controller) architecture.
The functionality of the coordinator i.e the Base station is implemented using J2EE at fixed
host. The system is finally tested using 10 different types of transactions involving concurrent
requests for execution of a transaction.

In a mobile banking application few of the transactions can be executed by sending a request
from the mobile host. Consider the following relation which contains the account holder’s
information.

Table 4. Account holders Information
Account_no Amount

101 10000

102 12300

103 11500

The base station is maintained at Data base server which is one of the participant of the commit
protocol. The coordinator i.e base station maintains two relations which helps in detecting the
conflicts and resolving the same.

Table 5. Transaction Info relation

TransactionId Name Relation Data Item(s)

T1 Deposit Account Account_no,
Amount

T2 Withdraw Account Account_no,
Amount

T3 Enquiry Account Amount

Table 5 provides a list of possible transactions i.e Deposit, Withdraw and Enquiry, the base
relation to be used data items needed for the execution

������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

� �	��

Assume that two joint account holders with Account number 103 issued a request for deposit
(Rs.1000/-) and withdrawal (Rs. 500/-) of amount from mobile host M1 and M2 respectively
with a difference of 5 sec (say). They also provide their account number to retrieve a particular
tuple.

Table 6. Current transaction entries when M1 gave a request

Site_Id TransactionId Account_no Amount Arrival Time

M1 T1 103 11500 10.05

When M1 requested for execution of a transaction with transactionId T1, the coordinator sends
Account_no and Amount to M1. The same information is entered in current transaction relation.
The transact T1 starts executing at M1.

M2 now request for depositing amount after 5 secs with transaction id and account number.
Depending on the transaction to be performed using Transaction id, the respective data items are
copied into current transaction. In the current transaction relation M1 has also requested for a
transaction on same account no. M2 is now aware that M1 has requested for the same data item
5 mins back

Table 7. Current transaction entries after M2 initiated the request

Site_Id TransactionId Account_no Amount Arrival Time

M1 T1 103 11500 10.05

M2 T2 103 11500 10.10

Both M1 and M2 are now executing the transaction with the data item replicated at their
respective mobile host. Once it completes the tentative phase successfully, it enters into commit
phase.

Case (i): M1 completes tentative phase before M2

When M1 completes the execution before M2, the final value of M1 after deposit operation i.e
Rs. 12500/- will be updated in base table. At the same time the updated values is propagated to
M2 to restart the transaction with new value at the same time arrival time is set to current time.
Further the entry of M1 is deleted from Current transaction relation. The transaction initiated by
M2 is not aborted in commit phase. But when concurrency violation occurs, the new value for
the data item is propagated only to those mobile hosts using the shared data item. This is unlike
most of the optimistic approaches where the data is broadcasted after finite period of time.

������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

� �	��

Case(ii) M2 Completes tentative phase before M1

In mobile environments, due to variable bandwidths and disconnections, there is a possibility
that the transaction which started later can commit first. In this scenario if M2 completes the
execution first, the final value 11000/- is updated in base table at DBS. As conflict is detected,
the new value is propagated to M1. The transaction restarts at M1 and T2 is discarded from the
current transaction relation.
Case (iii) M1 and M2 completes at the same time

There is a possibility that both M1 and M2 may complete the transaction at the same time and
enter into a commit phase with an updated value. In this scenario the transaction which
requested for the data item first will be committed and the other mobile host is required to re-
execute the transaction with new value for the shared data item.

In all the scenarios, Serializability is preserved because the final commit decision is made by the
coordinator and the data is updated in DBS based on certain serial order of execution of
transactions.

6 CONCLUSION

The Optimistic Concurrency Control Strategy doesn’t use any locking which doesn’t block the
shared resources. Further concurrency can be guaranteed by first executing transactions locally
and later on propagating the results. In this scheme whenever a fixed host detects a concurrency
violation, it propagates the updated shared data item to the mobile host using the same data item
without aborting it. The mobile host which successfully completes the transaction locally will be
committed irrespective of its arrival time. In this scheme there could be a possibility that the
transaction which arrived quiet early might not get executed because the other mobile hosts are
executing faster. The future work may introduce a priority field to give chance to the
transaction which requested first or a hybrid approach for concurrency control that enters uses
pessimistic strategy by partially locking few data items to complete its execution.

REFERENCES

[1] Acharya, S., Alonso, R., Franklin, M. and Zdonik, S., "Broadcast disks: data management
 for asymmetric communication environments", Proc. ACM SIGMOD 1993 Int. Conf. on
 Management of Data, pp.199-210, 1999.

[2]. Acharya, S., Franklin, M. and Zdonik, S, "Disseminating Updates on Broadcast Disk", Proc.
 22nd VLDB Conference, pp.354-365, 1996.

[3] Acharya, S., Franklin, M. and Zdonik, S, "Balancing Push and Pull for Data Broadcast", Proc.

 ACM SIGMOD, pp.183-194, 1997.

[4] Anand Yendluri, Wen-Chi Hou, and Chih-Fang Wang, “Improving Concurrency Control in
 Mobile Databases”, Springer Verlag LNCS 2973, PP. 642-655, 2004.

[5] Barbara, D., "Mobile computing and databases-a survey”, IEEE Transaction of Knowledge

Data Engineering, volume 11 issue 1, pp.108-117, 1999

������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

� �	��

[6] Barbara D. and T. Imielinski. "Sleepers and Workaholics: Strategies in Mobile Environments",
 Proc. ACM pp. 1-12, May 1994.

[7] Bernstein, P.A, Hadzilacos, V. and Goodman, N, "Concurrency Control and Recovery in
Database System", Addison-Wesley 1987

[8] Ho Chin Choi, Byeong-Soo Jeong, , “A Timestamp-Based Optimistic Concurrency Control for

Handling Mobile Transactions, Springer Verlag, LNCS 3981, PP. 796-805, 1996

[9] H. T. Kung and J. T. Robinson, "On Optimistic Methods for Concurrency Control," ACM

TODS, 6(2), June 1981.

[10] Imielinski, T. and Badrinath, B. R., "Mobile wireless computing: challenges in data

management", Communications of the ACM 37(10), pp. 18-28, 1994

[11] J. Kisler, and M. Satyanarayanan, Disconnected Operation in the Coda File System, ACM

Transactions on Computer Systems, 10(1), 1992.

[12] K. Eswaran, J. Gray, R. Lorie, I. Traiger, “The Notion of Consistency and predicate locks in a

database system”, Communication of the ACM, 19 (11): 624-633.

[13] Mei-Wai Au, Edward Chan and Kam-Yiu Lam, “Concurrency Control for Mobile Systems

with Data Broadcast”, Journal of Interconnection Networks, pp.253-267, 2001

[14] Pitoura E., "Supporting Read-Only Transactions in Wireless Broadcasting", Proc. DEXA

Workshop on Mobility in Database and Distributed Systems, pp.428-433, 1998.

[15] Salman Abdul Moiz, Dr. Lakshmi Rajamani, “An Algorithmic approach for achieving
 concurrency in Mobile Environments”, 1st National Conference on Computing for Nation
 Development, INDIACom 2007, ISBN #978-81-094526-0-1, ISSN # 0973-7529.

[16] Salman Abdul Moiz, Dr. Lakshmi Rajamani, “Single Lock Manager Approach for achieving

Concurrency in Mobile Environments”, 14th IEEE International Conference on High
Performance Computing (HiPC), 2007. Springer LNCS 4873, ISBN 978-3-540-77219-4, pp.
650-660, 2007.

[17] Salman Abdul Moiz, Dr. Lakshmi Rajamani, “Concurrency Control Strategy to Reduce frequent
rollbacks in Mobile Environments”, 2009 IEEE/IFIP International Symposium on Trusted
Computing (TrustCom 2009), ISBN# 978-0-7695-3823-5, Vol 2. Pp. 709-714, 2009.

[18] Salman Abdul Moiz, Dr. Lakshmi Rajamani, “An Efficient Strategy for achieving Concurrency
Control in Mobile Environments”, 12th IEEE Asia Pacific Network Operations & Management
(APNOMS) symposium, 2009. Springer LNCS 5787, ISBN# 978-3-642-04491-5, pp. 519-5222,
2009.

[19] Salman Abdul Moiz, M.K. Nizamuddin, “Concurrency Control without Locking in Mobile
Environments”, 1st IEEE International Conference on Emerging Trends in Engineering &
Technology, ISBN # 978-0-7695-3267-7/08, pp. 1336-1339, 2008

[20] Shi, Victor and Perrizo, William: “A new method for Concurrency Control in centralized High

Performance Database Systems” ISCA Computers and Their Applications Conference - April,
2002.

[21] T. Härder. “Observations on optimistic concurrency control schemes”. Information Systems,
9(2):111–120, 1984.

������������	
������	
�
����	���
�
����	�
��������
��������
��	���
�����
���
����

� �	��

[22] Victor C.S.Lee, Kwok Wa Lam, Tei-wei Kuo,”Efficient Validation of Mobile Transactions in
 Wireless Environments”, The Journal of Systems and Software 69(2004), 183-193.

����

 ������ ������ ������ ����������

Salman Abdul Moiz is a Research Scientist at Centre for Development of
Advanced Computing, Bangalore. He received his B.Sc from Osmania
University, MCA from Osmania University, M.Tech(cse) from Osmania
University and M.Phil(Cs) from Madurai Kamaraj University.

He is a Research Scholar at Osmania University and published more than 20
papers in various National/International Conferences and Journals. His areas
of interests include Mobile databases, Software Process Improvements,
Agile Methodology & Disaster Recovery.

Dr. Lakshmi Rajamani is working as Professor & Head of the Department,
CSE, University College of Engineering, Osmania University, Hyderabad.
She received M.Sc (Statistics) from IIT Kanpur, M.Phil (Computer methods)
from University of Hyderabad and PhD (CSE) from Jadavpur University,
Kolkata.She authored more than 25 papers in various National/International
conferences and Journals. Her research interests are in the areas of Neural
Networks, Artificial Intelligence, Distributed Computing & Data Mining. She
worked as Chairperson, Board of Studies, CSE, Osmania University. She also
worked as Director CDAC, University College of Engineering, Osmania
University.

