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ABSTRACT 

 

Visual content acquisition is a strategic functional block of any visual system. Despite its wide possibilities, 

the arrangement of cameras for the acquisition of good quality visual content for use in multi-view video 

remains a huge challenge. This paper presents the mathematical description of trapezoidal camera 

architecture and relationships which facilitate the determination of camera position for visual content 

acquisition in multi-view video, and depth map generation. The strong point of Trapezoidal Camera 

Architecture is that it allows for adaptive camera topology by which points within the scene, especially the 

occluded ones can be optically and geometrically viewed from several different viewpoints either on the 

edge of the trapezoid or inside it. The concept of maximum independent set, trapezoid characteristics, and 

the fact that the positions of cameras (with the exception of few) differ in their vertical coordinate 

description could very well be used to address the issue of occlusion which continues to be a major 

problem in computer vision with regards to the generation of depth map. 
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1. INTRODUCTION 
 

Human vision system (HVS) has stimulated an interest in acquisition of visual content and 

provided an acceptable guide to its understanding. The subject of visual content acquisition 

developed very early in history because its principles can be formulated from HVS of which 

visual attention forms an important characteristic. Right from the very beginning it promises a 

photorealistic replica of scenes for enormous emerging domains with many applications in many 

different areas. In this regard, mathematical descriptions of propagation pattern of light, 

parameterization of the behavioral response of optical devices are required. 

 

A substantial body of evidence according to [1] demonstrates that exposure experience allows the 

individual to learn a great deal about the stimulus object, so that the ability to recognize, 

discriminate, and categorize the object generally improves. The first order step in the 

achievement of these improvements is the registration of both optical and geometric properties of 
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the scene. The identification of this knowledge has triggered the visual content acquisition of 

scenes from a single viewpoint using optical cameras. 

 

On the one hand, the simplest image acquisition is a two-dimensional (2D) array of light intensity 

functions representing points in the three-dimensional (3D) world. The intensity function at each 

spatial coordinate is determined by the degree of illumination at that coordinate. The uniqueness 

and potential of information embedded in 2D image has brought about the convergence of fields 

such as image processing, computer graphics, pattern recognition, artificial intelligence, 

psychophysics, and machine vision [1]. On the other hand, a complete description of an object in 

terms of its physical shape and size is only possible when 3D coordinates are available. 3D 

acquisition requires a geometrically and photometrically calibrated camera. 

 

Building on the premise of distributed vision-based sensing and processing, multi-camera 

networks have emerged as one of the preferred approaches for generating 3D content. 3D content 

is known to provide depth perception of the observed scene [2]. Such content can be obtained by 

having a high-resolution, wide-angle camera focused during a moderate object motion [3]. 

However, in computer vision, a synchronized set of multi-cameras with known accurate positions 

and orientations, brightness and chromatic characteristics are used to observe object surface 

areas. Single camera techniques, Holoscopic capture devices, pattern projection technique, and 

time-of-flight techniques have been actively used in 3D content acquisition in other applications. 

 

One important application of multi-camera system is in multi-view video. This is popularly used 

in free viewpoint television (FVT), [4], [5], which enables a 3D scene to be viewed by freely 

changing our viewpoint, and 3D television (3DTV) in which the illusion of depth is created. 

Multi-view imaging has also attracted increasing attention in another wide variety of interesting 

new research topics and applications. These range from virtual view synthesis, high performance 

imaging, image and video segmentation, object tracking and recognition, environmental 

surveillance, remote education, to industrial inspection [6]. Its application in video content 

service such as video summarization [7], a condensed form of video content is generated for the 

purpose of browsing, retrieval and storage enhancement. 3D seismology now has a considerable 

driving force as opposed to its two-dimensional counterpart. It can help to solve the increased 

dimensionality of the problems associated with imaging, processing, and visualization of 

resultant images. 

 

Until recently, however, the focus has been on understanding the brilliant successes of three lines 

of development in camera configurations such as parallel array, convergence array, and 

divergence array, Figure 1. Parallel array is the simplest form in which identical cameras are all 

in a linear orientation. It is mentioned in [8] that more complicated settings can have different 

camera lens properties and zoom facing the same 3D scene from different directions. The 

geometry of these camera topologies can very easily be analysed. The need to improve the 

camera architecture used in visual acquisition has been made evident from a variety of angles. 

This includes the issue of camera density, the reduction in the number of physical cameras, image 

quality, synchronization [9], depth estimation and occlusion [10], [11]. 
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Figure 1 Multi-view camera arrangements: (a) converging, (b) diverging, and (c) parallel arrangement 

 

Fairly recently, in [12], other issues such as visual attention has been considered as an important 

aspect of perception and its understanding is therefore necessary in the creation of 3D content. 

Reference [13] has targeted an important discussion at remapping the disparity range of 

stereoscopic images and video. This is aimed at reducing the effect of a complex combination of 

perceptual, technological, and artistic constraints on the displayed depth and the resulting 3D 

viewing experience. A promising approach to measure 3D visual fatigue using 

electroencephalogram and event-related potential has been proposed by [14]. 

 

The challenge of camera placement in multi-camera setting has been highlighted in [15]. 

Optimum multi-camera configuration is formulated based on a given volumetric space, 

placement constraint, and cost function. The solution to this optimization problem is sought from 

the point of view of bee colony algorithm. Unfortunately, in the acquisition of visual content, the 

problem remains to find a good arrangement of cameras which allows for the generation of 

quality content. 

 

In this paper, the mathematical description of a remarkable multi-camera topology: the 

trapezoidal camera architecture (TCA), for acquisition of visual content is proposed. This is in 

spite of the fact that best observability of the object surface with a single ring camera 

arrangement can be achieved when the ring is at mid-height of the target object [3]. The strong 

point of TCA is that it is based on an efficient trapezoid which is half of a regular hexagon. More 

importantly, a trapezoid defines four of the six sides of a frustum (hexahedral) which has become 

an interesting topic of intense research in mesh generation. In [16], it is confirmed that 

quadrilateral and hexahedral elements are useful for finite elements and finite volume methods 

for mesh generation, and for some applications they are preferred to triangles or tetrahedral. A 

trapezoid is a quadrilateral with a pair (or at least one) of opposite parallel sides [17]. Acquisition 

cameras can be arranged on the sides of a trapezoid as shown in Figure 2. Though both 

conceptual and implementation challenges are in view, the architecture of Figure 2 can be 

implemented at a certain frequency around a scene as depicted in Figure 3. 

 

TCA could facilitate a change in the emphasis for the realization of virtual camera. Of course, 

this computational photography realized in software provides a unique way to reduce the number 

of physical cameras used in the acquisition of visual content. A critical concern is the 

determination of the stereoscopic distance between a virtual viewpoint and any physical camera 

around it. 
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Figure 2. Trapezoidal camera architecture 

 

Also the analysis of TCA boils down to a search problem which entails the determination of 

maximum independent set (MIS). Given a trapezoid graph, the number of integer vertices for 

which no two have an edge between them and no additional vertex can be added is known as 

MIS. Since all the cameras are not at the same horizontal level, the problem of occlusion has a 

great chance of being addressed. 

 

It provides an exponential population of possible viewpoints from which any points within the 

scene can be seen. This approach has the tendency to dramatically address the issue of occluded 

parts of an object even though the technique of synthetic aperture focusing is a design space that 

has been explored in [18]. Therefore the potential of TCA is explored in the generation of high 

quality depth map with respect to different virtual viewpoints. Significantly, depth map is one of 

the requirements for view synthesis in depth-image-based rendering (DIBR). 

 

It is worth noting that the trigonometric, area, sides and distances, and collinearity characteristics 

of this architecture very easily allow the baseline separation between any two cameras to be 

accurately computed. The relevance of this parameter is enormous since it is the sole determinant 

in the categorization of camera topology as either dense or sparse. 

 

TCA is worth considering since a strong argument [19] has been put forward in favour of radially 

captured images. It is stated that linear array of cameras is considered to be the more correct 

method of capturing stereo images and does not suffer from distortion. However, convergence 

camera arrangement is simpler to implement: standard cameras or renderers can be used with no 

modification. Also, with respect to depth map acquisition, optimization of matching energy 

function defined by Markov Random Field (MRF) can now be optimized. This efficiently 

provides for rectification of the image pairs acquired through convergence camera array [20]. 

 

One eminent merit which triggers a very strong line of discussion in support of TCA is driven by 

the concept on which concentric mosaicking is based, as depicted in Figure 4. If a camera is 

rotated anti-clockwise along the circumference of a circle, a corresponding sinusoidal path, 

whose frequency depends on the speed of the camera, is generated. It therefore means that the 

reverse process whereby a camera translates along a sinusoidal path should be capable of 

realizing a concentric mosaic. Since an efficient trapezoid is a truncated or clipped sinusoid, it 

does intellectually make sense in the face of conceptual and implementation challenges, to be 

able to use a set of cameras arranged on the perimeter of a trapezoid to capture a scene in 

multiview video. 
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Figure 3. Pictorial representation of scene and trapezoidal camera architecture 

 

The other discussions in this paper will unfold as follows. Section II will present a review of 

already known camera architectures. A comprehensive explanation of TCA will be given in 

section III. In section IV, conceptual and implementation challenges are highlighted. The 

conclusion of this work is drawn in section V. 

 

2. CONVENTIONAL CAMERA ARCHITECTURE 

 
A brief review of the existing camera architectures namely : parallel, convergence, and diver- 

gence, is presented in this section. 

 

2.1. Parallel array 
 

According to [21] parallel arrangement of cameras allows for wide angle capturing of the scene. 

It is also known to feature simple disparity calculation. A hybrid camera system consisting of five 

high-definition video cameras arranged in a linear array and one time-of-flight depth camera for 

the generation of multi-view video has been proposed by [22]. The merit of this technique is that 

the initial depth map at each viewpoint, obtained through 3D warping operation, is further 

optimized using segment-based stereo matching. 

 

Camera array pursuits for plenoptic acquisition (CAPPA), [23], have been constructed using 

Sony XC-333 cameras. It is aimed at capturing multi-view video. Dense and sparse camera 

arrangement is realized using a modular unit designed for this purpose. Video from 16 cameras is 

translated to four-screen sequences using four SonyYS-Q430 (quad microprocessor). A final 

single 16-screen sequence is generated using a fifth quad processor to combines the earlier 

fourscreen sequences. 

 

Reference [24] has used an array of 64 cameras, Intel Xeon 5160 dual-processor machine, and an 

NVIDIA GeForce 8800 Ultra graphics card to capture multi-view video in real time. It is also 

characterized by an interactive control of viewing parameters. 
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Figure 4. Relating Camera rotation to a sinusoid 

 

Sunex DSL841B lenses with a focal length of 6.1mm and Marshall Electronics V-4350-2.5 lenses 

were used in a linear array of cameras to capture indoor and outdoor scenes respectively. In two 

separate experiments 128 and 48 camera systems were used. Considerable implementation 

performance and improved image quality have been demonstrated through this experimental 

setup. 

 

In the work for which [25] is famous, video light fields, high-dynamic-range video, high 

resolution panoramas, and ultrahigh speed video were generated. In the particular cases of high 

dynamic range video, high resolution panoramas, and ultrahigh speed video, varying of exposure 

times, splaying of direction of view, and staggering of camera triggering times were respectively 

performed. 

 

2.2. Convergence Array 
 

It is interestingly observed that the convergence camera arrangement provides detailed 

information about a scene or an object. Convergence camera configuration has been used in the 

experimental system of FVT, [26] in order to acquire high-resolution video and analogue signal 

up to 96 kHz. It is a “100-camera system” JAI PULNiX TM-1400CL developed at Nagoya 

University and Tanimoto Laboratory. 

 

In another experiment, [27], a stadium is surrounded with eight texture acquisition video cameras 

(SONY DXC-9000) which are capable of performing a progressive scan. A similar camera 

positioned on the stadium ceiling acquires the Z component of a player’s position. In this 

experimentation, the fields of view (FOV) of the horizontal plane cameras are controlled by the 

FOV of the single vertical plane camera. This is done to extend the FOV of the multiple cameras 

to the stadium areas that were not initially covered. 

 

2.3. Divergence Array 
 

The simplest divergent camera configuration consists of a camera usually panned horizontally or 

vertically at certain intervals through an angle of 360
o
 [28]. Each image sample contains both the 

geometric and optical properties of different parts of the scene. A panoramic view of the scene is 

finally constructed by the method of image stitching. 

 

In image capture to be used for concentric mosaicking, cameras are equally spaced out on the 

circumference of concentric circles. Therefore, all the cameras not only have the same centre of 
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projection, [29], but all input image rays are naturally indexed in radius, rotation angle, and 

vertical elevation. 

 

3. THE PROPOSED METHOD 
 

Linear, divergence, and convergence camera arrangements have been used for acquiring visual 

content in multi-view video. One feature which is common to these camera configurations is that 

they are planar. All the cameras are constrained to the same, usually horizontal plane. We now 

explore the design space of trapezoid graph to seek the possibility of having some of the cameras 

positioned at a different vertical coordinate level. 

 

The strong point of TCA is that it allows for adaptive camera topology by which points within the 

scene, especially the occluded ones can be optically and geometrically viewed from several 

different viewpoints either on the edge of the trapezoid or inside it. 

 

3.1. Trapezoid graph and Maximal Independent Sets 

 
In a greater generality, in [8] [9], [10], [11], a trapezoid can be obtained from a trapezoid graph, 

which is an undirected graph G(V,E) consisting of a set of vertices V = { V1, V2,V3,…Vn } and a 

set of edges E = { e1, e2, e3, ….., en } if and only if (Vi, Vj) ϵ E. The concept of MIS allows for the 

determination of a corner camera viewpoint with maximum cardinality and to be used in 

conjunction with the initially chosen corner viewpoint on the perimeter of the trapezoid. Using 

this concept it is possible to determine any two cameras located on the corner points of the 

trapezoid that can be considered for stereoscopic analysis. 

 

According to the algorithm discussed in [32] and depicted in Figure 5, MIS can be computed by 

using as input a trapezoid graph, with its trapezoid representation. The following steps will then 

be implemented: Step 1: Compute the set of all plane points S. Step 2: Compute Xi, Di. Step 3: 

Construct the tree T. Step 4: Compute all the paths from leaf nodes to the root of the tree T, i.e., 

the array path. Step 5: Identify each maximal independent set from the array path. All maximal 

independent sets are then generated as output. 

 

 
Figure 5. Trapezoid graph and its representation 
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3.2. Formal Mathematical Statement of TCA 
 

A trapezoid is considered based on the inclusive definition of having high significance in 

mathematical analysis. It is well known that any proven property of a trapezoid automatically 

holds for a rectangle, square, rhombi, parallelogram. Mathematically speaking, a quadrilateral in 

Figure 6 can be described using the relationship in (1). 

 

 
Figure 6. Alternate angle definition of quadrilateral 

 

                                               (AC)
2
+(BD)

2
=(BC)

2
+(AD)

2
+2(AC)(CD)cos                               (1) 

 

Such a quadrilateral simplifies to a trapezoid, [17], when  equals zero as can be seen in Figure 

6. This means CD is parallel to AC. This is the definition of a trapezoid that is adopted in this 

work. 

 

Investigating the base width of a given trapezoid of height N shown in Figure 7 can provide 

useful information as to how the stereoscopic distance AD can be computed. The perimeter 

length, L of the upper-half hexagon is given as 

                                                                                                             (2) 

If the cross-sectional area of the trapezoid is Ca then 

 

                                                                                                                      (3) 

The N rate of change of L can be expressed as 

 

           (4) 

 

By taking the maximum of (4) into consideration, the allowable cross-sectional area, Ca  of the 

trapezoid can be obtained as in (5). 
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                                                                     (5) 

 

In a special case where w is small compared with N, Ca reduces to 

 

  Ca = 2N
2                

                                                           (6) 

 

 
Figure 7. Trapezoidal representation    

 

The expression in (6) implies that the area of the trapezoid is approximately twice the area of a 

square of side N. 

 

When two cameras were positioned at A and D, the stereoscopic distance AD, is given by (7). 

The simplification of (7) indicates that AD equals twice . This is a unique property of a 

trapezoid which expresses the distance between the bottom parts of the legs of a trapezoid as a 

function of trapezoid sides. 

                                                                  (7) 

 

Therefore, the stereoscopic distance for any two cameras positioned along the base AD of the 

trapezoid can always be determined very easily. 

 

Also the perimeter length L of the trapezoid is described as 

 

                                      (8) 

 

Based on a similar analysis, the β rate of change of L simplifies to (9). It is clear from (9) that 

cameras positioned on the corner points of a trapezoid can be made to have equal stereoscopic 

distance when the trapezoid is half-hexagon in which all the sides are equal. This observation 

provides a unique way to virtually increase camera density.   
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                                                                                 (9) 

 

3.3. Characterization of Trapezoid 
 

A trapezoid has five important characteristics which can be explored in the computation of 

camera positions in TCA. These are sides and distances, collinearity, trigonometry, area [16] and 

v-parallelogram characteristics. 

 

3.3.1. Sides and Distances  
 

In the trapezoid of Figure 7, triangles ACB and DBC have equal areas since they both have an 

altitude of N . Therefore, it can be written that 

 

                                                                  (10) 

 

The distance w can be obtained by equating the sum of the left and right hand-terms of (10) with 

(8). In this way, the coordinate description of the position of any camera located along AB can be 

easily obtained. Also, in the event of any cameras located at the point of intersection of diagonals 

AC and BD, the position coordinates of any such cameras can be determined based on the 

generalized Euler parallelogram law expressed in (11). X is the horizontal difference between the 

center point of AC and D.  In certain specialized applications, cameras positioned at 

the midpoints of the trapezoid diagonals can also be explored to attempt to solve the problem of 

occlusion. 

 

                                    (AB)
2
+(BC)

2
+(CD)

2
+(AD)

2
=(AC)

2
+(BD)

2
+4(X)

2 
                             (11) 

 

For any two cameras positioned at centers of AB and CD, the stereoscopic distance SD, is 

computed as 

                                                                                                               (12a) 

 
Figure 8. Trapezoid representation 
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Assuming two cameras are positioned at  and on the non-parallel sides AB and CD of the 

trapezoid of Fig. 7. Let k be the same ratio by which  and divide the non-parallel sides. The 

mathematical analysis provided by [12] shows that the stereoscopic distance can be obtained 

as  

 

                                                           (12b) 

 

The dependency of the diagonals on the sides and β can be formulated for an efficient trapezoid 

(all sides are equal) as 

                                                                (13) 

 

                                                               (14) 

 

                                                                     (15) 

 

                                                       (16) 

 

The relationship in (16) states that for an efficient trapezoid, the sum of the squares of the 

diagonal is directly proportional to the square of the side length . The constant of 

proportionality equals 6. Again, when β is equal to zero degrees, (16) simplifies to the expression 

expected for the sum of squares of the diagonal of a square. This is a further confirmation of the 

validity of (16). 

 

In an attempt to solve the conceptual and implementation challenges, the trapezoid of Figure 8 

will be used to define a scene. This is will be further explained in section 4. 

 

3.3.2. Collinearity 
 

Consider a circle drawn through the corner points of the two halves of the trapezoids shown in 

Figure 7. By applying the analysis of Christopher Bradley, [36] as demonstrated in Figure 9, to 

Figure 7, points similar to E, F, G, and N which are collinear will be obtained. This means that 

the point of intersection E of the diagonals of quadrilateral ABCD , the point of intersection G of 

the centroids of triangles BCD, ACD, ABD, ABC , the point of intersection N of the midpoints of 

AB,BC,CD,DA and the point of intersection F of the centroids of triangles ABE,BCE,CDE,DAE 

all lie on a line and hence are collinear. These points are potential candidate camera viewpoints 

which could be explored in an attempt to challenge the problem of scene point visibility. 
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Figure 9. Cyclic quadrilateral 

 

3.3.3. Area 
 

The area characteristic of a trapezoid is important in the computation of scene volume. An 

extension of the work in [13] provides a clue to the area of trapezoid as in (17) 

                               (17) 

 

3.3.4. Similarity 
 

Assuming in Fig. 7 that the diagonals AC and BD intersect at a point P. Let the perpendicular 

lines from P to AD and BC have lengths h1 and h2 respectively. Also let θ1 and θ2  respectively 

be the angles subtended by AC and BD with AD. The following two equations can be written 

 

                                                      (18) 

 

                                                       (19)   

 

                                                                 (20) 

 

Expression (20) is a trapezoidal similarity characteristic which can facilitate the computation of 

the coordinates of any cameras positioned at P. 

 

3.3.5. V-Parallelogram Characterization 
 

V-parallelogram characterization of trapezoids has been at the center of recent research 

investigation in mathematics aimed at solving problems of broad relevance [37],[38]. It is said to 

be formed when points on any adjacent sides of a trapezoid are joined with a line which is 

parallel to a diagonal of the trapezoid which does not go through the angle between the adjacent 

sides and the one opposite it. This definition implies that each corner point of a V-parallelogram 
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lie on one and only one side of the trapezoid. Therefore, it means that cameras positioned on 

adjacent sides of a trapezoid can stereoscopically be used to observe a scene. 

 
Figure 10. V-parallelogram M of a trapezoid 

 

In multi-view visual content acquisition, cameras can also be positioned at viewpoints M1, M2, 

M3, M4 which, according to a statement in Euclidean geometry define a v-parallelogram 

M1M2M3M4 shown in Figure 10. The homothetic transformation of triangles ABC and M1BM2 

around the corner point B of the trapezoid in Figure 10 provides for (21) from which the baseline 

distance can be determined. 

 

                                                            (21) 

 

4. IMPLEMENTATION CONSIDERATIONS 
 

Of course, TCA is potentially inclined to addressing some of the critical challenges in multiview 

video acquisition; however its implementation could also be a challenge. Two issues easily come 

to mind namely the possible curvature of the scene and the frequency of the trapezoid. 

 

For a scene of large volume, the curvature of the opposite and parallel sides of the trapezoid 

becomes significant and adds up to the complexity of the implementation strategy. Practically, 

this situation implies that the stereoscopic distance can no longer be measured on a straight line 

between two camera positions. 

 

Again, for a large scene where a small stereoscopic distance is required between cameras, several 

cycles of TCA will have to be implemented. This will significantly make the cost ofimplementing 

this strategy very high. A right balance will have to be struck between small and large scenes on 

one hand and curvature and frequency of TCA on the other. 
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To adequately address these issues, an implementation strategy is proposed based on the 

assumption that the scene is contained in a pyramidal frustum defined by four trapezoids as 

shown in Figure. 10. 

 

In this method, only four half-cycles of TCA are required for the entire scene. The acquisition 

cameras are then placed on the edges of the trapezoid such that the ones along the legs of the 

trapezoid exhibit convergence topology. The idea of scene volume in this work does not require a 

strong argument for it to be embraced since it has been mentioned in [16] in a different way 

though implying the same sense. 

 

The formulation of scene volume is actually a fortification of the basic volume (22) of a frustum. 

The modification of (22) will take into account the near and far depth parameters of the scene. 

                                                   (22) 

 
Figure 11. Implementation strategy of TCA 

 

5. CAMERA AND DEPTH MAP CONSTRUCTION 
 

Stereoscopic camera system with parallel axes is believed to be necessary to avoid the vertical 

image disparity generated by systems that verge the camera axes [38]. However, “Two forward 

facing camera” technique [39] used to deliver a two-dimensional (2D) projection of a scene 

remains a fundamental challenge in stereo vision. Correspondences between multiple images 

need to be accurately established. These are understood to be attributable, in the view of [40], to 

scene properties such as textureless areas, non-Lambertian surfaces, reflections and translucency, 

and occlusions. Camera issues include image noise, calibration and synchronization, differences 

in exposure, white balancing, and other radiometric properties. 

 

A camera is formulated based on pin-hole camera model expressed in (23) 

 

                                                      (23) 
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K is a 3x3 matrix consisting of camera intrinsic parameters namely: focal length, aspect ratio, 

skew and principal point. R denotes an orthogonal matrix and t a vector, encoding camera 

rotation and translation, depth, λ, is equal to Z.  Both are determined by the orientation and 

displacement of the camera at the virtual viewpoint on the edge of the trapezoid. x and X0 are the 

extended image and scene point coordinates. The projection matrix P is used to render the 

quantization level v, for each vertex and face of the graphic. The substitution of v into (24) yields 

the expected depth for all the vertices and faces. 

 

Using uniform quantization of depth value between Znear  and Zfar  to minimize disocclusion, and 

taken into consideration the fact that in humans, the perceived depth distance of close objects is 

much less than the depth distance of further objects [41], [42] depth is formulated as 

 

                                                               (24) 

 

where v is the number of quantization levels from zero through to 2
32

 – 1. The high number of 

quantization levels is aimed at improving the resolution of the depth map. 

 

6. EXPERIMENTAL RESULTS 
 

Some of the simulation results to validate the concept of TCA are shown in Figure 12. Each 

disparity map of an object is generated using a different virtual viewpoint. These are high quality 

disparity map. In the analysis leading to the determination of disparity map, correspondence 

problem still remain a major source of error. This is because correlation based techniques is 

widely used. It is formulated based on resemblance constraint which requires intensity similarity 

between any corresponding points [40]. Also, it cannot cope with textureless regions where pixels 

are insufficiently distinct. Occlusions and discontinuities of some parts of scene are important 

features which correlation method cannot adequately handle. The choice of window size is 

critical the regards to accurate disparity map. To reduce the error contribution due to the 

aforementioned, comparison of quantitative results with Normalized Cross Correlation (NCC) 

method, Daisy descriptor, Error Quadratic Means (EQM), and Local evidence have been 

employed in most research work related to depth map. 

 

Since only a single image of the different objects is used in this work, i.e not stereo images, the 

earlier mentioned objective quality metrics cannot be applied. However, subjective quality 

assessment (SQA) of the generated disparity maps has been conducted at Centre for Media 

Communication Research (CMCR), Brunel University, London. Research students who already 

have a good understanding of disparity map were invited to take a look at the disparity maps for 

different objects. The SQA was based on double stimulus impairment scale (DSIS) in which the 

following scales were used. “Very clean and sharp = 5”, “Clear but not sharp = 4”, “Clear but 

blur = 3”, “blur = 2”, and “Not clear = 1”. The calculated Mean opinion scores (MOSs) for each 

disparity map were then analysed. More than 90 percent of the observers scored each disparity 

map with DSIS of 5. 
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Fig. 12 Objects are shown in the first column. For each object the corresponding disparity maps are given 

in the same row as the object they represent. 
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7. CONCLUSIONS 
 

In this paper, the mathematical description of TCA has been presented based on an efficient 

trapezoid. In principle, the definition of a trapezoid is simple. However, it is the diverse different 

methods of determining the coordinates of its corner points, points on the edges, and in some 

critical applications, points in the space defined by the edges that make TCA so appealing in 

camera positioning for multi-view video. The similarity, sides and distances, areas, and 

trigonometric characteristics of a trapezoid provide for computation of baseline and coordinate 

description of camera positions. 

 

Also the understanding provided by TCA has been used for depth map generation with respect to 

virtual viewpoints on the edge of the trapezoid. Virtual viewpoints which trace a trapezoid 

guarantee high quality disparity map as indicated by DSIS, with almost complete absence of 

holes. Therefore, the minimization of deviation from actual disparity which is widely considered 

as the default measure of success is not required to validate the generated disparity map. 
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