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ABSTRACT 

Considering the sparseness property of images, a sparse representation based iterative deblurring method 

is presented for single image deblurring under uniform and non-uniform motion blur. The approach taken 

is based on sparse and redundant representations over adaptively training dictionaries from single 

blurred-noisy image itself. Further, the K-SVD algorithm is used to obtain a dictionary that describes the 

image contents effectively. Comprehensive experimental evaluation demonstrate that the proposed 

framework integrating the sparseness property of images, adaptive dictionary training and iterative 

deblurring scheme together significantly improves the deblurring performance and is comparable with the 

state-of-the art deblurring algorithms and seeks a powerful solution to an ill-conditioned inverse problem. 
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1. INTRODUCTION 

Single image deblurring is one of the most active research areas in the field of image processing. 

Being an inherently ill-posed problem, seeking a solution in terms of correct pair of an unknown 

degradation function and original image from the blurred and noisy observation, is quite 

challenging as there can be multiple combinations of these two unknowns that might have 

resulted into the available blurred-noisy image.  

A high-quality image undergoes blurring, be it due to atmospheric blur (in astronomy), 

defocusing, camera shake blur (in photography), or any other possible source. Typically, motion 

blur is caused when there is a relative motion between the camera and the object being imaged 

during an exposure time. Even in case of lack of ambient light, slower shutter speed is necessary 

to increase exposure time, where camera shake is likely to happen and degrades the image quality 

significantly. Complex motion paths as in the case of camera shake are particularly challenging as 

blur kernels are arbitrary and any kind of parametric model to represent the same is infeasible.  

Pertaining to this problem wide range of deblurring algorithms are available, which either remove 

simple motion blurring, or need user interactions to work on with more complex cases. Only 

fewest algorithms could have succeeded in giving satisfactory solution in presence of non-

uniform camera motion paths and additive noise both. Our proposed algorithm based on sparse 

representation of images and adaptive dictionary learning, features one of the successful 
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repository in removal of uniform and non-uniform motion blur from a single blurred-noisy image. 

Comparative performance analysis performed with some of the leading deblurring algorithms 

proves the effectiveness of the proposed method in handling blurs like linear blur, camera shake, 

hand shake etc. 

Although the degradation process, in general, is nonlinear and space varying, a large number of 

problems could be addressed with a sophisticated linear and shift-invariant (LSI) model. Hence 

the observation process in the imaging system, with an assumption of blur to be translation 

invariant and pixel-location independent can be modelled as, 

        ( , ) ( , ) ( , ) ( , )g x y f x y h x y n x y= ⊗ +                                                                               (1) 

where ⊗  is a 2-D convolution operator, function f represents an unknown original image, h is 

PSF of the image formation system, g is the observed blurred-noisy image and n denotes additive 

noise. This convolutional model can approximate many real world blurring processes very well, 

and also provides simplified computational form in the frequency domain. Thus, the task of single 

image deblurring is to restore a sharp image from a single blurred and noisy observation. 

The image formulation process can also be modelled in matrix-vector form or in frequency 

domain. Defining g, h, f, and n as the vector versions of g(x, y), h(x, y), f(x, y) and n(x, y), 

respectively, the matrix-vector formulation is, 

               g Hf n= +                                                                                                                   (2) 

where H is a two-dimensional sparse matrix with elements taken from h(x, y) to have the proper 

mapping from f to g, equivalently, the Fourier-domain description of the imaging model is, 

             ( , ) ( , ) ( , ) ( , )G u v H u v F u v N u v= +                                                                              (3)  

where G(u, v), F(u, v), H(u, v) and N(u, v) are the Fourier transforms of g(x, y), f(x, y), h(x, y) and 

n(x, y) respectively. In general, frequency domain analysis of an imaging system provides 

additional cues about the behavior of the imaging system. In our work, while referring to the 

sparse representation of the observed blurred-noisy image, a matrix-vector form is used and, for 

the sake of convenience, frequency domain model is used for iterative image deblurring part. 

The rest of the paper is organized as: in Section 2, a brief review of recent advances in image 

deblurring techniques is presented. Problem formulation, sparse model for image deblurring and 

dictionary learning process are covered in Section 3. Section 4 discusses an iterative image 

deblurring approach taken up in the proposed algorithm whereas a complete proposed single 

image deblurring technique- SparseD is put forth in Section 5. Experimental set-up as well as 

subjective and objective results compared with state-of-the art methods are presented in Section 6 

and conclusions are provided in Section 7. 

2. RELATED WORK 

For image deblurring, if the Point Spread Function (PSF) is known a priori, it becomes a non-

blind deconvolution problem. Some models and algorithms have been proposed to solve the non-

blind deconvolution problem, such as Wiener Filter [1], Lucy-Richardson method [2, 3]; they are 

two popular non-blind deconvolution methods. Chan proposed a TV-L model in [4] and 

Neelmani et. al [5] proposed a ForWaRD method, which combines Fourier and wavelet method 

to seek a solution to this problem. 
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If the PSF is unknown then the problem is termed as blind deconvolution or blind deblurring. 

Early work on blind deblurring usually consider a single image and assume a prior parametric 

form of the blur kernel so that the blur kernel can be obtained by only estimating a few 

parameters. Linear motion blur kernel model used in these works often is too simplified, whereas 

for true motion blurring in practice blur kernel is often an arbitrary form. To solve more complex 

motion blurring, either a pair of images [6] or multi-image based approaches have been proposed 

to obtain more information of the blur kernel by either actively or passively capturing multiple 

images on the scene [7, 8]. 

Recently, a progressive development has been initiated for removing complex motion blurs from 

a single image. There are two typical approaches of algorithms that can be categorized as 

Bayesian (probabilistic) and regularization. The class of Bayesian framework based algorithms 

use some probabilistic priors either on latent image or on blur kernels or images’ edge 

distribution, to derive the blur kernel [9, 10, 11] or manually selecting blurred edges to obtain the 

local blur kernel [12]. Possible limitation on this type of method is that, the assumed probabilistic 

priors may not always hold true for general or natural images. The other popular approach is to 

formulate the blind deconvolution problem as a joint minimization problem with the 

consideration of some regularization constraints on both the blur kernel and the latent image. 

Among the existing regularization-based methods, TV (Total Variation) norm and its variations 

have been the dominant choice of the regularization term to solve various blind deblurring 

problems [13]. Shan et al. [14] presented a more sophisticated minimization model where the 

fidelity term is a weighted l2 norm on the similarity of both image intensity and image gradients. 

Sparse representation recently has attracted community of researchers in the field of image 

processing for solving problems such as deblurring, denoising, super resolution etc. Sparsity 

principle is used for approximating signals as a linear combination of a few dictionary elements. 

The property of sparsity in the representation of signals has also been approved in human 

perception by some studies of human vision. Olshausen et al. [15] represented a natural image 

using a small number of basis functions [16]. The sparse representation problem is usually solved 

through l0 (generally intractable) and l1 (tractable) minimization with non-negativity constraints. 

The progress of l0-norm and l1-norm minimization techniques have been successfully applied to 

many vision tasks, including face recognition [17], image super resolution [16, 18] etc. Also, with 

the growing realization that regular separable 1−D wavelets are inappropriate for handling 

images, several new tailored multi-scale and directional redundant transforms are introduced, 

including the curvelet, contourlet, wedgelet, bandlet and the steerable wavelet [19, 20] etc. to 

design suitable dictionaries. 

In [21], the authors introduced the K-SVD algorithm, a way to learn a dictionary, rather than 

using a predefined dictionary [22]. In parallel, the introduction of the matching pursuit [23] and 

the basis pursuit denoising [24] gave rise to the ability to address the image denoising problem as 

a direct sparse decomposition technique over redundant dictionaries. Begovic et al. [25] provide 

an extension and upgradation of the K-SVD dictionary learning concept from non-scalable to 

scalable adaptive image reconstruction by regularizing the learning process of dictionary 

elements.  

Based on the high sparsity of the image in framelet system and the high sparsity of the motion-

blur kernel in curvelet system, Cai et al. [26] presented an algorithm to remove camera shake 

from a single image. However, ringing problem is clearly visible in the results shown in their 

paper. Whyte et al. [27] proposed a geometrically motivated model of non-uniform image blur 

due to camera shake. This model is substituted in the single image deblurring algorithm of Fergus 

[9] to verify the performance. Our proposed method based on sparse image modelling also shows 

comparable result to this method with less complexity. Recently a new spatially adaptive penalty 

function is derived in [28] for non-uniform image deblurring. An image restoration method based 

on sparse representation with learning dictionary is also reported by Huang et al. [29]. In this 

work only linear motion blur is considered. Although similar to our approach, the deblurring 
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results presented in our proposed method are superior over the method in [29]. Instead of image 

deblurring, blurred image classification based on adaptive dictionary is reported in [30]. 

Above mentioned methods either utilized prior statistics learned from or assumed for a single, a 

pair or a set of additional images for deblurring [9, 31, 14], whereas our proposed algorithm 

requires only a single input image. 

Under the framework of sparse representation, the proposed method takes advantage of dictionary 

learning in adaptive fashion from the observed blurred-noisy image and inclusion of iterative 

deblurring approach.  

3. SPARSE REPRESENTATION FOR IMAGE DEBLURRING 

It is well-known that natural images can be modelled with sparse representation over an over-

complete dictionary. A signal (input image) can be approximated by a sparse linear combination 

of atom signals in an over-complete dictionary. This Section introduces problem formulation and 

terminologies used in sparse modeling for image deblurring problem. 

3.1. Problem Formulation  

To construct a sparse model of an input image it is assumed that the original image f is of size 

n n× pixels, where n  = 256. The input image degradation is due to a known linear space-

invariant blur kernel H and an additive zero-mean white Gaussian noise with known variance
2σ . 

A blurred and noisy image g, is also of the same size as the input image which is formulated as g 

= Hf + n. Now to recover sharp image f is the desired goal, where it is also assumed that f can be 

very well described as Dα with a known dictionary D and a sparse vector α [32]. It becomes a 

minimization problem which is described as follows: 

Consider the linear system, 

                         
n

f R f Dα∈ =                                                                                                   (4) 

where, 
n mD R ×∈ is the overcomplete dictionary and α is the decomposition coefficient of f. There 

are many solutions of f = Dα, and the least number of non-zero coefficients αi could be found. 

Therefore, the degradation model in Eq. (2) can be equivalently modelled as, 

                          g HD nα= +                                                                                                   (5)  

To solve such l0-minimization problem Donoho [33] proposed the step as, 

                
0

ˆ arg min . .s t g HD nα α α= = +                                                                 (6)  

where, 
0

α  is l0-norm (i.e., the nonzero entries of α). The problem in Eq. (5) is computationally 

NP-hard, however, referring to work of Donoho [33], to relax the non-convex sparsity problem to 

convex problem it can be revised as, 

                 
1

ˆ arg min . .s t g HD nα α α= = +                                                                (7) 

Thus a solution to the optimization problem presented in Eq. (7), using an appropriate Lagrange 

multiplier λ , can be obtained as, 
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2

1 2

1
min

2
g HD

α
λ α α+ −                                                                                 (8) 

where the first item is called as the sparse penalty function and the second item is the data fidelity 

term. 

3.2. Dictionary Learning 

The over-complete dictionary (i.e., a learned set of parameters) formation is an important step for 

sparse representation. For the image deblurring algorithm, we should specify the dictionary D, 

such that it could lead to an efficient sparse representation modeling of underlying image content. 

Instead of deploying any pre-chosen set of basis functions such as the wavelet, steerable wavelet, 

curvelet or contourlet, in the proposed deblurring algorithm, learning the dictionary adaptively 

from the corrupted (blurred and noisy) image is the way chosen. 

3.2.1. Dictionary Learning Process  

Basically, K-SVD is a direct extension of a well-known K-means clustering method and it is used 

for dictionary learning purpose in our work. K-means method encodes each sample using a single 

clustering center, while K-SVD method sparsely encodes the samples using atoms from the 

dictionary D. The K-SVD [21] dictionary learning process is an iterative method of training a 

dictionary from a set of images or image patches. The goal of K-SVD is to find the overcomplete 

dictionary D which is a sparse representation for the training signals. The K-SVD algorithm is 

used to construct the overcomplete dictionary, flexible with pursuit algorithm (Matching pursuit 

(MP), Basic pursuit (BP)). The model of K-SVD could be described as follows: 

                      
2

02 0,
min . . ,i
D

G D s t T
α

α α− ∀ <                                                              (9) 

where, T0 is given sparsity level, { }
1

n

i
g g

=
=  are the training signals, α is the relevant coefficient 

and D is the dictionary to be found. There are two stages in K-SVD algorithm: 

• Sparse Coding Stage: Using MP or BP and 

• Dictionary Update Stage: update one atom at a time. 

The sparse coding is performed for each signal individually using any standard technique. A 

dictionary update step in K-SVD, performed atom-by-atom is more easier and efficient process 

over a matrix inversion task. An example of trained dictionary obtained during the 

experimentation of proposed method, for uniform and non-uniform motion blurred house image 

(with 0.5σ =  and 1.5σ = ) is shown in Figure 1. 

                                                

    (a)                                                                                         (b) 

Figure 1. Example of trained dictionaries (size 64 × 256) for (a) Non-uniform blurred (kernel f2 

[20]) and noisy image, 0.5σ = and (b) Uniform motion blurred and noisy image, 1.5σ =  
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3.2.2. Pursuit algorithms and OMP 

The problem in Eq. (5) is computationally NP-hard and there are two main approaches to 

approximate the solution to such problem: The first approach is the greedy family of methods, 

where an attempt is to build the solution one non-zero at a time. The second approach is the 

relaxation methods, which attempt to solve the problem by smoothing the l0-norm and using 

continuous optimization techniques [32]. All these techniques aim to approximate the solution of 

the problem posed in Eq. 5 and are commonly referred to as pursuit algorithms. The most basic 

algorithm is the matching pursuit (MP). This is an iterative algorithm that starts by finding one 

atom that best describes the input signal. 

In [34], the authors proposed a refinement of the MP algorithm which improves convergence 

using an additional orthogonalization step. The orthogonal matching pursuit (OMP) is an 

improvement of the MP. The OMP re-computes the set of coefficients for the entire support each 

time an atom is added to the support. This stage speeds up the convergence rate, as well as 

ensures that once an atom has been added to the support, it will not be selected again. This is a 

result of the least-squares stage, making the residual orthogonal to all atoms in the chosen 

support. For a finite dictionary with N elements, OMP is guaranteed to converge to the projection 

onto the span of the dictionary elements in a maximum of N steps. Due to all such advantages of 

OMP algorithm it is chosen as a relaxation method to obtainα̂ . 

The restored image is thus obtained as, ˆĝ Dα= , and goal of the experimentation is to get as close 

as possible to the original image in terms mean squared error minimization. 

4. IMAGE RESTORATION: AN ITERATIVE DEBLURRING APPROACH  

There are number of image restoration methods, such as, Wiener filter, Richardson-Lucy 

algorithm, constrained least-squares filtering, Bayesian and non-Bayesian methods etc.; a detail 

survey of these techniques is very well covered in [35]. 

Numbers of such algorithms impose spatial and Fourier domain constraints on the PSF and true 

image estimates, and update initial estimates iteratively. In [36], nonnegativity on both the PSF 

and true image is imposed by setting negative values to zero in spatial domain. In Fourier domain, 

the current estimate F
(i)

 is updated as, 

               
( 1) ( ) ( )( , ) (1 ) ( , ) ( , ) ( , )i i i

F u v F u v G u v H u vγ γ+ = − +                                             (10)  

which is essentially a weighted average of F(i)
(u, v) and G(u, v)/H

(i)
(u, v) with a weight parameter 

γ . The first part F
i
 is obtained by taking the Fourier transform of f

(i)
 and therefore imposes the 

constraint of spatial-domain nonnegativity. Second part G(u, v)/H
(i)

(u, v) is a result of Fourier 

domain constraint G(u, v) = (H(i)
(u, v) F

(i)
(u, v)). H(i)

(u, v) is updated in the same way as in Eq. 

(10) by exchanging H
(i)

(u, v)and F
(i)

(u, v). In this algorithm there is no theoretical optimal value 

for γ  and needs to be found empirically. Another way to represent Eq. (10) is to express it in 

terms of Wiener-like update: 

( 1)

2
( )

2
( )

( , ) ( , )
( , )

( , )
( , )

i

i

i

H u v G u v
F u v

H u v
F u v

η

∗
+ =

+
                                                                          (11)  

where η is a representative of the noise energy as in the Wiener filter solution [37]. 
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In this paper, we have formulated a new iterative image deblurring approach by combining the 

Wiener-like [1] update approach with the conventional iterative blind deconvolution [36] 

approach. This formulation is given as: 

    
( 1) ( )

2
( )

( , ) ( , )
( , ) ( , )

( , )

i i

i

H u v G u v
F u v F u v

H u v η

∗
+ = +

+
                                                                    (12)  

This iterative deblurring step tries to minimize frequency residual error and it is alternated with 

dictionary update stage which gives rise to a proposed sparse iterative deblurring algorithm - 

SparseD, which is summarized in the next Section. 

5. PROPOSED SPARSE ITERATIVE DEBLURRING ALGORITHM - SPARSED 

With a combination of alternate step of dictionary updating for sparse representation of input 

observation and iterative image deblurring approach as described in Section 4, a new Sparse 

iterative deblurring algorithm is put forth with adaptive dictionary learning. The main steps 

performed in the algorithm are as follows: 

1. Initialize the dictionary D from Discrete cosine transform (DCT) bases 

2. Repeat following steps till mean squared error (MSE) gets minimized or there is further 

improvement in terms of peak signal-to-noise ratio (PSNR) for deblurred image 

3. Initialize 0 0f g=  (as initial estimate) 

4. Update dictionary D from input blurred-noisy image using K-SVD algorithm  

5. Perform iterative deblurring (set noise energy, 0.35η = ) with known PSF  

 • Take Fourier transform of i
th
 estimation f 

(i)
 i.e., F

(i)
(u, v) 

 • Compute F
(i+1)

(u, v) according to Eq. (12) 

 • Apply inverse Fourier transform on F(i+1)
(u, v) 

 • Impose non-negativity constraint on above equation and obtain deblurred image 

6. Using trained dictionary from step 4 and deblurred image from step 5, obtain α̂  

 with the help of OMP algorithm 

7. Obtain restored image as: ˆĝ Dα=  

Alternating between iterative deblurring and denoising, by updating dictionary from recent output 

has lead proposed SparseD algorithm into satisfactory performance for removal of a complex 

motion blurs in presence of noise. Experimental evaluation proves the effectiveness of this 

algorithm. 

6. EXPERIMENTAL EVALUATION 

Experimental results are evaluated on test images as: house, boat, lena, cameraman and 4 test 

images from the dataset in [10] of size 256 × 256, as shown in Figure 2. Two different types of 
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blur kernels are used to simulate motion blur in presence of varying amount of additive Gaussian 

noise as described below. The experimental setup used to simulate blurred images is as given as, 

• Uniform motion blur kernel (Blur parameters: 15L = pixels and 
040θ = ) 

• 8 different Non-uniform blur kernels as given in [10] 

• Additive Gaussian white noise with 0.5nσ = and 1.5nσ =  

Quantitative comparison of proposed algorithm and competitive single image deblurring methods 

is carried on the basis of PSNR and Structural SIMilarity (SSIM) index as performance metrics. 

 

(a) 

 

(b) 

Figure 2. Example of test images (a) house, boat and lena, (b) test images collected from [20] 

Combination of one of the types of blur as listed above, along with an additive Gaussian white 

noise with different values of standard deviation, σ are added to simulate blurred-noisy images. 

The deblurring results by the proposed SparseD method are then compared with three state-of-

the-art methods i.e., Wiener filter, Richardson-Lucy (RL) algorithm and deblurring algorithm of 

Shan et. al [14]. To verify the effectiveness and the robustness of proposed SparseD method, both 

quantitative (PSNR and SSIM measures) and qualitative results are presented. PSNR and SSIM 

results are reported in a tabular form followed by deblurring results as well. One can see in the 

visual comparison that there are many noise residuals and artifacts around edges in the deblurred 

images in the competing methods.  

6.1. Experiment 1: Uniform motion blur with noise 

After simulating motion blur with the blur parameters blur length, L = 15 pixels and blur angle, 
040θ = , deblurring is carried out using proposed SparseD method, Wiener filter, Richardson-

Lucy (RL) algorithm and algorithm of Shan et. al [14]. PSNR and SSIM results reported in Table 

1 for nσ  = 0.5) and Table 2 for nσ  = 1.5) indicates how the SparseD method is superior over 

other methods. 
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Table 1.  PSNR (dB) and SSIM results of deblurred images (uniform motion blur with blur parameters 

15L = pixels and
040θ = ) ( 0.5nσ = ) 

 

 

 

Figure 3. Test image: house; case: uniform motion blur ( 15L = pixels and
040θ = ) ( nσ = 0.5) (a) 

Original image, (b) Motion blur kernel, (c) Noisy-blurred image, and Deblurred images by: (d) SparseD 

method, (e)Wiener filter, (f) R-L algorithm (g) Shan deblur [14] 

 
Table 2.  PSNR (dB) and SSIM results of deblurred images (uniform motion blur with blur parameters L = 

15 pixels and
040θ = ) ( 1.5nσ = ) 
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Figure 4. Test image: house; case: uniform motion blur (L = 15 pixels and
040θ = )      ( nσ = 1.5) (a) 

Original image, (b) Motion blur kernel, (c) Noisy-blurred image, and Deblurred images by: (d) SparseD 

method, (e)Wiener filter, (f) R-L algorithm (g) Shan deblur [14] 

As shown in Figures 3 and 4 the visual appearance is pleasing in case of proposed method 

whereas some noise residuals and ringing artifacts around edges in the deblurred images are 

present in other cases. Even after changing the blur parameter values over a wide range of blur 

parameters and sigma values of noise from smaller to larger extent, proposed method maintains 

superiority over the competing methods. 

 

6.2. Experiment 2: Non-uniform blur with noise 

Most promising results are obtained in case of non-uniform blur removal with additive noise. This 

experiment is of particular interest as the non-uniform kernels portray camera shake effect, which 

is tedious to remove from single blurred image even after knowing (by some means either 

estimation or hardware attachment) the blur kernels. In this experiment, 8 different non-uniform 

blur kernels are collected from the dataset of Levin et al. [10] which are generated with actual 

camera setup. These kernels are shown in Figure 5.  

 

 

Figure 5. Non-uniform blur kernels [10] and their sizes: (a) f1 (19 × 19), (b) f2 (17 × 17), (c) f3 (15 × 15), 

(d) f4 (27 × 27), (e) f5 (13 × 13), (f) f6 (21 × 21), (g) f7 (23 × 23), (h) f8 (23 × 23) 

 

Blurred images are obtained from these kernels by carrying out simulation in frequency domain. 

PSNR and SSIM measures reported in Table 3 for nσ = 0.5) and Table 4 for nσ = 1.5) and 

deblurred images (as shown in Figures 6 and 7) produced by all deblurring algorithms depict the 

effectiveness of proposed SparseD algorithm. Other competing methods fail to handle such type 

of complex blurs even with the prior knowledge of PSF. 
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Table 3.  SNR (dB) and SSIM results of deblurred images (Non-uniform blur kernel f4 [10]) ( 0.5nσ = ) 

 

 

 

Figure 6. Test image: boat; case: non-uniform blur kernel (kernel f4 [10])( nσ  = 0.5)    (a) Original image, 

(b) Non-uniform blur kernel, (c) Noisy-blurred image, and Deblurred images by: (d) SparseD method, 

(e)Wiener filter, (f) R-L algorithm (g) Shan deblur [14] 

 

Table 4.  PSNR (dB) and SSIM results of deblurred images (Non-uniform blur kernel f4 [10]) ( 1.5nσ = ) 
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Figure 7. Test image: boat; case: non-uniform blur kernel (kernel f4 [10])( nσ  = 1.5)        (a) Original 

image, (b) Non-uniform blur kernel, (c) Noisy-blurred image, and Deblurred images by: (d) SparseD 

method, (e)Wiener filter, (f) R-L algorithm (g) Shan deblur [14] 

In the same experimental scenario, some more results are added for different non-uniform kernels 

with moderate to high noise, so as to verify the robustness of the proposed method. The results 

are shown in Figure 8. 

 

Figure 8. (a) Original image, (b) Non-uniform blur kernel (f1 [10]), (c) Noisy-blurred image (moderate 

noise, 
nσ = 25), (d) Deblurred using proposed SparseD method, (e)Non-uniform blur kernel (f2 [10]), (f) 

Noisy-blurred image (high noise, 
nσ = 100), (g) Deblurred using proposed SparseD method 

 

7. CONCLUSIONS 

In this paper a sparse representation and adaptive dictionary learning based iterative image 

deblurring technique is proposed to deblur a single image degraded with uniform and non-

uniform blur kernels, in presence of additive noise. Strength of our algorithm lies in its capability 

of deblurring complex, arbitrary motion paths with negligible or no ringing effect. Use of a very 

efficient sparse modelling of natural images doesn’t require any kind of assumption of priors on 

blur kernels or input image. Adapting dictionary learning from the blurred-noisy observation 

image with the K-SVD step strengthens denoising task, whereas inclusion of iterative image 

deblurring used to minimize frequency domain residual error helps in deblurring the image 
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effectively. The quality of the deblurred image inspected visually as well as quantitatively (PSNR 

and SSIM) shows that the proposed method performs far superior in comparison with two non-

blind and one blind deblurring algorithm. It shows the usefulness of this method to deblur camera 

shaken images in practical applications such as photography, forensics, satellite and medical 

imaging fields. Proposed algorithm can be further enhanced in terms of fast optimization step. 
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