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ABSTRACT 

Recently single image super resolution is very important research area to generate high-resolution image 

from given low-resolution image. Algorithms of single image resolution are mainly based on wavelet 

domain and spatial domain. Filter’s support to model the regularity of natural images is exploited in 

wavelet domain while edges of images get sharp during up sampling in spatial domain. Here single image 

super resolution algorithm is presented which based on both spatial and wavelet domain and take the 

advantage of both. Algorithm is iterative and use back projection to minimize reconstruction error. Wavelet 

based denoising method is also introduced to remove noise. 
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1. INTRODUCTION 

High-resolution images are requisite in solicitations like high quality videoconference, remote 

reconnaissance, high definition television broadcasting, and medical imaging. Due to precincts 

like camera cost, power, memory size and limited bandwidth, it is not always possible to get high-

resolution image. To acquire high-resolution image from low-resolution image in such 

solicitations, algorithms are requisite. Basic tenacity of super resolution algorithm is to create 

high-resolution image from low-resolution image, which looks as if the image is captured from 

high-resolution camera. Preliminary Super resolution algorithms work on multiple images of 

same sight and generate one image [19]. In recent time, algorithms for real time and single frame 

super resolution have been evolved and developed.  

 

Some of the most recent work on single image super resolution has been done using texture 

hallucination, patch based up sampling and example based super resolution [3,14]. In edge-based 

algorithms, some edge priors are used to reconstruct sharp images but problem with these 

methods are they produce blurriness and over smoothness in some regions [8]. Freeman et al. 

proposed example-based super-resolution approach [12] in which patch-based image model based 

on training database is used. Method generates good result but it not produces consistent texture 

and generates some noise also. 

 

The relation between the high- resolution and low-resolution images is the reason that has 

accelerated us to the popular study and discussion on Spatial-domain based interpolation. 
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Interpolation techniques like pixel replication and bilinear interpolation up sample an image 

without considering any details of input image. These methods work well in smooth region but 

edges and some textures get blurred. In wavelet-domain based techniques of image interpolation 

the foremost challenge is to estimate unknown coefficients of three high frequency sub bands. 

Details of wavelet are given in the later section. Basic interpolation method in wavelet domain is 

Wavelet Zero-Padding. In this method low resolution image is multiply with scaling factor S, 

which work as top left quadrant (LL) of final high resolution image. In other three quadrants of 

high-resolution image (HH, HL and HH), zeros are padded. Temizel [1] combines directional 

cycle spinning method with Wavelet Zero-Padding (WZP) interpolation method. 

 

In this paper single image super resolution algorithm is proposed which uses both spatial and 

wavelet domain. For up sampling and down sampling of an image in spatial domain, respectively 

bicubic smoother and bicubic sharper method of adobe Photoshop cs5 is used. For removing blur 

and get smoother result back projection method is used. Wavelet based denoising method is also 

used to remove noise from image. 

 

Paper is systematized as follows: section 2 contains proposed algorithm based on wavelet as well 

as spatial domain. Section 3 spectacles experiments details and results. Finally section 4 

comprises conclusion and future work. Sample MATLAB code is also provided. 

 

Figure 1.  Proposed Algorithm 

2. PROPOSED  ALGORITHM 

Figure 1 displays the flowchart of proposed algorithm for single image super resolution that is 

based on the algorithm presented in [11]. Here some changes have been done in original 
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algorithm of [11] as down sampling method is changed, new up sampling algorithm is used and 

wavelet based denoising algorithm is introduced. Below each step of flowchart is explained in 

detail. 

2.1. Step 1: Down sampling to get low-resolution image 

To acquire the low-resolution image, take high-resolution image and convert it into low-

resolution image using below method (Figure 2). Here block of 2 x 2 is chosen and 1 pixel of 

low-resolution image for every 4 pixel of high-resolution image is derived. 

 

Figure 2.  Method of down sampling 

 

 

Figure 3.  Snapshot of Photoshop showing different interpolation methods 

As shown in the figure 3, in order to acquire low resolution image, directly Bicubic sharp option 

of Photoshop cs5 can be chosen, the reason is that Bicubic Smoother is a good method for 

enlarging images that are based on Bicubic interpolation but designed to produce smoother results 

moreover it is also used for reducing the size of an image based on Bicubic interpolation with 
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enhanced sharpening and maintains the detail in a resampled image [4]. In this paper, for 

experiment purpose this method has been used. 

2.2. Step 2: Up sampling of the image 

Method proposed in [9] is used for up sampling. Some of the changes have been made in original 

method like instead of Bicubic, Bicubic smoother method of Photoshop cs5 (as shown in figure) 

is used, denoising algorithm is applied on HH band and HAAR wavelet is chosen and instead of 

Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet as a mother wavelet transform because HAAR 

wavelet is computationally fast.  Many other wavelets are available which provide better results 

like sym; db4 etc. but all require more time for computation. During experiment on program 

using HAAR, it has taken 8.37 seconds while DB4 has taken 9.13 seconds. New modified 

algorithm for image up sampling is shown in the figure. Below explained is the complete method 

of image up-sampling.  

 

As shown in figure 4, apply SWT on low-resolution image of size m x n which produce four sub 

bands (ll, lh, hl, hh) with size of m x n each. SWT is same as Discrete Wavelet Transform (DWT) 

but SWT generates each sub band of the size of image while in DWT each sub band is half the 

size of image. 

 

For signal decomposition, one can use analysis filter bank which consist of low pass and high 

pass filters at each decomposition stage and split signal into two bands. The low pass filter fetch 

the coarse information (corresponds to an averaging operation) while high pass filter fetch detail 

information (corresponds to a differencing operation) of the signal. Finally divide the output of 

filtering operations’ by two [10,15,16]. 

 

For two-dimensional transform, the image is filtered along the x-dimension using low pass and 

high pass analysis filters and decimated by two. Then it is followed by filtering the sub-image 

along the y-dimension and decimated by two. Finally, the image has been split into four bands 

denoted by LL, HL, LH, and HH, after one level of decomposition [17,18]. The LL band is again 

subject to the same procedure. This process of filtering the image is called pyramidal 

decomposition of image. This is depicted in Fig. Reversing the above procedure can carry out the 

reconstruction of the image and it is repeated until the image is fully reconstructed [10]. 

 

Apply Bicubic smoother interpolation of Photoshop cs5 as expounded in step1 on low-resolution 

image that produces up-sampled image. On these up-sampled image, apply DWT which produces 

four sub bands of size m x n each. Now LH, HL and HH sub bands produced by DWT and by 

SWT are incremented to correct the estimated coefficients. 

Now apply denoising algorithm on HH sub band only, because LL sub band contains main 

information about the image while main noise is present in other three sub bands and maximum 

high frequency noise present in HH. Below given is the description of denoising algorithm that is 

based on the algorithm presented in [10].  

 

To remove additive noise and maintain the important details of the image at the same time 

Denoising techniques are essential. DWT based denoising method gives good result as wavelet 

transform contains large coefficients of images, which represents the detail of image at different 

resolutions. Two methods are available for denoising, hard Thresolding and Soft Thresolding [2]. 
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Figure 4.  Proposed image up sampling method 

Hard Thresholding 

I(P,T) = P if |P| > T and I(P,T) = 0 if |P| < T          (1) 

Soft Thresholding  

I(P,T) = sign(P) * max(0, |P| - T)           (2) 

 

Where T is the threshold level, P is the input sub band and D is the denoised band. 

Algorithm used the Median Absolute Deviation (MAD) to calculate noise level. 

 

σ = median |Si,j| /0.6745             (3) 

Where Si, j  = LH, HL, HH and Threshold value is calculated by 

 

T = σ – (|Harmonic Mean – Geometric Mean|)          (4) 

Where Harmonic Mean = M2/           (5) 

And Geometric Mean =  [  (1/M2)      (6) 

   

So the procedure is, from HH sub band calculate noise level(σ) than find threshold value(T) for 

that sub band and finally apply soft thresolding method to get denoise HH sub band. Finally 

interpolate all four-sub bands using bicubic smoother with K/2 factor and apply inverse DWT to 

get up sampled image with the km x kn size. 

2.3. Step 3 and 4: Gaussian Filter and Down sampling 

After up sampling due to point spread function (PSF) image can be look blurred little bit. So 

Gaussian filter merely work like smoothing kernel. As the blurred effect is very low or ignorable 

Gaussian filter applies only once. Instead of Gaussian filter, winey filter can be used or Iterative 

blur DE convolution, Lusy Richardson algorithm can be used[6]. Same as step1 using bicubic 

sharper algorithm image is down-sampled. 
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2.4. Step 5 and 6: Reconstruction and up sampling the error 

In this stage of algorithm error is calculated between original low-resolution image of step 1 and 

down sampled image of step 4. This is the most important part of algorithm because the error that 

we find in this stage is used as the correction parameter in getting super resolution image and also 

used for refining coefficients of sub bands. By experiments it has been observed that after three to 

four iteration error becomes so small that it can be neglected. 

Up sampling the error is most important step of the proposed algorithm. For reconstructing super 

resolution image, error must be back projected and for that error matrix must be up-sampled to 

meet super resolution image. Bicubic smoother algorithm of Photoshop cs5 is used for up-

sampling error matrix. 

2.5. Step 7: Back projecting error 

Finally error matrix generated in step 6 is added with high-resolution image generated in step 3. 

Repeat the above procedure as shown in the figure till we acquire satisfactory results. Within 

three iterations appropriate result comes. 

 

3. EXPERIMENT AND RESULT  

Experiment of proposed algorithm is performed on the computer with configuration of Intel i3 

processor, 4GB RAM and 512MB NVidia graphics card. For performance evaluation of 

algorithm, PNSR ratio and visual quality are considered as parameters. The PSNR is defined as: 

PSNR = 20 ·  log 10(MAX i / √MSE). Comparison of cubic interpolation, new edge directed 

interpolation [33], wavelet zero padding (WZP) same as image up-sampling using DWT [55], 

algorithm proposed in [11](denoted as FF) and proposed method have been done for six different 

images of lina, Mona Lisa, Baboon, Pepper, Dog, PS logo and some textures (A1 to A6). For 

doing up sampling in algorithm, Photoshop is used. Same algorithm is also implemented in 

MATLAB without using Photoshop (used bicubic interpolation function). It gives almost same 

result as manual method. Sample MATLAB code for proposed algorithm is also given. 

 

Table 1.  Comparison of different methods using PSNR ration(512 x 512 resolution) 

 Bicubic NEDI WZP FF Proposed Method 

Lena 32.549 31.479 31.725 32.586 32.613 

Mona Lisa 29.428 27.917 27.944 29.624 29.589 

Baboon 32.842 31.619 31.925 32.862 32.933 

PS logo 26.172 25.688 26.018 26.288 26.216 

Dog 26.656 25.438 25.912 26.731 26.693 

Peppers 28.771 27.533 27.881 28.711 28.787 

A1 30.592 29.838 30.189 31.472 31.639 

A2 29.852 29.337 29.762 30.278 30.372 

A3 31.625 30.363 30.625 31.752 31.966 

A4 30.992 30.673 30.936 31.173 31.386 

A5 31.750 30.753 30.826 32.037 32.139 

A6 32.283 31.161 31.378 32.420 32.639 
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Figure 5.  Input Test Images 

 

4. CONCLUSIONS AND FUTURE WORK 

Proposed algorithm uses advantage of both wavelet and spatial domain. PSNR ratio and visual 

quality of images are also shows the effectiveness of algorithm. Algorithm gives almost same 

result as algorithm proposed in [11]. Proposed algorithm is faster. Some more work on up 

sampling algorithm will surly improves result. In future more work on wavelet domain and 

texture-based up sampling will be conducted and comparison will be done to see which algorithm 

work better for which kind of image. 

SAMPLE CODE 

%===========step-1==================== 

 

x = imread('lena.jpg'); 

J = imresize(x, 2,'bicubic'); 

imshow(J); 

imwrite(J,'lena1.jpg','jpg') 

 

%============step-2=================== 

 

I=imread('lena.jpg'); 

[ll1,lh1,hl1,hh1]=swt2(I,1,'haar'); 

Ib=imread('lena1.jpg'); 

[ll2,lh2,hl2,hh2]=dwt2(Ib,'haar'); 

for i=1:256  

    for j=1:256 
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        lh3(i,j,:)=lh1(i,j,:)+lh2(i,j,:); 

        hl3(i,j,:)=hl1(i,j,:)+hl2(i,j,:); 

        hh3(i,j,:)=hh1(i,j,:)+hh2(i,j,:); 

    end 

end 

 

% apply denoising equations 

 

x=idwt2(ll2,lh3,hl3,hh3,'haar'); 

x = uint8(x); 

imshow(x) 

imwrite(x,'lena2.jpg','jpg') 

 

%=============step-3=================== 

 

x=imread('lena2.jpg') 

bt = 1;           

o = 15;             

n = 10;             

h = gaussfir(bt,n,o);  

imf=imfilter(x,h); 

imshow(imf); 

imwrite(imf,'lena3.jpg','jpg') 

 

%=============step-4=================== 

 

imf = imread('lena3.jpg'); 

J = imresize(imf, .5); 

imshow(J); 

imwrite(J,'lena4.jpg','jpg') 

 

%=============step-5=================== 

 

Il=imread('lena.jpg'); 

J=imread('lena4.jpg'); 

for i=1:256 

    for j=1:256 

                E(i,j,:)=Il(i,j,:)-J(i,j,:); 

    end 

end 

imshow(E) 

imwrite(E,'lena5.jpg','jpg'); 

 

%=============step-6=================== 

 

E = imread('lena5.jpg'); 

J = imresize(E, 2); 

imshow(J); 

imwrite(J,'lena6.jpg','jpg') 

 

%=============step-7=================== 

Il=imread('lena3.jpg'); 

J=imread('lena6.jpg'); 
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for i=1:512 

    for j=1:512 

                Z(i,j,:)=Il(i,j,:)+J(i,j,:);         

    end 

end 

Z = uint8(Z); 

imshow(Z); 

imwrite(Z,'lena7.jpg','jpg'); 

 

%======= Go again to step 4 and do iteration till satisfactory results ======== 
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