
The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

DOI : 10.5121/ijma.2012.4303 21

USING MPQF FOR QUERYING MPEG-7 RDF

DESCRIPTIONS

Mohammed A. Al-Zoube

Department of Computer Graphics and Animation

Princess Sumaya University for Technology, Jordan
mzoube@psut.edu.jo

ABSTRACT

MPEG-7 and MPEG Query Format (MPQF) are two related standards developed by the Moving Picture

Experts Group (MPEG) to address the multimedia retrieval problem. MPEG-7 aims to provide

standardized comprehensive set of tools for description of audiovisual content, while MPQF aims to

provide a standardized interface which unifies the retrieval over different multimedia repositories.

However, both standards have some limitations. On one hand, MPEG-7 is based on XML Schema,

therefore, does not have formal semantics, which makes difficult to be managed by computers. Machine

understandable metadata forms the main prerequisite for the intelligent services envisaged in a Web, which

going beyond mere data exchange and provides for effective content access, sharing and reuse.

Consequently, there have been several attempts to move MPEG-7 to the Semantic Web to provide it with

formal semantics. On the other hand, MPQF is limited to querying XML-based multimedia metadata.

Therefore if MPQF is intended to support queries on non-XML multimedia metadata, mapping of MPQF to

the specific database query language is necessary. In this paper MPQF is used to query semantic MPEG-7

RDF descriptions. A set of rules are proposed for converting MPQF query into SPARQL query without

introducing new construct to MPQF. These rules are mainly based on the new features added in

SPARQL1.1.

KEYWORDS

Multimedia Retrieval, Semantic MPEG-7, MPQF, SPARQL, RDF

1. INTRODUCTION

Due to the huge amount of digitally stored multimedia contents multimedia retrieval is gaining

increasing amount of research. Efficient multimedia retrieval requires an extensive annotating the

media content with multimedia metadata, and formalizing the user information request in the

form of a query expressed in terms of the available metadata model. Metadata annotations

provide information about the media content at different levels, from low-level features and

management information, to semantic-level descriptions. MPEG-7 is the main multimedia

metadata framework created to date which provides a comprehensive set of standardized tools for

the description of audiovisual content at multiple granularities. It addresses a variety of

dimensions that range from structural and low level features that can often be automatically

extracted from media types, to aspects related to navigation, creators, content organization, as

well as user preferences and usage [1]. MPEG-7 metadata descriptions support some degree of

interpretation of the information meaning and can describe semantic concepts associated with a

multimedia content. Thus, the extensive description features specialized in multimedia and the

structured semantic descriptions in MPEG-7 promise efficient retrieval of metadata information

and a good match for semantic user queries.

However, since MPEG-7 is an XML-based metadata standard that is defined in terms of an XML

schema, there are no formal semantics assigned to the description elements, which has led to

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

22

design decisions that leave the annotations conceptually ambiguous [2]. For example, different

semantic concepts like frame, shot or video cannot be distinguished based on the provided XML

schema. Thus, uncertainty can appear because of the flexibility in structuring the descriptions.

Although MPEG-7 metadata documents can contain information about semantic concepts

perceivable in a multimedia resource, it is not compatible with semantic web technologies and

cannot be combined with these concepts defined in domain-specific ontology because of it is not

open to standards that represent knowledge and make use of existing controlled vocabularies for

describing the subject matter. Moreover, the meaning of elements described in the standard

specification is intended for human readability and prevent direct machine processing of semantic

content descriptions.

To take advantage of MPEG-7 as comprehensive multimedia metadata framework and to enhance

the semantic expressiveness and to support it with formal semantics, it is desirable to have the

MPEG-7 XML descriptions expressed in Resource Description Framework (RDF) [3] to express

MPEG-7 metadata terms with ontology [4, 5, 6, 7]. The basic idea of RDF is to decompose

knowledge into triples, where each triple comprises a subject, a predicate, and an object. An RDF

instance represents a labeled directed graph, consisting of vertices, which represent subjects or

objects, and labeled edges, which represent predicates (semantic relations between subjects and

objects). A subset of RDF triples from an RDF graph which can be used separately, keeping a

consistent RDF model. Moreover, the formal semantics for RDF make RDF documents machine-

processable and allow applying reasoning techniques, which is an advantage over plain XML-

based documents [8, 9, 10, 11]. Named graphs are an extension of the RDF specification which

allows for the expression of meta information about graphs and the relationships between them

[12]. RDF by itself only provides means to represent the structure and semantics of one single

graph and does not include means that allow for identifying or referring to a set of triples defined

in another graph. Naming RDF graphs with URIs makes them to be uniquely identified, and

therefore, a single RDF document can host multiple graphs where each graph is identified by its

URI.

RDF is not specialized in multimedia; however, it can be used for modeling multimedia metadata

thanks to its advantages with respect to other models. There are formal semantics for RDF, and

therefore, reasoning techniques can be applied so that semantic knowledge about an application

domain can be utilized for the computation of a query result [13]. Another possible benefit is to

enable deriving high-level concepts from low-level content-based metadata descriptions which is

known as the semantic gap problem. Moreover, expressing data in RDF is one of the principles to

be considered when making data available as Linked Data on the Web [14]. Furthermore, when

the meaning metadata terms is available using ontologic vocabulary, the semantic knowledge

about multimedia metadata terms and their relationships can be utilized for the computation of

query results which promises to improve the retrieval of multimedia resources [2]. In addition,

expressing multimedia knowledge by means of ontologies has the potential to improve the

interoperability of different applications producing and consuming multimedia annotations and

increases the precision of multimedia retrieval information systems [6].

The second issue in multimedia retrieval is concerning querying the multimedia metadata.

Specialized query languages are required for the retrieval of information from the metadata

repositories. In general, the metadata are not compatible with each other, and hence, multimedia

repositories with different metadata interfaces cannot be queried in a unified way. The MPEG

Query Format (MPQF) was developed to solve this problem [15, 16, 17]. The main goals of the

MPQF are to facilitate and unify access to standalone and distributed multimedia repositories in

an efficient, precise and expressive ways. To achieve these goals, the MPQF standard specifies

precise input and output parameters to express multimedia requests and to allow clients easy

interpretation and processing of result sets. Moreover, the management component of the MPQF

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

23

covers searching and the choice of the desired multimedia services for retrieval. For this purpose,

the standard provides a means to describe service capabilities and to undertake service discovery.

MPQF is based on XML, and therefore, is platform independent. So, developers can write their

applications involving multimedia queries independently of the system used, which fosters

software reusability and maintainability. Querying semantic RDF MPEG-7 descriptions with

MPQF requires conversion of MPQF to SPARQL because MPQF is not supported. To the best of

the author knowledge, two methods have been proposed to query RDF with MPQF (see Section

2). Both methods suggested adding new constructs to MPQF in order to convert the user query to

SPARQL. Furthermore, the methods have some limitations on the query types. So, in this paper

presents a set of rules to translate MPQF queries to SPARQL queries. The proposed rules do not

add any construct to MPQF, and allow mapping a wider range of MPQF query types. The rest of

the paper is organized as follows: Section 2 presents related work. Section 3 presents the details

of the conversion rules from MPQF to SPARQL. Section 4 presents the implementation of a test

application and finally, Section 5 concludes the paper.

2. RELATED WORK

There had been two proposals to use MPQF for querying RDF multimedia metadata. The first

work suggested incorporating a new query type, the QueryBySPARQL, in addition to the existing

types [18]. QueryBySPARQL allows RDF-based queries to be partly expressed in native

SPARQL syntax. However, QueryBySPARQL defines some restrictions on the string that may be

the content of element SPARQL. For example, SELECT clause is not allowed. The embedded

query only makes use of the ASK clause to test whether or not a query pattern has a solution. The

ASK query would result in a boolean value that indicates whether a solution to the query exists or

not. No information is returned about the possible query solutions.

The second proposal is the Semantic Enhancement of MPQF [19], which adds Semantic Web

query features to MPQF in order to query RDF metadata in a way that is appropriate for the RDF

data model. The proposed extensions include a generalization of the MPQF metadata processing

model which is derived from SPARQL query language and support for triple patterns. The

Semantic Enhancement of MPQF introduces language constructs that can contain semantic query

variables, such as ReqSemanticField and SemanticFieldType. The type SemanticRelation defines

that an element with this type has three child elements with the names Subject, Property, and

Object. These child elements hold the corresponding triple pattern parts in MPQF. The type

SemanticRelation can appear in the type declaration of elements with name Condition. As an

example, the following query condition:

<QueryCondition >

<Condition xsi:type ="SemanticRelation">

<Subject >? movie </ Subject >

<Property > ex:rank </ Property >

<Object >? rank </ Object >

</ Condition >

</ QueryCondition >

is mapped to the following SPRQL construct:

WHERE {

?movie ex: rank ?rank .

}

As can be noted from the example above, the Semantic Enhancement of MPQF can be viewed as

XML notation of the SPARQL query. This means, to write a query, the user should know RDF

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

24

metadata as well as the SPARQL language. Moreover, some of MPQF construct such as NOT and

XOR conditions and query types cannot be expressed by the Semantic Enhancement.

3. MPQF TO SPARQL CONVERSION RULES

In the following subsections, we present a set of rules for mapping the MPQF Input Query

Format, which represents the query request, to a SPARQL query [20, 21]. A detailed description

of MPQF is not presented here to avoid repetition. The main idea of the mapping rules is to

specify the triples in the basic graph pattern (BGP) of the SPARQL SELECT query that reflects

the required data specified in the MPQF query. It is assumed that each MPEG-7 XML description

is converted to RDF named graph, where elements and attributes are mapped to triples predicate.

There are several methods to perform such conversion, see for example [22].

3.1 Mapping OutputDescription Element

OutputDescription element enables the user to specify the structure and information of the result

set. It also allows limiting the maximum number of items per output page and the overall items

number, and enables the user to use aggregation and sorting processes. OutputDescription

element consists of the four major elements: ReqField, ReqAggregateID, GroupBy, and SortBy.

ReqField element describes a data path within the item’s metadata, which a user asks to be

returned. Paths are specified using absolute XPath expressions, which refer to the root of the

item’s metadata. ReqField element has an optional attribute named typeName which is used to

specify the name of the complex data type defined in the schema. ReqAggregateID element

describes the ID of the aggregate operation, the requester asks to be returned. When one or more

ReqAggregateIDs are used, the aggregate ID should be in the GroupBy element. The SortBy

element describes the sort operation the user wants to apply on the query results. In MPQF, the

SortBy is performed by either using SortByFieldType or by using SortByAggregateType.

The following MPQF query comprises an OutputDescription element which contains the child

elements mentioned above:

<MpegQuery>

 <Query>

 <Input>

 <OutputDescription >

 <ReqField typeName="CreationInformation">/Creation/Title</ReqField>

 <ReqField typeName="Creator">/Character/FamilyName</ReqField>

 <ReqAggregateID>avgSize</ReqAggregateID>

 <GroupBy>

 <GroupByField typeName="Creator">/Character/FamilyName</GroupByField>

 <Aggregate xsi:type="AVG" aggregateID="avgSize">

 <Field typeName="MediaFormat">/FileSize</Field>

 </Aggregate>

 </GroupBy>

 <SortBy xsi:type="SortByAggregateType" order="ascending">

 <AggregateID>avgSize</AggregateID>

 </SortBy>

 </OutputDescription>

 </Input>

 </Query>

</MpegQuery>

This MPQF query is mapped to SPARQL query based on the following rules:

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

25

1. Add one triple to the BGP for each ReqField, GroupByField, and Field elements, where

the subject is a variable, the predicate is the value of these elements, and object is a

variable (with the same name of requested data), i.e. the BGP must retrieve the data

specified in the ReqField elements and the data required to perform the Grouping and

Sorting operations.

2. Map the GroupBy element to Group By clause based on variables specified by the value

of the GroupByField element.

3. The aggregate operation is mapped to an Expression in the SELECT clause.

4. Map the SortBy element to an Order By clause, with the specified order and dependent

variable.

Based on these rules SPARQL translation of the above MPQF query is:

PREFIX mp: <urn:mpeg:mpeg7:schema:2001#>

SELECT ?title ?FamilyName AVG(?FileSize) AS ?avgSize

 WHERE {

?a mp:FamilyName ?FamilyName.

?b mp:title ?title.

?c mp:FileSize ?FileSize.

}

GROUP BY ?FamilyName

ORDER BY ASC (?avgSize)

As can be noted from the MPQF query, the data requested by the ReqField, GroupByField, and

Field elements, are (FamilyName, title, and FileSize). So, three triples added to the BGP to

retrieve the variables bounded to these data.

3.2 Mapping TargetMediaType and EvaluationPath Elements

TargetMediaType element is part of the QueryCondition element that contains MIME type

descriptions of media formats, which are the targets for retrieval. The QueryCondition element is

the part of the Input Query Format where the user specifies the properties of the media or the

metadata to be retrieved. A MIME type is composed of (at least) two parts: a type and a subtype

separated by "/". For instance, the MIME type audio/mp3 would filter all results for audio files

depending on the MP3 format. The following MPQF query asks for MediaUri(s) of JPEG images:

<MpegQuery>

 <Query>

 <Input>

 <OutputDescription >

 <ReqField>MediaUri</ReqField>

 </OutputDescription>

 <QueryCondition>

 <TargetMediaType>image/JPEG</TargetMediaType>

 </QueryCondition>

 </Input>

 </Query>

</MpegQuery>

TargetMediaType element is mapped based on the following rules:

5. A Subquery is added to the WHERE clause to get the graphs from the dataset which has

the specified MIME type. The BGP of this Subquery consists of two triples to retrieve the

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

26

two components of the MIME type and a FILTER clause to restrict the graphs to the

specified MIME value.

6. The BGP of the main query is preceded by GRAPH keyword and a variable projected

from the sub query which represents the graphs that satisfy the TargetMediaType.

Based on these rules, the conversion of the above query is:

PREFIX mp: <urn:mpeg:mpeg7:schema:2001#>

SELECT ?MediaUri

WHERE {

GRAPH ?g {

 ?x mp:MediaUri ?MediaUri

 }

 {

SELECT ?g

WHERE{

GRAPH ?g {?a mp:MediaFormat/mp:Content/@href ?href.

 ?b mp:MediaFormat/mp:FileFormat/Name ?Name.

 FILTER (regex (?Name, JPEG) && (regex (?href, image))

}}

 }}

EvaluationPath element is an optional XPath expression, which specifies the evaluation node of

the metadata the query should consider. It also determines the structure of the output; one result

item will be returned for each evaluation item if it matches the condition. The following example

illustrates the use of the EvaluationPath element. It shows a query to search and retrieve for all

image segments containing the word “Lausanne” somewhere in a textual description. Note, that

for each matching segment, one different result item will be returned.

<MpegQuery>

 <Query>

 <Input>

 <QueryCondition>

 <EvaluationPath>//Image</EvaluationPath>

 <Condition xsi:type="Equal">

 <StringField typeName="CreationType">Title</StringField>

 <StringValue> Lausanne </StringValue>

 </Condition>

 </QueryCondition>

 </Input>

 </Query>

</MpegQuery>

If the EvaluationPath is specified, then when writing the triples in the BGP, the names of the

predicates are set starting with the EvaluationPath value. Mapping the query above will be:

PREFIX mp: <urn:mpeg:mpeg7:schema:2001#>

SELECT ?MediaUri

WHERE {

GRAPH ?g {

 ?a mp:Image/../mp:MediaUri ?MediaUri.

?b mp:Image/../mp: Title ?Title.

FILTER regex (?Title, Lausanne)

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

27

 }

 }

Considering the predicates that start with Image element, guarantees that only data descendent

from that element will be evaluated.

3.3 Mapping Comparison Conditions

The Condition element is the place where user expresses the filter criteria for information

retrieval. It is a placeholder for a Boolean expression and may result in a filter tree. The filter tree

can be constructed by three main constructs, namely comparison expressions, Boolean operators,

and query types. A comparison expression is defined by an operation and two operands. The

operations defined include: GreaterThan, GreaterThanEqual, LessThan, LessThanEqual, Equal,

NotEqual and Contains. Both operands should belong to the same Operand Class within a

comparison expression. The operands can be described by a value of the data type, an XPath

expression pointing to a value of the specific data type, or a corresponding expression resulting to

a value of the specific data type. Comparison conditions are mapped according to the following

rule:

7. For each condition, a triple is added to the BGP, with FILTER clause to restrict the

solution to those for which the comparison condition is true. The object and subject of the

triple are variables, while the predicate is the name of the MPEG-7 element or attribute to

be evaluated. The filter expression could be a value, or expression.

Consider the following examples:

<Condition xsi:type="Equal">

<ArithmeticField typeName="MediaFormatType">FileSize</ArithmeticField>

<LongValue>1000</LongValue>

</Condition>

Is mapped to:

 WHERE {

 ?x mp:FileSize ?FileSize

 FILTER (?FileSize=1000)

 }

The condition:

 <Condition xsi:type="Contains">

<StringField typeName="CreationType">Title</StringField>

<StringValue>MPEG Query</StringValue>

 </Condition>

Is mapped to:

 WHERE {

 ?x mp:title ?title

 FILTER regex (?title, MPEG Query*)

 }

The condition:

<Condition xsi:type="GreaterThan">

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

28

 <ArithmeticExpression xsi:type="Abs">

 <ArithmeticField>Mpeg7/Description/AudioVisual/Semantic/SemanticBaseType/

 AttributeValuePair/IntegerValue

 </ArithmeticField>

 </ArithmeticExpression>

 <LongValue>40</LongValue>

</Condition>

Is mapped to:

 WHERE {

 ?x

Mpeg7/Description/AudioVisual/Semantic/SemanticBaseType/AttributeValuePair/IntegerV

alue ?IntegerValue

 FILTER (Abs (?IntegerValue)> 40)

 }

3.4 Mapping Boolean Conditions

Boolean conditions are built using Boolean operators (AND, OR, NOT, XOR), which evaluate to a

Boolean value. The following MPQF query contains AND condition which asks to retrieve all

MediaUri which have a title equals Barcelona and date after 1-5-2005:

<MpegQuery>

 <Query>

 <Input>

 <OutputDescription>

 <ReqField>MediaUri</ReqField>

 </OutputDescription>

 <Condition xsi:type="AND" >

 <Condition xsi:type="Equal">

 <StringField typeName="CreationType">Title</StringField>

 <StringValue> Barcelona </StringValue>

 </Condition>

 <Condition xsi:type="GreaterThan">

 <DateTimeField typeName="CreationType">

 /CreationCoordinates/Date/TimePoint

 </DateTimeField>

 <DateTimeValue>2005-05-01</DateTimeValue>

 </Condition>

 </Condition>

 </Input>

 </Query>

</MpegQuery>

And conditions are mapped to SPARQL based on the following rules:

8. A Subquery is set to retrieve the graphs that satisfy the first condition

9. The retrieved graphs are then used to retrieve the requested data that satisfy the second

condition.

Based on these rules, SPARQL translation of the above MPQF query is:

PREFIX mp: <urn:mpeg:mpeg7:schema:2001#>

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

29

SELECT ?MediaUri

WHERE {

GRAPH ?g {

 ?x mp:MediaUri ?MediaUri

?y mp: title ?title

FILTER regex (?title, Barcelona)

}

{

SELECT ?g

WHERE {

 GRAPH ?g { ?a mp:TimePoint ?TP

 FILTER (CheckDate (?TP, “2005-05-01”, “GreaterThan”))

}}}

}

Where ChechDate is a user defined FILTER function which takes three parameters: a variable,

date, and operator, and returns true if the date is correct with respect to the condition.

If the AND condition is replaced with OR condition in the MPQF query above, then, OR

conditions are mapped based on the following rules:

10. Construct two BGPs, one for each of the OR operands’ conditions, where in each BGP a

distinct graph variable is used.

11. Use UNION clause to combine the results from both BGPs.

Based on these rules SPQRQL translation of the above MPQF query is:

PREFIX mp: <urn:mpeg:mpeg7:schema:2001#>

SELECT ?MediaUri

WHERE {

{GRAPH ?h {

 ?x mp:MediaUri ?MediaUri

 ?y mp:Title ?title.

FILTER regex(?title , Barcelona)

 }

}

UNION

{

 GRAPH ?g {

 ?x mp:MediaUri ?MediaUri

?y mp:TimePoint ?TP

 FILTER (checkDate (?TP, “2005-05-01”, “GreaterThan”))

}}}

Note that both BGPs contain triples that retrieve the requested data (MediaUri).

Finally, the following query contains NOT condition which asks to retrieve all MediaUri which

have a file size not equal to 1000:

<MpegQuery>

 <Query>

 <Input>

 <OutputDescription>

 <ReqField>MediaUri</ReqField>

 </OutputDescription>

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

30

 <Condition xsi:type="NOT" >

 <Condition xsi:type="Equal" >

 <ArithmeticField typeName="MediaFormatType">FileSize</ArithmeticField>

 <ArithmeticExpression xsi:type="NumericConstantValue">

 <Long>1000</Long>

 </ArithmeticExpression>

 </Condition>

 </Condition>

 </Input>

 </Query>

</MpegQuery>

To map this query to SPARQL:

12. A Subquery is set to retrieve all named graphs that satisfy the condition before negation.

13. Retrieve requested data in the main BGP using distinct variable for the GRAPH clause.

14. Filter the results by retrieving data only where the two named graphs (the one used for

the Subquery and the one used for the main query) are not equal.

Based on these rules, SPARQL translation of the above MPQF query is:

PREFIX mp: <urn:mpeg:mpeg7:schema:2001#>

SELECT ?MediaUri

WHERE {

FILTER (?g != ?h)

GRAPH ?h {

 ?x mp:MediaUri ?MediaUri

}

{

SELECT ?g

WHERE{

GRAPH ?g {

 ?x mp:FileSize ?FileSize

 FILTER (?FileSize==1000)

}

 }}.

3.5 Mapping Query Types

MPQF provides the following query types: QueryByMedia, QueryByDescription,

QueryByFeatureRange, SpatialQuery, TemporalQuery, QueryByXQuery, QueryByFreeText,

QueryByROI, and QueryByRelevanceFeedback. The following subsections will present how to

map some of these query type into SPARQL queries.

3.5.1 QueryByMedia

QueryByMedia type enables the user to perform a search based on a given example of media

resource. It provides an attribute (matchType) to set the search criteria whether similar-match or

exact-match. To illustrate how this query type is translated to SPARQL, consider the following

query sample which asks to retrieve images that are similar to the query one:

<MpegQuery>

 <Query>

 <Input>

 <QueryCondition>

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

31

 <Condition xsi:type="QueryByMedia" matchType="similar">

 <MediaResource resourceID="Image001">

 <MediaResource>

 <MediaUri> //Images/testimage.jpg</MediaUri>

 </MediaResource>

 </MediaResource>

 </Condition>

 </QueryCondition>

 </Input>

 </Query>

</MpegQuery>

Conversion QueryByMedia to SPARQL is performed as follows:

15. Implement a FILTR LIKE function which finds whether two images are similar or not.

16. Add a triple, that retrieves the MediaUri, to BGP, and use the LIKE function to filter the

results.

Based on these rules SPARQL translation of the above MPQF query is:

PREFIX mp: <urn:mpeg:mpeg7:schema:2001#>

SELECT ?MediaUri

WHERE {

GRAPH ?g {

 ?a mp:MediaUri ?MediaUri

 FILTER LIKE(?MediaUri,‘testimage.jpg’)

}

}

Where LIKE is a user defined FILTER function that returns true if the query resource is similar to

those in the database.

3.5.2 QueryByFreeText

QueryByFreeText type enables a requester to perform a search based on free-text. It contains a

FreeText element containing text description as a condition, and an optional choice of fields

(SearchField, IgnoreField), which allows the user to if the search should be performed in specific

elements only or if specific elements should be ignored. The following example illustrates the use

of the QueryByFreeText type, without any SearchField and IgnoreField elements.

<MpegQuery>

 <Query>

 <Input>

 <QueryCondition>

 <Condition xsi:type="QueryByFreeText">

 <FreeText>Barcelona</FreeText>

 </Condition>

 </QueryCondition>

 </Input>

 </Query>

</MpegQuery>

To map this query type:

17. The text fields that are possible for text search are predefined, for example:

FreeTextAnnotation, Title, etc.

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

32

18. A triple is added for each text field to get its value with a FILTER to limit the results to

those which match the query text.

Based on these rules, SPARQL translation of the above MPQF query is:

PREFIX mp: <urn:mpeg:mpeg7:schema:2001#>

SELECT ?MediaUri

WHERE {

{GRAPH ?h {

 ?a mp:MediaUri ?MediaUri

 ?b mp:TextAnnotation/mp:FreeTextAnnotation ?text.

?c mp:Title ?title.

FILTER regex(?text , Barcelona*)

FILTER regex(?title , Barcelona*)

 }

}}

3.5.3 QueryByDescription

QueryByDescription is a type of query by example which enables a requester to perform a search

based on a given example description. Any description can be embedded if it is based on XML

schema and the description conforms to the schema. QueryByDescription also provides an

attribute to indicate the search criteria regarding similar-match or exact-match. Consider the

following example which shows an MPEG-7 description included in a query which asks for

descriptions exactly matching the attached one:

<MpegQuery>

 <Query>

 <Input>

 <QueryCondition>

 <Condition xsi:type= ‘QueryByDescription’ matchType= ‘exact’>

 <DescriptionResource resourceID= ‘desc001’>

 <AnyDescription xmlns:mp7= ‘urn:mpeg:mpeg7:schema:2001’>

 <mp7:Mpeg7>

 <mp7:DescriptionUnit xsi:type=”mpeg7:CreationInformationType”>

 <mp7:Creation>

 <mp7:Title>

 Miracle Query Format

 </mp7:Title>

 <mp7:CreationCoordinates>

 < mp7:Date>

 < mp7:TimePoint>2011-05-10</ mp7:TimePoint>

 </ mp7:Date>

 </mp7:CreationCoordinates>

 </mp7:Creation>

 </mp7:DescriptionUnit>

 </mp7:Mpeg7>

 </AnyDescription>

 </DescriptionResource>

 </Condition>

 </QueryCondition>

 </Input>

 </Query>

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

33

</MpegQuery>

For exact match, all leaf nodes in the XML description must be matched. To achieve this:

19. A Subquery is set to match every leaf node, by including a triple to retrieve the value on

the node.

20. All Subqueries use the same GRAPH variable so that AND operation is performed on

them.

Based on these rules SPARQL translation of the above MPQF query is:

PREFIX mp: <urn:mpeg:mpeg7:schema:2001#>

SELECT ?MediaUri

WHERE {

GRAPH ?g {

 ?x mp:MediaUri ?MediaUri

}

{

SELECT ?g

WHERE{

GRAPH ?g {

?y mp:Creation/mp:Title ?title

FILTER regex (?title, Miracle Query Format)

}

{

SELECT ?g

WHERE{

 GRAPH ?g {

?y mp:Creation/mp:CreationCoordinates/mp:Date/mp:TimePoint ?TP

 FILTER (checkDate (?TP, “2011-05-10”, “GreaterThan”))

}}

}}

4. IMPLEMENTATION OF A TEST-BED APPLICATION

To test the correctness of the proposed mapping rules detailed above, a Java application is

developed using Jena framework for managing and storing RDF metadata, and ARQ for querying

this metadata with SPARQL. Figure.1 depicts the different components of the application.

• MPEG-7 documents, which can be produced by any MPEG-7 based annotation tools such

as Caliph Image annotation tool [23] or VAnalyzer video annotation tool [24].

• Gloze [22]: this is an open-source Java library which can perform automatic lossless

round-tripping between XML and RDF as well as generate OWL ontologies from XSD

schemas. Gloze is attractive since it does not require an XSLT mapping, nor does the

conversion depend on serializing RDF as RDF/XML.

• The Jena/ARQ framework [25, 26]: Jena is a Java Semantic Web framework which

provides classes and interfaces for the creation and manipulation of RDF repositories and

OWL ontologies. Moreover, Jena provides reasoning over ontology models. Jena

provides querying capability by using ARQ framework which provides a SPARQL query

engine for the Jena. The classes of ARQ framework complement the classes of Jena

framework, so that instances of the query class from Jena can be executed with class

instances from the ARQ framework. With Jena/ARQ framework, SPARQL queries are

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

34

created and executed, and using ontologies provides more reasoning capabilities than the

simple entailment which is required by the SPARQL specification. Jena SDB [27] is

another component of the Jena Semantic Web Framework and provides storage and query

for RDF datasets using conventional relational databases. It can be accessed through the

Java-based Jena API library as well as through a set of command line utilities.

• MPQF to SPQRQL: this component implements the conversion rules presented in

Section 3. An input MPQF query is translated to SPARQL query which can be then

executed be Jena/ARQ engine.

• SPARQL FILTER library: in this component a set of SPARQL FILTER, such as LIKE

FILTER function, that are required for perform MPQF query types are implemented.

Figure. 1 Components of the test application

A number of images were annotated using Caliph Image annotation tool, and the generated

MPEG-7 documents were converted into RDF documents using Gloze. A post-processing step is

performed on each RDF document to make sure that the datatypes are correct. The RDF

descriptions are then used to build a dataset which can be stored in an RDF data store such are

SDB. Once the RDF dataset is constructed, user queries, which are formulated via a form based

user interface, are converted to SPARQL queries based on the rules presented in Section 3.

Finally, Jena ARQ SPARQL query engine executes the queries and returns the query results. The

aim of this implementation is to test the mapping rules not the efficiency of retrieval process. All

the examples presented in the Section 3 have been tested and the results showed the mapping

rules are correct. Of course, the performance of the system depends on the size of the database

and efficiency of the implementation especially the FILTER functions which require data type

conversion from string to array of integers.

5. CONCLUSIONS

Having MPEG-7 descriptions transformed to semantic RDF metadata has several advantages.

This transformation strongly impacts the way multimedia contents are searched and retrieved in a

broad range of application scenarios. Querying MPEG-7 RDF descriptions with a modern

standard multimedia query language like MPQF allows for more flexible interoperability

approaches, like those involving multiple metadata formats. In this paper we have purposed a set

of rules for conversion MPQF query to SPARQL query which will allow MPQF to manage

MPEG-7 RDF metadata. Contrary to the other proposed methods presented in Section 2, the

described rules do not include a conceptual generalization of the MPQF metadata processing

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

35

model or definition of a new MPQF query type as in [23], nor do they add new elements to the

standard as in [17]. This goes in line with the main aim of MPQF to unify access to multimedia

metadata. The proposed mapping rules heavily depend on the new constructs introduced in

SPARQL1.1 such as sub query, property paths, aggregate functions, and FILTER functions.

As for future work, we plan to continue to evaluate this proposed framework with MPEG-7 based

ontologies and other metadata like DC. We also plan to experiment with more query types such as

special and temporal queries. Finally, we intend to work on using MPQF for querying non XML

based RDF metadata.

REFERENCES

[1] ISO/IEC 15938 version 2 (2004) Information technology—multimedia content description interface

(MPEG-7)

[2] Dasiopoulou S, Tzouvaras V, Kompatsiaris I, Strintzis M (2010) Enquiring MPEG-7 based

multimedia ontologies. Special Issue on Data Semantics for Multimedia Systems; Guest Editors: Mei-

Ling Shyu, YuCao, Jun Kong, Ming Li, Mathias Lux and Jie Bao. In Journal Multimedia Tools and

Applications. Volume 46, Numbers 2–3, 331–370. January 2010

[3] Frank Manola and Eric Miller, eds.(2004) RDF Primer. W3C Recommendation. URL:

http://www.w3.org/TR/rdf-primer/

[4] Arndt R, Troncy R, Staab S, Hardman L (2009) COMM: A Core Ontology for Multimedia

Annotation. In Staab S, Studer R (Eds.) Handbook on Ontologies, 2nd ed., Series: International

Handbooks on Information Systems. Springer Verlag, pp. 403–421, 2009.

[5] Hunter J. (2001) Adding Multimedia to the Semantic Web - Building MPEG-7 Ontology.

International Semantic Web Working Symposium (SWWS), Stanford, July 30 - August 1, 2001

[6] Mari Carmen Suarez-Figueroa, Ghislain Auguste Atemezing, and Oscar Corcho (2011) The landscape

of multimedia ontologies in the last decade. Multimedia Tools and Applications, DOi

10.1007/s11042-011-0905-z

[7] Troncy R, Celma O, Little S, Garcia R, Tsinaraki C (2007) MPEG-7 based Multimedia Ontologies:

Interoperability Support or Interoperability Issue? In International Workshop on Multimedia

Annotation and Retrieval enabled by Shared Ontologies (MAReSO), p. 2–15.

[8] Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca Grau, eds. (2009) OWL 2 Web Ontology

Language Direct Semantics. W3C Recommendation. URL: http://www.w3.org/TR/owl2-direct-

semantics/

[9] Dan Brickley and R. V. Guha, eds. (2004) RDF Vocabulary Description Language 1.0: RDF

Schema. W3C Recommendation. URL: http://www.w3.org/TR/rdf-schema/

[10] Deborah L. McGuinness and Frank van Harmelen, eds. (2004) OWL Web Ontology Language

Overview. W3C Recommendation. URL: http://www.w3.org/TR/owl-features/

[11] Jie Bao, et.al eds. (2009) OWL 2 Web Ontology Language Document Overview. W3C

Recommendation. URL: http://www.w3.org/TR/owl2-overview/

[12] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler (2005) Named graphs provenance

and trust. In WWW '05: Proceedings of the 14th international conference on World Wide Web, pages

613-622, New York, NY, USA

[13] García R, Celma O. (2005) Semantic Integration and Retrieval of Multimedia Metadata. 5th

Knowledge Markup and Semantic Annotation Workshop, Sem. Annot 2005. CEUR Workshop

Proceedings, Vol. 185,pp. 69–80, 2006 ISSN 1613–0073

[14] Michael Hausenblas, Raphael Troncy, Yves Raimond, Tobias Bürger (2009) Interlinking

Multimedia: How to Apply Linked Data Principles to Multimedia Fragments, Linked Data on the

Web Workshop (LDOW 09), in conjunction with 18th International World Wide Web Conference

(WWW 09).

The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.3, June 2012

36

[15] Döller M, Tous R, Gruhne M, Yoon K, Sano M, Burnett IS (2008) The MPEG Query Format: on the

way to unify the access to multimedia retrieval systems. IEEE Multimedia, ISSN: 1070-986X,15(4)

[16] Mario Döller, Ruben Tous, Matthias Gruhne, Miran Choi, Tae-Beom Lim, Jaime Delgado, and

Armelle Yakou. (2009) Semantic MPEG Query Format Validation and Processing. In: IEEE

MultiMedia 99.1 ISSN: 1070-986X.

[17] Mario Döller, Ruben Tous, Matthias Gruhne, Kyoungro Yoon, Masanori Sano, and Ian S. Burnett.

(2008) The MPEG Query Format: Unifying Access to Multimedia Retrieval Systems. In: IEEE

MultiMedia. Ed. by John R. Smith, pp. 82–95. ISSN:1070-986X.

 [18] Ruben Tous and Jaime Delgado, (2008) Semantic-Driven Multimedia Retrieval with the MPEG

Query Format. In: SAMT ’08: Proceedings of the 3rd International Conference on Semantic and

Digital Media Technologies. Koblenz, Germany: Springer-Verlag. ,pp. 149–163. ISBN: 978-3-540-

92234-6.

[19] Katrin Fehlner, (2011) Semantic Retrieval by means of the MPEG Query Format, Master

Thesis, University of Passau,

http://www.dimis.fim.unipassau.de/iris/mpqf/Master_Thesis_Katrin_Fehlner.pdf

[20] Eric Prud’hommeaux and Andy Seaborne, eds. (2008) SPARQL Query Language for RDF. W3C

Recommendation, URL: http://www.w3.org/TR/rdf-sparql-query

[21] Steve Harris and Andy Seaborne, eds. (2011) SPARQL 1.1 Query Language. W3C Working Draft 12

May 2011. W3C. 2011. URL: http://www.w3.org/TR/sparql11-query/

[22] Battle, S. (2006) Gloze: XML to RDF and back again. In: Proceedings of the First Jena User

Conference, Bristol, UK

[23] Mathias Lux. (2009) Caliph & Emir: MPEG-7 Photo Annotation and Retrieval. In: MM

’09:Proceedings of the Seventeenth ACM International Conference on Multimedia. Beijing, China:

ACM, pp. 925–926. ISBN: 978-1-60558-608-3.

[24] Florian Stegmaier , Mario Döller, David Coquil, Vanessa El khoury, Harald Kosch (2010)

VAnalyzer: a MPEG-7 based Semantic Video Annotation Tool. Dans Workshop on Interoperable

Social Multimedia Applications (WISMA 2010), Barcelona, Spain

[25] http://incubator.apache.org/jena/index.html

[26] http://incubator.apache.org/jena/documentation/query/

[27] http://incubator.apache.org/jena/documentation/sdb/

Author

Dr. Mohammed Al-Zoube received his B.Sc. and M.Sc. in Electrical Engineering

from Jordan University of Science and Technology in 1990 and 1994, respectively. In

2002, he received his PhD in Computer Science from University Science Malaysia,

specializing in multimedia systems. Currently he is working for Princess Sumaya

University for Technology at the department of Computer Graphics and Animation.

His research interest includes multimedia retrieval, e-learning, cloud computing, and

semantic web.

