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ABSTRACT

This paper proposed an efficient approach to orthonormal wavelet image denoising, based on minimizing
the mean square error (MSE) between the clean image and the denoised one. The key point of our approach
is to use the accurate, statistically unbiased, MSE estimate—Stein’s unbiased risk estimate (SURE). One of
the major advantages of this method is that; we don't have to deal with the noiseless image model.Since the
estimate here is quadratic in the unknown weights, the problem of findingthresholding function is
downgraded to solve a linear system of equations, which is obviously fast and attractive especially for large
images. Experimental results on several test images are compared with the standard denoising
techniqueBayesShrink, and to benchmark against the best possible performance of soft-threshold estimate,
the comparison also include Oracleshrink. Results show that the proposed technique yieldssignificantly
superior image quality.
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1. INTRODUCTION

Very often, image acquisition systems are not perfectand images are, thus, corrupted by noise
during their digitization.Besides, communication channels are not ideal and imagesare further
degraded during their transmission. Hence, denoisingis a crucial step before image analysis.The
main objective of image denoising is to reduce noise as much as possible while preserving image
features. The most popular approaches of image denoisingare the transform-domainone, where
the noisy images are first transformed using linear ormultiscaletransformation.Then nonlinearly
processing the resulted coefficients, and finally retrieving the image by applying the inverse
linear transformation. To thisrespect, the wavelet transform (WT) has emerged as the premier tool
for image denoising, due to the statistically useful properties of wavelet coefficients of natural
images. The sparseness property of wavelet coefficients and tendency of wavelets bases to
diagonalise images allows us to break the problem into modelling a small number of
‘neighbouring’ coefficients (in space and scale) to reduce the dimensionality and improve the
tractability of the problem. Indeed, the WT mainly concentrates the energies of many signals of
interest in a few coefficients, whereas the power of the noise often spreads out over all the
coefficients [1].

The simplest way to distinguish the data from the noise in the WT domain is bythresholding the
wavelet coefficients.Its principle consists ofsetting to zero all the coefficients below a
certainthreshold value, while either keeping the remaining ones unchanged(hard-thresholding) or
shrinking them by the thresholdvalue (soft-thresholding, which was originally theorized
byDonoho andJohnstone[2]).It has been shown that the shrinkage rule is near-optimal in the
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minimaxsense,giving an expression of the optimal thresholdvalue T (called the “universal
threshold”) as a function ofthe noise power when the number of samplesN is large:

NT log2 2= . The VisuShrink method is known as the one where the universal threshold is

used for denoisingimages [3].Although, minimax is theoreticallyattractive, themean-squared error
(MSE) still considered a better different measure of error. In literature, a lot of workhas been
done to findbetter alternative thresholdingmethodologies in terms of MSE than VisuShrink[4]–[9].
Donohoand Johnstone themselves acknowledged this flaw andhave subsequently proposedto
choose the optimal threshold value Tby minimizingStein’s unbiased risk estimator (SURE)
[10].Thismethod has been calledSureShrinkby their authors [2].Manyextensions of this seminal
work have been since realized (see,for example, [11]–[14]).

The Bayesian is another popular statistical approach.In this framework the unknown signal is
viewed asa realization of a random field with a given prior probabilitydistribution and the
objective is to make a realistic choice ofthis distribution that will yield an efficient denoising
procedure.Without challenging the soft-thresholding strategy,one ofthe most popular threshold
value selection techniques was proposed by Chang et al. [15].Assuming that the wavelet
coefficientsdistribution is Gaussian, a spatiallyadaptive thresholding is performed in a Bayesian
framework. This solution is known as BayesShrink and has a better MSE performance than
SureShrink.

Amongthe recent many denoising algorithms, Luisieret al. [16]have showed that a quite
competitive results compared to the best state-of-the-art denoising algorithms ([17]–[22]), could
be obtained without involving sophisticated statistical image model. They used the SURE
estimator—that is based onthe noisy data alone—to minimize the MSEbetween noisy and clean
image.

In this paper, we will perform the denoising process in the transformation domain using
orthonormal wavelet transform. Assuming white Gaussian noise, we will use Stein’sunbiased risk
estimate (SURE).SURE can be considered as a very good estimate of MSEbetween the noiseless
image and the resulteddenoisedone. The proposed thresholding function, that willminimize the
SURE, is expressed as alinear expansion of thresholds, to get benefitfrom the quadratic form of
theSURE. This solution is considered, computationally very efficient, especially for the practice
large images.

2. THEORETICAL BACKGROUND

2.1. Problem Formulation

In the standard wavelet denoising problem: given noisy data nnn bxy += , for n=1 …. N,where x

is the noiseless data(clean image),bis the noise, and N is the number of samples.Then by defining
the wavelet and its inverse linear transformations D—decomposition—andR—reconstruction,
such that RD =Identity. As long as the size of theinput and output data are the same, these linear
operators can be characterizedby matrices; [ ] [ ]NLjijid ;1;1),(, )( ×∈=D , and [ ] [ ]LNjijir ;1;1),(, )( ×∈=R
,which satisfy the Ideal reconstructionproperty IdRD = . Then, the whole denoisingprocess can
be summarized in the following steps

1) Calculate the transformed noisy coefficients by applyingD to the noisy signal y = x + b

];1[)( Liiw ∈== Dyw
2) Apply a pointwisethresholding function ];1[))((( Liii w ∈=Θ w)
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3) Revert to the original domain to calculate the denoised estimate w)Rx (ˆ Θ= ,through

applying R to the thresholdedcoefficients )w(Θ

This above algorithm can be written as a function of the noisyinput coefficients

Dy)RF(y)x (ˆ Θ== (1)

Our goal is, thus, to find a function ofthe noisy data alone x(F(y) ˆ))( ,....2,1 == = Nnn yf which

willminimize the MSE defined by

∑
=

−=−=
N

n
nn xx

NN 1

22 ˆ1ˆMSE xx1
(2)

To develop our denoising method, which allow usto apply deferentthresholding functionin every
highpasssubband,we will follow two important assumptions:

• We will consideronly additive Gaussian noise that defined by zero mean and a 2
variance; i.e., ),0(~ 2Νb , and can be accurately estimatedfrom the first decomposition
level diagonal subband HH1 by the robust and accurate median estimator [2].

1

2

2 ,
6745.0

)(
HHtscoefficien

median
→∈








= ww

 sub band (3)

• We will consider onlyorthonormal wavelet transform; and hence:

- MSE (in the space domain) = weighted sum of the MSE of each individual subband
- In the wavelet domain, the noise stays Gaussian while keeping the same statistics

This means that our solution is"subband-adaptive"as the most of the successful wavelet
denoisingmethods.

2.2. Stein's Unbiased MSE Estimate (SURE)

The peak signal-to-noise ratio (PSNR); is the most common used measure in the denoising
applications, which can beexpressed as:







=

MSE

)max(
10logPSNR 10

2x
(4)

Where, usually, for 8-bit images max(x2) = 2552. As the noise is a random process, an
expectationoperator { } , were used to estimate the potential results of the processed noisy data

y. Here, the noiseless data x isnot a random process; thus { } xx = . Generally, the target of
image denoisingapproaches is to maximize thePSNR and, which imply minimizing the MSE
defined in (2).
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Since we do not have access to the original signal x, wecannot compute N/ˆ 2x-x —the Oracle

MSE. However,regardless any restrictions on the noiseless data, we will prove that; this
quantitycan be replaced by an unbiased estimatewhich is a function of y only.
In the following version of Stein’s lemma[8], one can easily notice that, it is possible to replace
any unknown x data expression by another one (having the same expectation),but containing the
only known y data.

Lemma 1: Let F(y) be an N-dimensional vector functionsuch that { } ∞<∂∂ nn yyf /)( for n=1,

…. N . The expressions xF(y)T and { }F(y)div-yF(y) 2T  have the same expectation,
(assuming white Gaussian noise).
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We can get the MSE estimate (Stein’s unbiased risk "SURE"), by applying Lemma 1 to Eq. (2).
Theorem 1: For the same assumptions as Lemma 1, thefollowing random variable

{ } 2
2

2 21  −+= F(y)divy-F(y)
NN

(6)

is an unbiased estimator of the MSE, i.e.,

{ } { }21 x-F(y)
N

=

Proof: We getthe following formula, by expanding the expectation of the MSE, and
applying Lemma 1

{ } { } { } { }222
2 xxF(y)F(y)x-F(y) T  +−=

{ } { } { }{ } { }222
22 xF(y)divyF(y)F(y) T  ++−=

Since the noise b has zeromean, we can replace { }2x by { } 22  N−y . A rearrangementof the

y terms then provides the result of Theorem1.If we take into consideration the fact that in image
processing applications the number of samples is usually large, hence, the estimate  has a small

variance (typically N/1∝ ).Thus the estimate is very close to its expectation, which isthe true
MSE of the denoising process.

2.3."SURE"- based Image Denoising

Luisieret al. [16], assumed that theminimization of the MSE over a certain rangeof functions ,
could be obtained through minimizing over the samedenoising functions, up to a small random

error.Now, if  (the well-known soft-thresholdingfunction) can be defined as follows
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),0max()()( Twwsignw −= (7)

Then, by applyingTheorem 1, we could search for the optimal value T by minimizing the
following expression over T

),0max().2()(~ 22 TwwTT −−+= 2 (8)

Eq. (8) has its minimum for the same Tasfollows

( )






 −≤−= ∑

=

N

i
ii TwTwi

N
wTSURE

1

22 ,min:.#2(*
1

;(  2) (9)

as shown in [2], (the operator #{A} returns the cardinality of the set A).The estimated optimal

threshold value is then: ))(~(minarg));((minarg
~

TwTSURET TTopt == . The soft-thresholding

function exhibits two maindrawbacks: 1)It depends on a single parameter T,thus, its shape can'tbe
flexible; 2) this dependency is nonlinear. Consequently,the soft-thresholdingfunction is very
sensitive to the valueof T,which requires a nonlinear algorithmto find the optimal threshold.

To mitigate this issue, Blu and Luisier [23] proposed a general form of denoisingfunction that
depends linearly on a set of parameters (involves several degreesof freedom):thelinear
transformation, a number Kof linear parameters, andthe thresholding functions kΘ , as follows:

∑∑
==

Θ==
K

k
kk

K

k
kk aa

11
DyRyFF(y) )()( (10)

Here, the unknown weights ka can be obtained by minimizing theestimatorςin Eq. (6).As the

MSE estimate has a quadratic form (very  similar to the real MSE), The linear minimization
process is simple.The coefficients ka are, thus, the solution ofthe following linear system

[ ]

{ }
[ ]

∑
=

=
K

l
kkllk

klk

a
1

)()()()(

,

    
c

2T

M

T yFdiv-yyFyFyF  ,            for k = 1, 2,…..K

The above system of equations can be rewritten in matrix form as: cMa = (11)

3. THE PROPOSED EFFICIENT THRESHOLDING FUNCTION

We will consider only a nonredundant wavelet transform, i.e.; D &R are full rank matrices of

size NN × .Further, as we already assumed orthonormal transform, i.e.; TDR = , then the Eq. (6)
can be rewritten as

2

1

22 ))(2))(((
1  −′+−= ∑

=
i

N

i
iiii www

N
(12)
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Where iw is the ith component ofDy ; i.e., it is a sum of the specific MSE estimates for each

transformed coefficient iw . Thus, the optimization process can be donecompletelyin the transform

domain. Hence, we will express our thresholding function as a linear expans'ionof thresholds

w)w) ∑
=

=Θ
K

k
kkTa

1

(( (13)

If we introduce (13) into the estimate of the MSE given in (12)and perform differentiations
overthe ka , the exactminimization could be easily obtained by solving the linear system of

equations for the unknown weights ka as in (11) cMa -1= , where a and care vectors of

size 1×K and M is a matrix of size KK × as follows

[ ] w)-ww)c 2T (( kkk TTc ′==  , k = 1, 2,…..K

[ ] w)w)M T ((, lklk TTM == , 1≤ k ,l ≤ K (14)

As it is preferable to reduce the number of degreesof freedom (parameters K) in order for the
estimate  tokeep a small variance, we will consider only two parameters (K = 2). The clue now

is to picka suitablebasis functions kT which will define the shape of the

proposedthresholdingfunction.Now, athresholding function is considered to be efficient if ithas
the following minimal properties:

• differentiability: required to apply Theorem 1;
• anti-symmetry: (for the sign of the wavelet coefficients);
• lineardealingwith large coefficients;as for largecoefficient the noise corruptionis negligible,

hencewe can let it without any modifications.

Thus, a good choice has been experimentally found to be of the form

)()()( 22,11, wtawtaw iii += , in each band i,

Where wwt =)(1 and )1()(
2

4

4
2


w

ewwt
−

−= (15)

4. RESULTS

The experiments are conducted on several standard gray scale test images like Lena&Boat of size
512 × 512, and House & Peppers of size 256 × 256 at different noise levelsσ =10, 20, 30, 50. The
wavelet transform employsgeneralized orthonormal Daubechies.To test our proposed
denoisingthresholdingfunction (15),a comparison with other various threshold denoising methods
has been done. Ourresults, in terms of PSNR, have been compared with both the standard
denoising method "BaysShrink", and the theoretically best possible results that can be obtained by
soft-threshold with an optimal threshold choice "OracleShrink". The results in Table 1 show
thatthe proposedthresholding technique out performs the other denoisingmethods, and gives better
PSNRs than the optimalsoft-threshold. Further, the visual quality test in Figures 1 &2has
provedthe significant capabilities of our approach forprocessing the artifacts andconservationof
image edges.
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Table 1: PSNR results for different test images and σ values, of 1) BayesShrink, 2) OracleShrink, 3) Our
Proposed Threshold.

BaysShrink OracleShrink Proposed Method
Lena   512 × 512
σ = 10 33.4213 33.6221 33.8156
σ = 20 30.2556 30.3546 30.5899
σ = 30 28.5110 28.7895 28.9118
σ = 50 26.7987 26.9354 27.2147

Boat   512 × 512
σ = 10 31.8544 32.1215 32.5044
σ = 20 28.3981 28.5947 28.7921
σ = 30 26.6121 26.9221 27.3201
σ = 50 24.5239 24.8455 25.0298

House   256 × 256
σ = 10 31.8955 32.2418 32.3928
σ = 20 29.5628 29.7124 29.8854
σ = 30 27.7882 27.9132 28.2011
σ = 50 25.4877 25.6281 25.7209
Peppers  256 × 256

σ = 10 29.8956 32.2113 32.5661
σ = 20 27.8678 28.1548 28.6124
σ = 30 25.7582 25.9776 26.4257
σ = 50 23.1938 23.4648 23.7254

Figure 1. (a) Noise-free "Peppers" image 256×256. (b) A noisy version with (σ = 40): PSNR = 16.09 dB.
(c) BayesShrinkdenoise: PSNR = 25.11 dB. (d) Proposed denoise: PSNR = 25.62 dB

(a) (b)

(d)(c)
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Figure 2. (a) Noise-free "Lena" image 512×512. (b) A noisy version with (σ = 30): PSNR=18.59 dB. (c)
BayesShrinkdenoise: PSNR=28.82 dB. (d) Proposed denoise: PSNR=29.56 dB

5. CONCLUSIONS

We have presented in this paper, an efficient and computationally attractive approach for image
denoising. Using a modified Stein’s unbiased risk estimate (SURE), that is only based on the
noisy image, we obtained an accurate estimate of the MSEbetween noisy and clean image. Hence
we not need any prior sophisticated statistical modelizationof the wavelet coefficients, and the
optimal solution of MSE could be directly estimated by minimizingthe proposed thresholding
function.

Experiments have been conducted to assess the performanceof our denoising techniquein
comparison with the standard oneBayesShrink, and the best soft-threshold methodOracleShrink.
The results show that the proposed techniquegave the best output PSNRs for the tested
images.Furthermore, the visualassessmentshows that our denoisingmethod resulted images
outperforms the other methods.

(d)
(c)

(c) (a) (b)

(d)
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