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ABSTRACT 

In this paper, we present an optimized implementation of secure VoIP protocol stack so that the stack 

would fit into the memory and computation budget of constrained embedded systems. The novel approach 

that we take to achieve this is to perform cross-layer optimization of buffers and buffer operations. 

Buffers and buffer operations are involved in playback, capture, codec transformations, and network I/O. 

Following this approach, we have implemented VoIP application functions, RTP, and Secure RTP 

protocols in a tightly integrated and highly optimized manner, on the top of the embedded TCP/IP stack, 

uIP. We call the protocol stack thus constructed, the uVoIP stack. We have tested the uVoIP stack in 

GNU/Linux Operating System using tunnel device for sending and receiving raw packets. 
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1. INTRODUCTION 

Voice over Internet Protocol (VoIP) – the transmission of voice over packet-switched IP 

networks is increasingly replacing the traditional telephone systems. VoIP offers cheaper 

communication and enhanced services to users, but suffers from all the vulnerabilities of IP-

based services. For media transport, the standard protocol used is Real-time Transport Protocol 

(RTP) [1] which is susceptible to several attacks.  Secure Real-time Transport Protocol (SRTP) 

[2] may be used to provide security against these attacks.  However, implementation of an 

SRTP-based VoIP stack in a naive manner may be unsuitable for use with constrained 

embedded devices (limited RAM space and processing speed) owing to relatively high resource 

requirements. To overcome this, we propose a cross-layer approach to implement SRTP-based 

secure VoIP stack so that buffer requirements and buffer operations are minimized. Our 

challenge lies in optimizing the stack operations that involve maintaining buffers at different 

layers for voice transport functions and cryptographic functions, and minimizing time-

consuming CPU-bound buffer operations that will drain the precious battery-resources. Our 
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optimized stack which we call uVoIP stack, is built on the top of uIP which is an open source IP 

stack[3] suitable for use in constrained embedded environment. The uVoIP stack optimizes 

buffer usage for: audio playback, audio capture, and network I/O.  To construct the uVoIP stack 

we performed cross-layer optimization of buffer usage at various layers in the stack, viz. uVoIP, 

SRTP, RTP, and Application functions (playback/capture). 

The architecture diagram is shown in Figure 1. The same buffer used in the digitization phase is 

handed down the different layers without any copy-operations and is finally used to send the 

data out via the network interface (in our case, we used tunnel device to output raw IP packets). 

Similarly, the buffer used to store an incoming packet is passed up the layers without any copy-

operations, and is finally used to play the voice via speaker output.  Once buffers are freed after 

network I/O or playback, they are maintained in a ‘free pool’ and reused when new buffers are 

required by subsequent operations.   

The structure of our paper is as follows. A brief introduction is given to RTP and SRTP in 

sections 2 and 3 respectively. The sections 4 and 5 deals with uIP architecture and tunnel 

interface respectively. In section 6 we describe about our novel attempt of the buffer 

minimization in uVoIP. Section 7 describes code design. In section 8 we present performance 

results from our experiments. Finally we summarize our conclusions and future work in section 

9. 
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Figure 1.  System Architecture Diagram 

2. REAL-TIME TRANSPORT PROTOCOL (RTP) 

For generating voice packets, we capture audio from microphone using /dev/dsp Linux device-

special file with a 20 ms capture buffer. The sampling rate and sample size are fixed to 8000Hz 

and 8 bits/sample respectively for PCM encoding. The PCM encoding generates 160 bytes in 20 

ms which has to be transmitted as RTP payload. The voice samples are inserted into data 

packets to be carried on the Internet along with the header fields and thus become RTP packets 

which hold data needed correctly to reassemble the packets on the other end .The control flow 

chart of RTP packet processing in sender side is shown in Figure 2.  
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Figure 2. RTP packet processing in sender side 

In the reception side, the RTP packets are appropriately processed after checking the validity of 

header field and the source which is explained with the help of control chart as shown in the 

Figure 3. 

 

Figure 3. RTP packet processing in receiver side 

3. SECURE REAL-TIME TRANSPORT PROTOCOL (SRTP) 

Secure Real-time Transport Protocol (SRTP), is a profile of the Real-time Transport Protocol 

(RTP), which provides confidentiality, message authentication, and replay protection to the RTP 

traffic. SRTP has a set of default cryptographic transforms for providing encryption and a 
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function based on keyed-hash for message authentication. It also uses an implicit index for 

sequencing/synchronization based on the RTP sequence number. 

SRTP encrypts only the payload (i.e., the audio or video) which provides confidentiality. The 

integrity of the entire original RTP packet is provided by the authentication algorithm. The only 

SRTP additions to the original RTP packet are the optional Master Key Identifier (MKI) which 

identifies the master key that was used to derive session keys currently in use for 

encryption/authentication and the recommended authentication tag (10 bytes) which provides 

protection against replay and ensures that neither the original RTP packets are not modified nor 

additional packets are inserted. The entire RTP packet is protected by performing encryption 

followed by authentication.  

The data flow diagram in Figure 4 explains the SRTP packet processing at the sender side. 

 

Figure 4. SRTP packet processing at the sender side 

At the receiver side, the encrypted payload of received SRTP packet is used to calculate the 

authentication tag. If it matches with the authentication tag in the header, then the packet is the 

authentication check succeeds and packet is decrypted. The unsuccessfully authenticated 

packets are dropped. The Advanced Encryption Standard Counter Mode (AES-CTR) is the 

default encryption method used in SRTP [4]. A major reason that AES-CTR was chosen 

because there is no payload expansion produced (the encrypted payload is of the same length as 

the original payload) and also it can be used in parallel packet processing. SRTP uses a single 

master key to create all the required authentication and encryption keys. For doing this, it 

relies on a key derivation algorithm based on AES-CTR.  Authentication is done using 

HMAC-SHA1 algorithm [5].  

The session keys, obtained by key derivation mechanism consists of mainly three keys, namely 

1. Session encryption key (k_e): It is 128 bit and the label used for its derivation is 0x00. 

2. Session authentication key (k_a). It is 160 bit and the label used is 0x01. 
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3. Session salt key (k_s): It is 112 bit and the label used is 0x02. 

The master key (128 bit) and master salt (112 bit) must be random, but the master salt may be 

public. Key derivation rate is 0 bit and we can set its value. According to that value, the 

refreshment of session keys occurs. The inputs to AES is k_e and the Initiation vector (IV) 

which is calculated using the formula given below 

IV = (k_s * 2^16) XOR (SSRC * 2^64) XOR (i * 2^16) 

4. UIP TCP/IP STACK 

The uIP open source TCP/IP stack provides minimal set of features needed for a functional 

well-behaved TCP/IP stack. uIP is written in C with the code size in the order of a few kilobytes 

and the RAM usage can be made as low as a few hundred bytes which makes it suitable even 

for small 8-bit micro- controllers. It can only handle a single network interface and contains the 

IP, ICMP, UDP and TCP protocols.  

The uIP stack uses single global packet buffer which is used for incoming packets and also for 

the TCP/IP headers of outgoing data. The global packet buffer is large enough to contain one 

packet of maximum size. The behavior of uIP stack is shown in Figure 5.  

 

Figure 5. Description of uIP stack behavior  

5. TUNNEL INTERFACE 

The tunnel interface (TUN) allows reception and transmission of raw IP packets by user space 

programs. To quote from [6]: “It can be viewed as a simple Point-to-Point or Ethernet device, 

which instead of receiving packets from a physical media, receives them from user space 

program and instead of sending packets via physical media writes them to the user space 

program”. 
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When a program opens /dev/net/tun, the driver creates and registers corresponding net device 

tunX. After a program closed above devices, the driver will automatically delete tunXX device 

and all routes corresponding to it. The tunnel interface is described in Figure 6. 

 

Figure 6. Tunnel Interface  

When the application sends IP packets to the tunnel interface it will appear to the kernel as if it 

is coming from a physical interface (even though it is only a virtual interface). Therefore kernel 

IP layer routes the packet based on the kernel routing table. It may be noted that for route 

packets, the IP forwarding option should be enabled on the machine. Similarly the packets that 

kernel forwards to the tunnel interfaces could be read by our application and processed.  

6. BUFFERS IN VOIP 

In uVoIP stack, buffers are required for playback, capture and network I/O. These buffers are 

shared across different layers and allocated dynamically for minimizing number of buffers and 

buffer operations. The buffer usage in uVoIP is shown in Figure 7. 

 

Figure 7. Buffers in uVoIP 

The buffers are associated with various states and events. The events are responsible for 

changing the state of a buffer which includes  
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1. Net in start 2. Net in complete      3. Capture complete 

4. Playback complete      5. Netout complete. 

The 6 states associated with the buffers are 

1. Free  2. Capture 3. Playback      4. Netin   

5. Output 6. Output Pending   7. Playback Pending. 

We built a custom discrete event simulator to investigate the minimum number of buffers 

required to process, play, and send voice data without any packet loss. For discrete-event 

simulation, operation of the system is modeled as generation and processing of a sequence of 

events. 

The state of buffers during the occurrence of various events such as capture complete, net in 

complete, net in start, net out complete, and playback complete is described in Figure 8-12 

respectively.  

 

Figure 8. Capture complete event  

 

Figure 9.  Net in complete event  
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Figure 10. Net in start event 

 

Figure 11. Net out complete event  

 

Figure 12.  Playback complete event  
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It may be noted that buffers are dynamically allocated and buffer flipping is used to reduce 

number of buffer operations. 

7. CODE ARCHITECTURE 

                                                

Figure 13.  Code Design 

Figure 13 shows the architecture of the uVoIP stack code.  A brief description of the different 

modules follows. 

Capture_playback playbacks the received packets to the Loud speaker and continuously capture 

the voice data from the Microphone. 

srtp_rijndael implements AES-CTR algorithm. 

srtp_key_derive derives the keys needed for encryption, authentication and session. 

srtp_sha1 implements Hash Function. 

srtp_hmac produces Authentication Tag. 

srtp creates SRTP packet for captured data. For received packets if authentication is successful 

it decrypts the data. 

uip implements all TCP/IP layer functions 

tapdev implements Ethernet layer functions. 

main initializes all buffers. This module periodically checks to see whether a packet is received. 

If a packet is received it calls uip to process the data. It also periodically checks whether a 

packet is completely captured. If a packet is captured it passes the data down the stack (RTP, 

SRTP layers), and then calls uip functions to output the data.  
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8. RESULTS 

A summary of our experimental results are given below. 

1.  Successfully implemented uVoIP stack and sent the encrypted and authenticated captured 

sound data from the sound card of one system via tunnel interface and played back in other 

system of different network after successful authentication and decryption. 

2. After successful one way communication, we successfully did two way communications in 

the same manner as above. 

3. Proved using discrete-event simulation that minimum number of buffers that can be used 

with minimum data loss is three and with no data loss is four. 

8.1. Simulation Results 

We investigated the performance of the system using three buffers and four buffers and 

measured the packet loss for variable jitter values and a latency of 150ms(maximum Ethernet 

latency). The packet loss obtained for 3 buffers is plotted in Fig. 14. With the usage of 4 buffers, 

we incurred no packet loss. 

 

Figure 14. Packet loss for usage of three buffers 

9. CONCLUSIONS 

In our paper, we have implemented an optimized uVoIP stack which requires only four buffers 

across all layers and also optimizes the number of buffer operations. We have verified our cross-

layer optimization technique by building a discrete event simulator and verifying the simulation 

data. The uVoIP stack has been designed in such a way that it can be easily ported to any 

different embedded platforms and imposes minimal requirements for clock speed, data memory, 

and program memory. We will be continuing this work by analyzing the performance of the 

stack in various embedded environments. 
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