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ABSTRACT 

Wireless sensor networks pose new security and privacy challenges. One of the important challenges is 

how to bootstrap secure communications among nodes. Several key management schemes have been 

proposed. Key management plays an essential role in achieving security in wireless sensor networks 

(WSN). Due to resource constraints, achieving such key agreement in wireless sensor networks is 

nontrivial. Many key agreement schemes used in general networks, such as Diffie-Hellman and public-

key based schemes, are not suitable for wireless sensor networks. Pre-distribution of secret keys for all 

pairs of nodes is not viable due to the large amount of memory used when the network size is large. In 

this paper, a new key pre-distribution scheme is proposed (DDHV SCHEME), which substantially 

improves the resilience of the network compared to the existing schemes (EG SCHEME). Our scheme 

exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the 

probability that any node other than these compromised nodes is affected is close to zero. This desirable 

property lowers the initial payoff of smaller scale network breaches to an adversary, and makes it 

necessary for the adversary to attack a significant proportion of the network. 
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1. INTRODUCTION 

RECENT advances in electronic and computer technologies have paved the way for the 

proliferation of wireless sensor networks (WSN). Sensor networks usually consist of a large 

number of ultra-small autonomous devices. Each device, called a sensor node, is battery 

powered and equipped with integrated sensors, data processing, and short-range radio 

communication capabilities. In typical application scenarios, sensor nodes are spread randomly 

over the deployment region under scrutiny and collect sensor data. Sensor networks are being 

deployed for a wide variety of applications, including military sensing and tracking, 

environment monitoring, patient monitoring and tracking, smart environments, etc. When sensor 

networks are deployed in a hostile environment, security becomes extremely important as they 

are prone to different types of malicious attacks. For example, an adversary can easily listen to 

the traffic, impersonate one of the network nodes or intentionally provide misleading 
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information to other nodes. To provide security, communication should be encrypted and 

authenticated. An open research problem is how to bootstrap secure communications among 

sensor nodes, i.e., how to set up secret keys among communicating nodes. This key agreement 

problem is a part of the key management problem, which has been widely studied in general 

network environments. There are three types of general key agreement schemes: the trusted-

server scheme, the self-enforcing scheme, and the key predistribution scheme. The trusted-

server scheme depends on a trusted server for key agreement between nodes eg: Kerberos [1]. 

This type of scheme is not suitable for sensor networks because there is usually no trusted 

infrastructure in sensor networks. The self-enforcing scheme depends on asymmetric 

cryptography, such as key agreement using public key certificates. However, limited 

computation and energy resources of sensor nodes often make it undesirable to use public key 

algorithms [2]. The third type of key agreement scheme is key predistribution, where key 

information is distributed among all sensor nodes prior to deployment. If we know which nodes 

are more likely to be in the same neighborhood before deployment, keys can be decided a priori. 

However, because of the randomness of deployment, it might be infeasible to learn the set of 

neighbors a priori. There exist a number of key predistribution schemes. A naive solution is to 

let all the nodes carry a master secret key. Any pair of nodes can use this global master secret 

key to achieve key agreement and obtain a new pairwise key. This scheme does not exhibit 

desirable network resilience: If one node is compromised, the security of the entire sensor 

network will be compromised. Some existing studies suggest storing the master key in tamper-

resistant hardware to reduce the risk, but this increases the cost and energy consumption of each 

sensor. Furthermore, tamper resistant hardware might not always be safe [3]. Another key 

predistribution scheme is to let each sensor carry N -1 secret pairwise key, each of which is 

known only to this sensor and one of the other N - 1 sensors (assuming N is the total number of 

sensors). The resilience of this scheme is perfect because compromising one node does not 

affect the security of communications among other nodes; however, this scheme is impractical 

for sensors with an extremely limited amount of memory because N could be large. Moreover, 

adding new nodes to a preexisting sensor network is difficult because the existing nodes do not 

have the new nodes’ keys.  

2. PROBLEM STATEMENT 

In this paper, a new key pre-distribution scheme is proposed. The main contributions of this 

paper are as follows: 

1. Substantially improved network resilience against node capture over existing schemes. 

2. Pairwise keys that enable authentication. 

This scheme builds on Blom’s key pre-distribution scheme [4] and combines the random key 

pre-distribution method with it. The results show that the resilience of this scheme is 

substantially better than other random key pre-distribution schemes. In [4], Blom proposed a 

key pre-distribution scheme that allows any pair of nodes to find a secret pairwise key between 

them. Compared to the (N − 1)-pairwise-key pre-distribution scheme, Blom’s scheme only uses 

λ+1 memory spaces with λ much smaller than N. The tradeoff is that, unlike the (N − 1)-

pairwise-key scheme, Blom’s scheme is not perfectly resilient against node capture. Instead it 

has the following λ-secure property: as long as an adversary compromises less than or equal to λ 
nodes, uncompromised nodes are perfectly secure; when an adversary compromises more than λ 
nodes, all pairwise keys of the entire network are compromised. 
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3. THE ESCHENAUER-GLIGOR (EG) SCHEME 

The Eschenauer-Gligor scheme (referred to as the basic scheme or the EG scheme hereafter) 

proposed by Eschenauer and Gligor [5] consists of three phases: key predistribution, shared-key 

discovery, and path-key establishment. In the key predistribution phase, each sensor node 

randomly selects τ distinct cryptographic keys from a key pool S and stores them in its memory. 

This set of τ keys is called the node’s key ring. The number of keys in the key pool, |S|, is 

chosen such that two random subsets of size τ in S share at least one key with some probability 

p. 

After the nodes are deployed, a key-setup phase is performed during this phase, each pair of 

neighboring nodes attempt to find a common key that they share. If such a key exists, the key is 

used to secure the communication link between these two nodes. After key-setup is complete, a 

graph (called key graph) of secure links is formed. Nodes can then set up path keys with their 

neighbors with whom they do not share keys. If the key graph is connected, a path can always 

be found from a source node to any of its neighbors. The source node can then generate a path 

key and send it securely via the path to the target node. The size of the key pool S is critical to 

both the connectivity and the resilience of the scheme. Connectivity is defined as the probability 

that any two neighboring nodes share one key. Resilience is defined as the fraction of the secure 

links that are compromised after a certain number of nodes are captured by the adversaries. 

 At one extreme, if the size of S is one, i.e., |S| = 1, the scheme is actually reduced to the 

naive master-key scheme. This scheme yields a high connectivity, but it is not resilient against 

node capture because the capture of one node can compromise the whole network. At the other 

extreme, if the key pool is very large, e.g., |s| = 100.000, resilience becomes much better, but 

connectivity of the sensor network becomes low. For example, as indicated by Eschenauer and 

Gligor , in this case, even when each sensor selects τ = 200 keys from this large key pool S, the 

probability that any two neighboring nodes share at least one key is only 0.33. 

4. THE DU-DENG-HAN-VARSHNEY (DDHV) SCHEME 

Blom proposed a key predistribution method that allows any pair of nodes in a network to be 

able to derive a pairwise secret key [6]. It has the property that, as long as no more than λ nodes 

are compromised, all communication links of non compromised nodes remain secure. 

4.1 Blom’s Key Predistribution Scheme 

During the pre-deployment phase, the base station first constructs a (λ + 1) × N matrix G over a 

finite field GF (q), where N is the size of the network. G is considered as public information; 

any sensor can know the contents of G, and even adversaries are allowed to know G. Then the 

base station creates a random (λ+1) × (λ+1) symmetric matrix D over GF (q), and computes an 

N × (λ + 1) matrix A = (D. G)T , where (D .G)T is the transpose of ( D . G). Matrix D needs to be 

kept secret, and should not be disclosed to adversaries or any sensor node (although, as will be 

discussed later, one row of (D. G)T will be disclosed to each sensor node). Because D is 

symmetric, it is easy to see: 

 
( )

( )

T T T T

T

A G D G G G D G G D G

A G

• = • • = • • = • •

= •
 

This means that A.G is a symmetric matrix. If K = A.G, it is know that Kij = Kji, where Kij is 

the element in K located in the ith row and jth column. Kij (or Kji) is considered as the pairwise 

key between node i and node j. Fig. 1 illustrates how the pairwise key Kij = Kji is generated. To 
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carry out the above computation, nodes i and j should be able to compute Kij and Kji, 

respectively. This can be easily achieved using the following key pre-distribution scheme, for k 

= 1. . . N: 

 

1. Store the kth row of matrix A at node k, and 

2. Store the kth column of matrix G at node k. 

Therefore, when nodes i and j need to find the pairwise key between them, they first exchange 

their columns of G, and then they can compute Kij and Kji, respectively, using their private 

rows of A. Because G is public information, its columns can be transmitted in plaintext. It has 

been proved in [4] that the above scheme is λ-secure if any λ + 1 columns of G are linearly 

independent. This λ-secure property guarantees that no nodes other than i and j can compute Kij 

or Kji if no more than λ nodes are compromised. 

4.2 Multiple-Space Key Pre-Distribution Scheme 

To achieve better resilience against node capture, a new key pre-distribution scheme that uses 

Blom’s method as a building block is proposed. The idea is based on the following 

observations: Blom’s method guarantees that any pair of nodes can find a secret key between 

themselves. To represent this, concepts from graph theory is used and draw an edge between 

two nodes if and only if they can find a secret key between themselves. Complete graph is 

obtained (i.e., an edge exists between all node pairs). Although full connectivity is desirable, it 

is not necessary. To achieve our goal of key agreement, all we need is a connected graph, rather 

than a complete graph. Our hypothesis is that by requiring the graph to be only connected, each 

sensor node needs to carry less key information. 

 Before we describe our proposed scheme, we define a key space (or space in short) as a 

tuple (D, G), where matrices D and G are as defined in Blom’s scheme. We say a node picks a 

key space (D, G) if the node carries the secret information generated from (D, G) using Blom’s 

scheme. Two nodes can calculate their pairwise key if they have picked a common key space. 

 

4.2.1 Key Pre Distribution Phase 

During the key pre-distribution phase, key information is assigned to each node, such that after 

deployment, neighboring sensor nodes can find a secret key between them. Assume that each 

sensor node has a unique identification, whose range is from 1 to N. We also select the security 

parameters τ, ω, and λ, where 2 ≤ τ < ω. Key pre-distribution phase contains the following steps: 
A primitive element from a finite field GF (q) is selected, where q is the smallest prime larger 
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than the key size, to create a generator matrix G of size (λ+1)× N. Let G (j) represent the jth 

column of G. We provide G (j) to node j. As it is already shown in Section 4.1, although G (j) 

consists of (λ+1) elements, each sensor only needs to remember one seed (the second element of 

the column), which can be used to regenerate all the elements in G (j). Therefore the memory 

usage for storing G (j) at a node is just a single element. Since the seed is unique for each sensor 

node, it can also be used for node id.Generate ω symmetric matrices D1. Dω of size (λ+ 1) × (λ 
+ 1).  Each tuple Si = (Di, G), i = 1. . . ω is called as key space. Then compute the matrix Ai = 

(Di × G)
T
 . Let Ai (j) represents the jth row of Ai.Randomly select τ distinct key spaces from the 

ω key spaces for each node. For each space Si selected by node j, we store the jth row of Ai (i.e. 

Ai (j)) at this node. This information is secret and should stay within the node; under no 

circumstance should a node send this secret information to any other node. According to Blom’s 

scheme, two nodes can find a common secret key if they have both picked a common key space. 

Since Ai is an N × (λ + 1) matrix, Ai (j) consists of (λ + 1) elements. Therefore, each node needs 

to store (λ+1)τ elements in its memory. Because the length of each element is the same as the 

length of secret keys, the memory usage of each node is (λ + 1)τ. 

4.2.2 Key Agreement Phase 

After deployment, each node needs to discover whether it shares any space with its neighbors. 

To do this, each node broadcasts a message containing the following information: 

1. The node’s id, 

2. The indices of the spaces it carries  

3. The seed of the column of G it carries.  

Assume that nodes i and j are neighbors, and they have received the above broadcast messages. 

If they find out that they have a common space, e.g. Sc, they can compute their pairwise secret 

key using Blom’s scheme: Initially node i has Ac(i) and seed for G(i), and node j has Ac(j) and 

seed for G(j). After exchanging the seeds, node i can regenerate G(j) and node j can regenerate 

G(i); then the pairwise secret key between nodes i and j, Kij = Kji, can be computed in the 

following manner by these two nodes independently: 

 ( ) ( ) ( ) ( )ij ji c cK K A i G j A j G i= = • = •  

After secret keys with neighbors are set up, the entire sensor network forms the following Key-

Sharing Graph :Let V represent all the nodes in the sensor network. A Key-Sharing graph Gks 

(V, E) is constructed in the following manner: For any two nodes i and j in V, there exists an 

edge between them if and only if (1) nodes i and j have at least one common key space, and (2) 

nodes i and j can reach each other within the wireless transmission range. 

 If two neighboring nodes i and j, do not share a common key space, they could still 

come up with a pairwise secret key between them. The idea is to use the secure channels that 

have already been established in the key-sharing graph Gks: as long as Gks is connected, two 

neighboring nodes i and j can always find a path in Gks from i to j. Assume that the path is i, v1, 

. . ., vt, j. To find a common secret key between i and j, i first generates a random key K. Then i 

sends the key to v1 using the secure link between i and v1; v1 sends the key to v2 using the 

secure link between v1 and v2, and so on until j receives the key from vt. Nodes i and j use this 

secret key K as their pairwise key. Because the key is always forwarded over a secure link, no 

nodes beyond this path can find out the key. 
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5. CONNECTIVITY ANALYSIS 

5.1 For EG Scheme  

The probability that two key rings share at least a key is    1 - Pr [two nodes do not share any 

key]. To compute the probability that two key rings do not share any key, each key of a key ring 

should be drawn out of a pool of P keys without replacement. Thus, the number of possible key 

rings is: 

 
!

!( )!

P

k P K−
 

Select the first key ring. The total number of possible key rings that do not share a key with this 

key ring is the number of key-rings that can be drawn out of the remaining P – k unused key in 

the pool, namely: 

 
( )!

!( 2 )!

P K

k P k

−

−
 

Therefore, the probability that no key is shared between the two rings is the ratio of the number 

of rings without a match by the total number of rings. Thus, the probability that there is at least 

a shared key between two key rings is: 

 
!( )!( )!

! !( 2 )!

k P K P K

P k P k

− −

−
 

 

Figure 2: Probability of sharing at least one key when two nodes choose k keys from a pool of size P 
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Figure 2 illustrates a plot of this function for various values of P. For example, one may see that 

for a pool size P = 10,000 keys, only 75 keys need to be distributed to any two nodes to have the 

probability p = 0.5 that they share a key in their key ring. If the pool is ten times larger, namely 

P = 100,000, the number of keys required is 250, which is only 3.3 times the number of keys 

distributed in the case P = 10,000. This provides intuition for the scalability of this approach. Of 

course, to determine the final the size of the key ring we need to provision for addition of new 

nodes, revocation, and re-keying. The scalability properties of the solution indicate that such 

provisioning will have minimal impact on the size of key rings. 

5.1 For DDHV Scheme 

To make it possible for any pair of nodes to be able to find a secret key between them, the key 

sharing graph Gks(V,E) needs to be connected. Given the size and the density of a network, 

how to select the values for ω and τ, such that the graph Gks is connected with high probability? 

We use the following three-step approach, which is adapted from [8]. 

Computing Required Local Connectivity: Let PC be the probability that the key-sharing 

graph is connected, called as global connectivity. Local connectivity is used to refer to the 

probability of two neighboring nodes sharing at least one space (i.e. they can find a common 

key between them). The global connectivity and the local connectivity are related: to achieve a 

desired global connectivity Pc, the local connectivity must be higher than a certain value; we 

call this value the required local connectivity, denoted by Prequired. Using connectivity theory in a 

random-graph by Erd˝os and R´enyi [9], the necessary expected node degree d (i.e., the average 

number of edges connected to each node) for a network of size N when N is large can be 

obtained in order to achieve a given global connectivity, Pc: 

 
( 1)

[ln( ) ln( ln( ))]c

N
d N P

N

−
= − −  

For a given density of sensor network deployment, let n be the expected number of neighbors 

within wireless communication range of a node. Since the expected node degree must be at least 

d as calculated above, the required local connectivity prequired can be estimated as: 

 required

d
p

n
=  

 Computing Actual Local Connectivity: After selecting the values for ω and τ, the actual 

local connectivity is determined by these values.  Use pactual to represent the actual local 

connectivity, namely pactual is the actual probability of any two neighboring nodes sharing at 

least one space (i.e. they can find a common key between them). Since pactual = 1−Pr (two 

nodes do not share any space). 

2

2

(( )!)
1 1

( 2 )! !
actualp

ω ω τ

τ τ ω τ

ω τ ωω

τ

−  
  

−  = − = −
− 
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The values of pactual have been plotted in Fig. 3 when ω varies from τ to 100 and τ = 2, 4, 6, 8. 

For example, one can see that, when τ = 4, the largest ω that we can choose while achieving the 

local connectivity pactual ≥ 0.5 is 25. 
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Figure 3: Probability of sharing at least one key when two nodes each randomly chooses τ 

spaces from ω spaces. 

The collection of sets of spaces assigned to each sensor form a probabilistic quorum system : the 

desire is that every two sensors have a space in common with high probability. Furthermore, it 

can be shown that if
1

ln
1 actualp

τ ω≥
−

, then the probability of intersection is at least 

pactual; this has the similar property to the birthday paradox. For example, when τ ≥ √ln 2√ω, 

the probability of intersection is at least 1/2. This can explain the behavior of figure 3. 

Computing ω and τ: Knowing the required local connectivity prequired and the actual local 

connectivity pactual, in order to achieve the desired global connectivity Pc, we should have 

pactual ≥ prequired,  

2(( )!) ( 1)
1 [ln( ) ln( ln( ))]

( 2 )! !
c

N
N P

nN

ω τ

ω τ ω

− −
− ≥ − −
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Therefore, in order to achieve a certain Pc for a network of size N and the expected number of 

neighbors for each node being n, to find values of ω and τ, such that Inequality is satisfied. 

6. SECURITY ANALYSIS 

The multiple-space key pre-distribution scheme is evaluated in terms of its resilience against 

node capture. The evaluation is based on two metrics: (1) When x nodes are captured, what is 

the probability that at least one key space is broken? Because of the λ-secure property of our 

scheme, to break a key space, an adversary needs to capture λ+1 node that contain this key 

space’s information; otherwise, the key space is still perfectly secure. This analysis shows when 

the network starts to become insecure. (2) When x nodes are captured, what fraction of the 

additional communication (i.e. communication among uncaptured nodes) also becomes 

compromised? This analysis shows how much payoff an adversary can gain after capturing a 

certain number of nodes. 

6.1 Probability of Atleast One Space Being Broken 

The unit of memory size is defined as the size of a secret key (e.g. 64 bits). According to Blom’s 

scheme, if a space is λ-secure, each node needs to use memory of size λ + 1 to store the space 

information. Therefore, if the memory usage is m and each node needs to carry τ spaces, then 

the value of λ should be [m/τ] − 1. In the following analysis, we choose λ = [m/τ] − 1. 

       Let Si be the event that space Si is broken, where i = 1, . . . , ω, and Cx be the event that x 

nodes are compromised in the network. Furthermore, let Si ∪ Sj be the joint event that either 

space Si or space Sj, or both, is broken and θ = τ ω. Hence, Pr (at least one space is broken | Cx) 

= Pr (S1∪S2∪· · ·∪Sω | Cx). According to the Union Bound,  

1

Pr( 1 ...... | ) r( | )x i i x

i

S S C X P S C
ω

ω ω
=

∪ ∪ ≤ ≤∑  

Due to the fact that each key space is broken with equal probability, 

1

r( | ) Pr ( 1| )i x x

i

P S C S C
ω

ω
=

=∑  

Therefore,  

1

Pr ( | ) r( | ) Pr ( 1| )x i x x

i

atleast onespaceisbroken C P S C S C
ω

ω
=

≤ =∑  

       Now need to calculate Pr (S1 | Cx), the probability of space S1 being compromised when x 

nodes are compromised. Because each node carries information from τ spaces, the probability 

that each compromised node carries information about S1 is θ = τ ω. Therefore, after x nodes 

are compromised, the probability that exactly j of these x nodes contain information about S1 
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is (1 )j x j
x

j
θ θ − 

− 
 

since space S1 can only be broken after at least λ+1 node are 

compromised, the following result is: 

1

(1 )j x j

j

x

j

ω

λ

ω θ θ −

= +

 
≤ − 

 
∑  

Combining Inequality and Equation, we have the following upper bound is:  

Pr (at least one space is broken | Cx) 

1

(1 )j x j

j

x

j

ω

λ

ω θ θ −

= +

 
≤ − 

 
∑  

1

(1 )

j

x j

j

x

j

ω

λ

τ τ
ω

ω ω
−

= +

  
=≤ −  

  
∑  

Plot both simulation and analytical results in Fig. 3. From the figure, the two results match each 

other closely, meaning that the union bound works quite well in the scenarios as discussed. Fig. 

4 shows, for example, when the memory usage is set to 200, ω is set to 50, and τ is set to 4, the 

value of λ for each space is 49 = �200 /4 � − 1, but an adversary needs to capture about 380 

nodes in order to be able to break at least one key space with non-negligible probability.  

   
Figure 4: fraction of communication compromised 
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6.2 Authentication Property 

 Due to the property of Blom’s scheme, all keys generated in a space are pair wise keys. 

Therefore, when the space is not yet compromised, keys in this space can be used for 

authentication purposes. After the space is broken, adversaries can generate all the pair wise 

keys in that space, and keys in that space can no longer be used for authentication purposes. 

According to the analysis, adversaries need to compromise a significant number of nodes in 

order to compromise a space. 

6.3 Fraction Of Communication Compromised 

 To understand the resilience of this key pre-distribution scheme, find out how the 

capture of x sensor nodes by an adversary affects the rest of the network. In particular, find out 

the fraction of additional communications (i.e., communications among uncaptured nodes) that 

an adversary can compromise based on the information retrieved from the x captured nodes. To 

compute this fraction, first compute the probability that any one of the additional 

communication links is compromised after x nodes are captured. Only consider the links in the 

key-sharing graph, and each of these links is secured using a pair wise key computed from the 

common key space shared by the two nodes of this link. After the key setup stage, two 

neighboring nodes can use the established secure links to agree upon another random key to 

secure their communication. Because this key is not generated from any key space, the security 

of this new random key does not directly depend on whether the key spaces are broken. 

However, if an adversary can record all the communications during the key setup stage, he/she 

can still compromise this new key after compromising the corresponding links in the key-

sharing graph.  

 Let c be a link in the key-sharing graph between two nodes that are not compromised, 

and K be the communication key used for this link. Let Bi represent the joint event that K 

belongs to space Si and space Si is compromised. K€ Si is used to represent that “K belongs to 

space Si”. The probability of c being broken given x nodes are compromised is:  

  
1 2 3

Pr( | ) Pr ( ..... | )
x x

cisbroken C B B B B Cω= U U U  

Since c can only use one key, events B1. . . are mutually exclusive.  

 
Figure 5: fraction of communication compromised 
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Therefore,  

1

1

Pr( | ) Pr ( | ) Pr ( | )x i x x

i

cisbroken C B C B C
ω

ω
=

= =∑  

Because all events Bi are equally likely. Note that 

1 1
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Pr(( ) ( ) )
Pr ( | )

Pr( )

x

x

x
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Since the event (K ε S1) is independent of the event Cx or the event (S1 is compromised), 
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1
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Pr (S1 is compromised | Cx) can be calculated. The probability that K belongs to space S1 is the 

probability that link c uses a key from space S1. Since the choice of a space from ω key spaces is 

equally probable,  

1 1

1
Pr ( ) Pr( )K S thelink cuses a key from spaceS

ω
∈ = =  

Therefore, 
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ω
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Assume that there are γ secure communication links that do not involve any of the x 

compromised nodes. Given the probability Pr(c is broken | Cx), the expected fraction of broken 

communication links among those γ links is 

1

Pr ( | ) Pr ( | )

Pr ( )

x x
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γ= • =

= I
 

The above equation indicates that, given that x nodes are compromised, the fraction of the 

compromised secure communication links outside of those x compromised nodes is the same as 

the probability of one space being compromised. This can be explained quite intuitively. Since 

spaces are selected in an equally likely fashion during the key pre-distribution process, after x 

nodes are compromised, the expected number of spaces that are compromised is about ω Pr (S1 

is compromised | Cx). Therefore, the fraction of the spaces that are compromised is Pr (S1 is 

compromised | Cx). Because keys from different spaces are evenly selected by the 
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communication links, the fraction of communication links compromised should be the same as 

the fraction of the spaces compromised. Therefore, the fraction of the spaces compromised is 

also Pr (S1 is compromised | Cx). 

6.4 Comparison: 

 The figure 6 clearly shows the advantage of DDHV scheme. For example, when the 

memory usage m is the same (m = 200), and Pactual = 0.33, with Eschenauer-Gligor schemes, 

an adversary only needs to compromise less than 100 nodes in order to compromise 10% of the 

rest of the secure links, whereas in DDHV scheme, the adversary needs to compromise 500 

nodes. Therefore, DDHV scheme quite substantially lowers the initial payoff to the adversary of 

smaller scale network breaches. The same technique can also be applied to this scheme to 

improve the security of our scheme as well. Regarding the original Blom’s scheme, because m = 

200, the network is perfectly secure if less than 200 nodes are compromised; the network is 

completely compromised when 200 nodes are compromised (Pactual is always equal to 1 in 

Blom’s scheme). 

 

Figure 6: comparison of EG and DDHV scheme. 

7. SECURITY IMPROVEMENT 

In this section a way to further improve the security of our key pre-distribution scheme is 

discussed. Based on Inequality,  

( 1)
1 (1 )(1 )......(1 ) [ln( ) ln( ln( ))]

1 1
c

N
N P

nN

τ τ τ

ω ω ω τ

−
− − − − ≥ − −

− − +
 

       Notice that the left side is smaller when ω is larger, and the right side is smaller when n is 

larger when other parameters are fixed. Therefore, when the network size N, the global 

connectivity Pc, and τ are fixed, we can select a larger ω if the expected number of neighbors n 

increases while still satisfying the above inequality. It is known from Inequality  that the larger 



International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010 

89 

 

the value of ω is, the more resilient the network will be. Therefore, increasing n can lead to 

security improvement.  

 There are two ways to increase n for an existing sensor network: the first is to increase 

the communication range, but this also increases energy consumption. The second way is to use 

two-hop neighbors. A two-hop neighbor of node v is a node that can be reached via one of v’s 

one-hop (or direct) neighbors. To send a message to a two-hop neighbor, v needs to ask its 

direct neighbor to forward the message. Since the intermediate node only forwards the message 

and does not need to read the contents of the message, there is no need to establish a secure 

channel between the sender and the intermediate node, or between the intermediate node and the 

two-hop neighbor. As long as the sender and its two hop neighbor can establish a secure 

channel, the communication between them will be secured. 

 If two nodes, i and j, are two-hop neighbors and both of them carry key information 

from a common key space, they can find a secret key between themselves using the following 

approach: First, they find an intermediate node I that is a neighbor to both of them. Nodes i and 

j then exchange their identities and public part of key space information via I. Then, i and j find 

a common key space, and compute their secret key in that common key space. i and j can then 

encrypt any future communication between themselves using this secret key. Although all future 

communication still needs to go through an intermediate node, e.g., I, the intermediate node 

cannot decrypt the message because it does not have the key.  

 After all direct neighbors and two-hop neighbors have established secure channels 

among themselves, the entire network forms an Extended Key-Sharing Graph Geks, in which 

two nodes are connected by an edge if there is a secure channel between them, i.e. these two 

nodes (1) have at least one common key space, and (2) are either direct neighbors or two-hop 

neighbors. Once Gks has been formed, key agreement between any pair of two neighboring 

nodes i and j can be performed based on Gks in the same way as it is performed based on the 

original Key-Sharing Graph Gks. The difference between this scheme and the Gks-based key 

agreement scheme is that in theGks-based key agreement scheme, some edges along a secure 

path might be an edge between two-hop neighbors, thus forwarding is needed. 

Figure 7: Security improvement using two hop method 
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8. CONCLUSION 

A new pairwise key pre-distribution scheme for wireless sensor networks has been presented in 

this paper. This scheme has a number of appealing properties. First, this scheme is scalable and 

flexible. For a network that uses 64-bit secret keys, this scheme allows up to N = 264 sensor 

nodes. These nodes do not need to be deployed at the same time; they can be added later, and 

still be able to establish secret keys with existing nodes. Second, compared to existing key pre-

distribution schemes, this scheme is substantially more resilient against node capture. The 

analysis and simulation results have shown, for example, that to compromise 10% of the secure 

links in the network secured using DDHV scheme, an adversary has to compromise 5 times as 

many nodes as he/she has to compromise in a network secured by Eschenauer- Gligor scheme. 

Furthermore, it also shown that network resilience can be further improved if we use multi-hop 

neighbors.  
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