
International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

DOI : 10.5121/ijcsit.2010.2602 13

INHERITANCE METRICS FOR OBJECT-ORIENTED
DESIGN

Kumar Rajnish
1
, Arbind Kumar Choudhary

2
 and Anand Mohan Agrawal

3

1
Department of CS & E, BITIC, Muscat, Sultanate of Oman.

kumarrajnish089@gmail.com
2
 Department of CS & E, BITIC, Muscat, Sultanate of Oman.

arbind@waljat.net
3
Professor of Management, Muscat, Sultanate of Oman.

amagrawal2000@gmail.com

ABSTRACT

The inheritance metrics give us information about the inheritance tree of the system. Inheritance is a key

feature of the Object-Oriented (OO) paradigm. This mechanism supports the class hierarchy design and

captures the IS-A relationship between a super class and its subclass. Several OO inheritance metrics

have been proposed and their reviews are available in the literature. Among the various measurements

we focus on the metrics of class inheritance hierarchies. In this paper we consider the inheritance metrics

of F.T. Sheldon et al (2002) and Henderson Seller's (1996) for comparison with proposed inheritance

metric suites. In doing so, an attempt has been made to define empirical relationship between the

proposed inheritance metric suites with considered existing inheritance metrics and the focus was on

which how the inheritance metric suites were correlated with the existing ones. Data for several C++

classes has been collected from various sources.

KEYWORDS

Object-Oriented, Inheritance Tree, Inheritance Hierarchy, Complexity, Classes, Metrics

1. INTRODUCTION

Software metrics are essential to software engineering for measuring software complexity and

quality, estimating cost and project effort to simply name a few. The traditional metrics like

function point, software science and cyclomatic complexity have been well used in the

procedural paradigm. However, they do not readily apply to aspects of the OO paradigm: class,

inheritance, polymorphism, virtual function, etc.

The OO technology forces the growth of OO software metrics [6]. Several such metrics have

been proposed and their reviews are available [5] [7] [9-10] [14] [21] [22] [27]. The metrics

suite proposed by Chidamber and Kemerer is one of the best-known OO metrics [12-13].

Various researchers have conducted empirical studies to validate the OO metrics for their

effects upon program attributes and quality factors such as development or maintenance effort

[8] [24]. Alshayeb and Li predict that OO metrics are effective (at least in some cases) in

predicting design efforts [1]. Chae, Kwon and Bae investigated the effects of dependence

variables on cohesion metrics for OO programs [11]. Several other researchers have validated

OO metrics for effects of class size and with the change proneness of classes [2] [16-17]. Li [26]

theoretically validated Chidamber and Kemerer metrics using a metric evaluation framework

proposed by Kitchenham et al [25] and discovered some of the deficiencies of Chidamber and

Kemerer metrics in the evaluation process and proposed a new suite of OO metrics that

overcome these deficiencies. Rajnish and Bhattacherjee have studied the effect of class

complexity (measured in terms of lines of codes, distinct variables names and function) on

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

14

development time of various C++ classes [4] [32] [37]. Rajnish and Bhattacherjee have also

studied on cohesion metrics for OO programs on various C++ and Java classes by accessing a

common variable by a pair of methods in a class as in [33] [28] [34] [35].

Among the various measurements, we focus on the metrics of class inheritance hierarchies. The

inheritance metrics give us information about the inheritance tree of the system. Inheritance is a

key feature of the OO paradigm. This mechanism supports the class hierarchy design and

captures the IS-A relationship between a super class and its subclass. Class design is central to

the development of OO systems. Because class design deals with functional requirements of the

system, it is the highest priority in OOD (Object-Oriented Design). The use of inheritance is

claimed to reduce the amount of software maintenance necessary and ease the burden of testing

[13] and the reuse of software through inheritance is claimed to produce more maintainable,

understandable and reliable software [3]. However, industrial adoption of academic metrics

research has been slow due to, for example, a lack of perceived need. The results of such

research are not typically applied to industrial software [19], which makes validation a daunting

and difficult task. For example, the experimental research of Harrison et al. [20] indicates that a

system not using inheritance is better for understandability or maintainability than a system with

inheritance. However, Daly’s experiment [15] indicates that a system with three levels of

inheritance is easier to modify than a system with no inheritance. Research has also been

conducted regarding class inheritance metrics by Rajnish and Bhattacherjee as in [30] [31] [36]

[38] [39] [43].

However, it is agreed that the deeper the inheritance hierarchy, the better the reusability of

classes, making it harder to maintain the system. The designers may tend to keep the inheritance

hierarchies shallow, discarding reusability through inheritance for simplicity of understanding

[13]. So it is necessary to measure the complexity of the inheritance hierarchy to resolve

differences between the depth and shallowness of it.

In this paper we consider the inheritance metrics of F.T. Sheldon et al [40] and Henderson

Seller's [41] for comparison with proposed inheritance metric suites. In doing so, an attempt has

been made to define empirical relationship between the proposed inheritance metric suites with

the existing considered inheritance metrics and the focus was on which how the inheritance

metric suites were correlated with the existing one. The rest of the paper is organized as follows.

Section 2 presents the brief overview of the inheritance metrics of F.T. Sheldon et al [40] and

Henderson Seller's [41]. Section 3 presents the proposed inheritance metric suites and examples

for illustration. Section 4 presents the results based on collected data [23] and Tools used [18]

[42]. Section 5 presents the discussion and Section 6 presents the conclusion and future scope

respectively.

2. INHERITANCE METRICS OF F. T. SHELDON AND HENDERSON SELLER

2.1. Average Degree of Understandability (AU) Metric of F. T. Sheldon et al

As F.T. Sheldon et al defines understandability, the ease of understanding a program structure

or a class inheritance structure [40].

To calculate AU, first defining the degree of understandability (denoted by U) of a class as

follows:

U of class Ci = PRED (Ci) +1

Where Ci is i th class.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

15

PRED (Ci): the total number of predecessors of class i

Next, the total degree of understandability (TU) of a class inheritance tree is defined as follows:

TU of a class inheritance = ∑
=

+

t

i

iCPRED
1

)1)((

Where t is the total number of classes in the class inheritance tree.

Finally, the average degree of understandability (AU) of a class inheritance tree is as follows:

AU of a class inheritance = ∑
=

+

t

i

iCPRED
1

)1)((/ t

Consider the class inheritance tree given in Figure 1, AU is calculated as follows:

U (A) = PRED (A) + 1= 0+1 =1; similarly U (B) = 2; U(C) =2; U (D) =3; U (E) =5;

TU=1+2+2+3+5=13; AU= 13/5=2.6;

 A

C B

E D

 Figure 1. A Class inheritance tree

This value of AU represents the degree of understandability for the class inheritance tree as

mentioned in Figure 1. An important point to emphasize here is that a lower value of AU

highlights better understandability.

2.2. Average Degree of Modifiability (AM) Metric of F. T. Sheldon et al

As F.T. Sheldon et al defines modifiability, the ease with which a change or changes can be

made to a program structure or a class inheritance structure [40].

To calculate AM, first defining the degree of modifiability (denoted by M) of a class as follows:

M of a class Ci = U (Ci) + SUCC (Ci) /2

Where Ci is i th class.

SUCC (Ci): the total number of successors of class i

Next, the total degree of modifiability (TM) of a class inheritance tree is defined as follows:

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

16

TM of class inheritance= TU + ∑
=

t

i

iCSUCC
1

)2/)((

Where t is the total number of classes in the class inheritance tree.

Finally, the average degree of modifiability (AM) of a class inheritance tree is as follows:

AM of the class inheritance tree is

AU + ∑
=

t

i

i tCSUCC
1

/))2/)(((

For the example in Figure 1, AM is calculated as follows:

M (A) = U (A) + SUCC (A)/2= 1+4/2=1+2=3

M (B) =U (B) + SUCC (B)/2=2+2/2=2+1=3

M (C) = U (C) + SUCC (C)/2= 2 + 1/2 = 2+0.5=2.5

M (D) = U (D) + SUCC (D)/2= 3+ 0 = 3

M (E) = U (E) + SUCC (E)/2= 5+0=5

TM = 3 + 3 + 2.5 + 3 + 5 =16.5

AM = 16.5/5 = 3.3

This value of AM represents the degree of modifiability of the class inheritance tree in Figure 1.

A lower value of AM represents a better index for modifiability.

2.3. Henderson-Seller’s Average Inheritance Depth (AID)

The AID of a class is calculated by [41] as:

AID = ∑(depth of each class) / number of classes

For the example in Figure 1, AID is calculated as follows:

depth of class A=1; depth of class B=2; depth of class C=2; depth of class D=3; depth of class

E=3;

AID = 11/5 = 2.5.

3. PROPOSED INHERITANCE METRICS

In this section inheritance metrics for OO design has been proposed which are as follows:

3.1. Derive Base Ratio Metric (DBRM)

DBRM is the ratio of the total derived classes to the total base classes in the class inheritance

tree. DBRM is calculated as follows:

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

17

 DBRM= ∑ ∑
= =

N

i

N

i

ii CTBCTD
0 0

)(/()((

Where∑
=

N

i

iCTD
0

)(: total number of derived classes in the class inheritance tree.

 ∑
=

N

i

iCTB
0

)(: total number of base classes in the class inheritance tree.

N: total number of classes in the class inheritance tree.

Assumptions.

• DBRM measures how many base classes are presents in an inheritance tree which directly

affect the immediate or non-immediate subclasses.

• DBRM measures how many derived classes are presents in an inheritance tree which directly

or indirectly affect the ancestor classes. More derived classes more reuse, since inheritance is a

form of reuse and more mental exercise is required to design and code a class in an inheritance

tree.

• In class inheritance tree where DBRM=1.00 will imply a simple case of single inheritance

(one base class and one derive class) and multilevel inheritance.

3.2. Average Number of Direct Child (ANDC) Metric

ANDC metric is the ratio of the total number of immediate child to the total number of classes

in the inheritance tree. ANDC metric is calculated as follows:

ANDC=∑
=

N

i

i NCTDC
0

/))((

Where,∑
=

N

i

iCTDC
0

)(: total number of immediate child in the class inheritance tree.

N: total number of classes in the class inheritance tree.

Assumptions.

• Since ANDC metric is concerned with the total numbers of direct child. This gives an

indication of the subordinate classes in the class inheritance tree.

• ANDC metric measures how many immediate subclasses are going to inherit the properties

(methods and attributes) of classes.

• ANDC metric gives an idea of the potential influence a class has on the overall design.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

18

3.3. Average Number of Indirect Child (ANIC) Metric

ANIC metric is the ratio of the total number of indirect child to the total number of classes in

the inheritance tree. ANIC metric is calculated as follows:

ANIC=∑
=

N

i

i NCTIC
0

/))((

Where∑
=

N

i

iCTIC
0

)(: total number of indirect child in the class inheritance tree.

N: total number of classes in the class inheritance tree.

Assumptions

• Since ANIC metric is concerned with the total numbers of non-immediate classes in the class

inheritance tree. This metric gives an indication of how many ancestors' classes potentially

affect the subclasses in the class inheritance tree.

• Deeper trees constitute greater design complexity, since more properties of classes are

involved.

• The deeper a class is in the tree, the higher the degree of methods inheritance, making it more

complex to predict its behavior.

3.4. Examples for Illustration

Consider the example shown above in Figure 1 and another example shown below in Figure 2

to illustrates the existing inheritance metrics and proposed inheritance metric suites.

 A

B C D E

G F H

 Figure 2. A Class inheritance tree

From Figure 1,

AU = 2.6; AM = 3.3; AID = 1.2;

Calculation of DBRM:

Total base classes = 3 [class A for classes B, C and Classes B, C for classes D and E]

Total derived classes = 4 [Classes B, C, D, and E]

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

19

DBRM = 4/3 = 1.334;

Calculation of ANDC:

TDC (A) = 2; TDC (B) = 2; TDC (C) = 1; TDC (D) =0;

 TDC (E) = 0;

ANDC = 5/5 =1;

Calculation of ANIC:

TIC (A) = 2; TIC (B) = TIC (C) = TIC (D) = TIC (E) =0;

ANIC = 2/5 = 0.4;

Similarly the calculation of the above mentioned metrics for the example of figure 2, are given

below:

- Calculation of AU

U (A) =1; U (B) = U (C) = U (D) = U (E) = 2; U (F) = 3; U (G) = U (H) = 5;

TU = 1 + 8 + 3 + 10 = 22;

AU = TU / 8 = 22 / 8 = 2.75.

- Calculation of AM

M (A) = U (A) + (SUCC (A) / 2) = 1 + 7/2= 4.5;

M (B) = U (B) + (SUCC (B) / 2) = 2 + 1/2= 2.5;

M (C) = U (C) + (SUCC (C) / 2) = 2 + 1/2= 2.5;

M (D) = U (D) + (SUCC (D) / 2) = 2 + 2/2= 3;

M (E) = U (E) + (SUCC (E) / 2) = 2 + 1/2= 2.5;

M (F) = U (F) + (SUCC (F) / 2) = 3 + 0= 3;

M (G) = U (G) + (SUCC (G) / 2) = 5 + 0= 5;

M (H) = U (H) + (SUCC (H) / 2) = 5 + 0= 5;

TM= 4.5+2.5+2.5+3+2.5+3+5+5= 28;

AM = TM / 8 = 28 / 8 = 3.5

- Calculation of AID

Depth of Class A=1; Depth of Classes B=C=D=E=2

Depth of Class F = G = H = 3

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

20

AID= (1 + 8 + 9) / 8 = 18/8 = 2. 25

- Calculation of DBRM

Total derived classes in the class inheritance tree= 7

Total base classes in the class inheritance tree= 5

DBRM = 7/5 = 1. 40

- Calculation of ANDC

 TDC (A) = 4; TDC (B) = 1; TDC (C) = 1; TDC (D) = 2; TDC (E) = 1; TDC (F) = TDC (G) =

TDC (H) = 0;

ANDC = 9 / 8 = 1.125

- Calculation of ANIC

TIC (A) = 3; TIC (B) = TIC (C) = TIC (D) = TIC (E) = TIC (F) = TIC (G) = TIC (H) = 0;

ANIC = 3 / 8 = 0.375

The entire results of existing and proposed inheritance metrics values for Figure 1 and Figure 2

are shown in Table 1.

Table 1. Inheritance Metrics values for Figure 1 and Figure 2

From Table 1, following observations have been made which are as follows:

• Since lower value of AU and AM highlights better understandability and modifiability.

Through AU and AM metrics it can be predict that Figure 2 highlights better for

understandability and better index for modifiability, still Figure 2 is much more complex than

Figure 1.

• High value of AID involves greater design complexity due to high depth (sometimes may be

same) and more methods, attributes and classes are involved in the class inheritance tree. From

Figure 2, it involves more classes than Figure 1 due to high AID.

• DBRM measures the ratio of the total derived classes to the total base classes in the class

inheritance tree. High DBRM means more derived classes and base classes are involved in class

inheritance tree. From Figure 1 and Figure2 it can be easily analyzed that Figure 2 involves

more derived and bases classes than Figure 1 in the inheritance tree.

• Since ANDC is concerned with direct child (immediate) in the inheritance tree. Through this

metric it can be easily analyzed how many classes reused the properties of base classes in an

inheritance tree at the design stage. From Figure 1 and Figure 2 it can be analyzed that Figure 2

reuse more properties of classes than Figure 1.

Metric Values AU AM AID DBRM ANDC ANIC

Figure 1 2.6 3.3 1.2 1.334 1 0.4

Figure 2 2.75 3.5 2.25 1.4 1.125 0.375

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

21

• Since ANIC is concerned with the total number of indirect child (non-immediate) in the

inheritance tree. Through this metric it can be analyzed that how many subclasses can

potentially affect the ancestor classes at the design stage. From Figure 1 and Figure 2 it can be

analyzed that Figure 2 can affect more ancestor classes than Figure 1.

Main-body text is to written in fully (left and right) justified 11 pt. Times New Roman font with

a 6pt. (paragraph) line spacing following the last line of each paragraph, but a 12pt. (paragraph)

line spacing following the last paragraph. Do not indent paragraphs.

4. RESULTS

In this section statistical analysis has been performed based on collected data from [23]. Metric

tools were used for generating inheritance metric values as in [18] [42]. Correlation coefficients

for different inheritance metrics were calculated for a class inheritance trees and the focus was

on which how different inheritance metrics were correlated to each other. The statistical analysis

of the data in the tables has been generated with the aid of MATLAB [29].

Table 2. Descriptive Statistics for the various Inheritance Metric values

 AU AM AID DBRM ANDC ANIC

Mean 2.0519 2.4724 1.1518 1.3580 0.7401 0.2008

Median 2 2.5 1 1 0.67 0.2

Std.Dev 0.4843 0.5612 0.6957 0.6058 0.2145 0.2236

Max 3 3.3750 2.836 3 1.25 0.714

Min 1.5 1.75 0.34 0.5 0.5 0

Table 3. Correlation Coefficient w. r. t. different inheritance metric values

 AU AM AID DBRM ANDC ANIC

AU 1.000 0.8695 0.4109 0.2465 0.7800 0.6643

AM 0.8695 1.0000 0.4100 0.0484 0.8772 0.7104

AID 0.4109 0.4100 1.0000 0.3499 0.2644 0.7059

DBRM 0.2465 0.0484 0.3449 1.0000 0.1494 0.1658

ANDC 0.7800 0.8722 0.2644 0.1494 1.0000 0.3994

ANIC 0.6643 0.7104 0.7059 0.1658 0.3994 1.000

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

NUMBER OF C++ CLASS INHERITANCE TREES

IN
H
E
R
IT

A
N
C
E
 M

E
T
R
IC

S
 V

A
L
U
E
S

DBRM

AU

AM

AID

Figure 3. Comparisons of DBRM metric values with AU, AM and AID metrics from various

C++ class inheritance trees.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

22

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

NUMBER OF C++ CLASS INHERITANCE TREES

IN
H

E
R

IT
A

N
C

E
 M

E
T
R

IC
S

 V
A

L
U

E
S

ANDC

AU

AM

AID

Figure 4. Comparisons of ANDC metric values with AU, AM and AID metrics from various

C++ class inheritance trees

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

NUMBER OF C++ CLASS INHERITANCE TREES

IN
H

E
R

IT
A

N
C

E
 M

E
T

R
IC

S
 V

A
L
U

E
S

ANIC

AU

AM

AID

Figure 5. Comparisons of ANIC metric values with AU, AM and AID metrics from various

C++ class inheritance trees.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

23

5. DISCUSSION

Certain observations from above mentioned tables and figures done based on collected data

from various sources [23].

From Table 2, following observations have been made which are as follows:

• Both AU and AM metric have high mean values as compared to the other metrics in the

Table, this suggest more understanding of classes and more modification will be required at any

stages of class inheritance trees.

• Mean value (1.1518) of AID represents higher depth. This suggests if classes have higher

depth it is very difficult to maintain the sequence of classes (i.e. more classes involved) in the

class inheritance tree.

• Mean value (1.3580) of DBRM metric suggest more involvements of base classes and derive

classes in the class inheritance trees.

• ANDC metric have less mean value as compared to the other metrics in the Table except

ANIC metric, this suggest less number of immediate child is attached to the root of the tree. If

mean value of ANDC is high then more number of immediate child are presents in the class

inheritance tree and more reuse since inheritance is a form of reuse.

• ANDC and ANIC have low median values this suggests that most classes in an application

tend to be close to the root in the inheritance tree.

• By observing the DBRM, ANDC ANIC, AID, AU and AM metric for classes in an

application one can determine whether the design is top heavy (too many classes near the root)

or bottom heavy (many classes are near the bottom of the tree).

• By observing the above mentioned metrics values most of the classes appears to be top

heavy, this suggest that one may not take the advantage of reuse of methods and attributes

through inheritance.

• Another interesting aspect is that maximum value of AU, AM, AID, DBRM, ANDC and

ANIC metric is rather small (3.3750 for AM and all are less than AU). One possible explanation

is that one can tend to keep that number of levels of abstraction to a manageable number in

order to facilitate comprehensibility of the overall architecture of the system. Another possible

explanation is that reusability through inheritance for simplicity of understanding.

From Table 3 it is observed that ANDC and ANIC correlates very well with the AU, AM and

AID metrics. In column 2 ANDC (correlation: 0.8722 highest in the column) correlates very

well with the AU, AM and AID metrics. In column 3 ANIC (correlation: 0.7059 highest in the

column) correlates very well with the AU, AM and AID metrics. DBRM metric does not

correlate well with all metrics (existing as well as proposed one). In all the columns it has the

lowest correlation than existing metrics (AU, AM, AID) and proposed metrics (ANIC and

ANDC). It is because DBRM metric may require some extra or additional parameters for to be

good correlation with the existing as well as proposed metrics.

6. CONCLUSION AND FUTURE SCOPE

In this paper an attempt has been made to present the different inheritance metrics for measuring

the class inheritance trees. In the work presented here, the goal was to find the effect of different

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

24

class inheritance metrics values at each level at the design stage. The approach taken was

empirical. The OO languages used in the data set was C++. As seen from Table 3 ANIC and

ANDC has very well correlation with the existing metrics. This firmly believe us that both

ANIC and ANDC metrics is a good measure for class inheritance trees at the design stage.

It must be mentioned that the programs used for the study were very small compared to large

industry system. Therefore in terms of future scope, we plan to study some fundamental issues,

(1) some more program parameter has to be incorporated to our proposed DBRM (Derive Base

Ratio Metric) because its correlation is not very well with the existing as well as our proposed

ANIC and ANDC metrics [see in Table 3].

(2) Further characteristics of classes need to be studied to establish an empirical relationship

between the different existing class inheritance metrics and proposed one.

(3) Towards further validation with an extended set of classes and further evaluation of

proposed metrics will in turn improvement of the quality of classes.

ACKNOWLEDGEMENTS

This research work has been partially funded by UGC [F. No.: 33 – 61/ 2007 (SR)] under

financial grants for Major Research Project.

REFERENCES

1. Alshayeb. M and Li. W, “An Empirical Validation of Object-Oriented Metrics in Two Different Iterative

Software Processes”, IEEE Trans. on Software Engineering, 29, 11 (2003) 1043-1049.

2. Arisholm. E, Briand. L. C and Foyen, “A Dynamic coupling measures for Object-Oriented Software”,

IEEE Trans. on Software Engineering, 30, 8 (2004) 491-506.

3. Basili. VR, Briand. L. C and Melo. WL, “A validation of object-oriented design metrics as

qualityindicators”, Technical report, University of Maryland, Department of Computer Science, 1995; 1-

24.

4. Bhattacherjee. V and Rajnish. K, “ Class Complexity-A Case Study”, Proceedings of First International

Conference on Emerging Application of Information Technology(EAIT-2006), Kolkata,India,2006, pp.

253-258.

5. Bieman. J. M and Kang. B.K, “Cohesion and Reuse in an Object-Oriented System”, in Proc. Symp.

Software Reliability, (1995) 259-26.

6. Booch.G, Object-Oriented Design and Application, Benjamin/Cummings, Mento Park, CA, 1991.

7. Briand. L. C, Daly. J. W and Wust. J. K, “A Unified Framework for Cohesion Measurement in Object-

Oriented Systems”, Empirical Software Eng., 1, 1 (1998), 65-117.

8. Briand. L. C and Wust. J. K,“Modeling Development Effort in Object-Oriented Systems Using Design

Properties”, IEEE Trans. on Software Engineering. , 27, 11(2001), 963-986.

9. Brotoeabreu. F, “The MOOD Metrics Set”, in Proc. ECOOP’95 Workshop Metrics, 1995.

10. Chae.H.S, Kwon. Y. R and Bae.D. H, “A Cohesion Measures for Object-Oriented Classes”, Software

practice and Experiences, 30, 12 (2000), 1405-1431.

11. Chae. H. S, Kwon. Y. R and Bae. D. H, “Improving Cohesion Metrics for Classes by considering

Dependent Instance Variables”, IEEE Trans. on Software Engineering, 20, 6 (1994), 476-493.

12. Chidamber. S. R and Kemerer. C. F, “Towards a Metric Suite for Object-Oriented Design”, in Proc.

Sixth OOPSLA Conf., (1991), 197-211.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

25

13. Chidamber. S. R and Kemerer. C. F, “A Metric Suite for Object-Oriented Design”, IEEE Trans. on

Software Engineering, 20, 6(1994), 476-493.

14. Churcher. N. I and Sheppered. M. j, Comments on “A Metric Suite for Object-Oriented Design”, IEEE

Trans. on Software Engineering.,21 (1995), 263-265.

15. Daly. J, Brooks. A, Miller. J, Roper. M, Wood. M, “Evaluation inheritance depth on the maintainability

of object-oriented software”, Empirical Software Engineering 1996; 1(2): 109-132.

16. Emam. K. EL, Benlarbi. S, Goel. N and Rai. S. N, “The Confounding Effect of the Class Size on the

Validity of Object-Oriented Metrics”, IEEE Trans. on Software Engineering, 27, 7(2001), 630-650.

17. Evanco. W. M, Comments on ““The Confounding Effect of the Class Size on the Validity of Object-

Oriented Metrics”, IEEE Trans. on Software Engineering, 29, 7 (2003), 670-672.

18. Website: http://www.CCCC.sourceforge.net and http://www. sourceforge.net/project/CCCC

19. Fenton. NE, Neil. M, “Software metrics: Successes, failures and new directions”, The Journal of Systems

and Software 1999; 47(2-3):149-157.

20. Harrison. R, Counsell. SJ, Nithi. RV, “An evaluation of the MOOD set of object-oriented software

metrics”. IEEE Trans. On Software Engineering 1998; 24(6):491-496.

21. Henderson-Sellers. B and Edwards. J. M, “Books Two of Object-Oriented Knowledge: The Working

Object”, Prentice Hall, Sydney, 1994.

22. Hitz. M, and Montazeri. B, Correspondence, Chidamber and Kemerer’s Metrics Suite: “A Measurement

Theory Perspective”, IEEE Trans. on Software Engineering, 22, 4(1996), 267-271.

23. Internal Reports, Department of Computer Science & engg. Birla Institute of Technology, Ranchi, India.

24. Kabaili. H, Keller. R. K and Lustman. F, “Cohesion as Changeability Indicator in Object-Oriented

System”, in Proc. Fifth European Conf. Software Maintenance and Reengineering, 2001.

25. Kitchenham. B, Pfleeger. SL and Fenton. NE, “Towards a framework for software measurement

validation”, IEEE Trans. On Software Engineering 1995; 21(12):929-944.

26. Li. W,” Another metric suite for object-oriented programming”, The Journal of Systems and Software

1998; 44(2): 155-162.

27. Lorenz. M, and Kidd. J, “Object-Oriented Software Metrics”: A Practical Guide, 1994.

28. Mahanti,. P. K, Rajnish. K and Bhattacherjee. V, “Measuring Class Cohesion: An Empirical Approach”,

Proceedings of ISCA 19th International Conference on Computer Applications in Industry and

Engineering (CAINE-2006), November 13-15, Las Vegas, Nevada, USA, pp. 193-198.

29. Pratap. R,“Getting Started with MATLAB-VI”, Oxford University Press, 1998.

30. Rajnish. K and Bhattacherjee. V, “Maintenance of Metrics through class Inheritance

hierarchy”,proceedings of International conference on Challenges and Opportunities in IT Industry”,

PCTE, Ludhiana, 2005, pp.83.

31. Rajnish. K and Bhattacherjee. V,” A New Metric for Class Inheritance Hierarchy: An Illustration”,

proceedings of National Conference on Emerging Principles and Practices of Computer Science &

Information Technology”, GNDEC, Ludhiana, 2006, pp 321-325.

32. Rajnish. K and Bhattacherjee. V,”Complexity of Class and Development Time: A Study”, Journal of

Theoretical and Applied Information Technology (JATIT-2K6), Asian Research Publication Network,

Vol. 3, No.1, June-Dec-2006, pp. 63-70.

33. Rajnish. K and Bhattacherjee. V, “Cohesion Metric for Object-Oriented Design”. Proceedings of Second

National on Innovation in Information and Communication Technology(NCIICT-2006), July 7-8, PSG

College of Technology, Coimbatore, India, pp. 73-78.

34. Rajnish. K and Bhattacherjee. V, “ Class Cohesion and development Time : A Study”, Proceedings of

National Conference on Methods and Models in Computing(NCM2C-2006), December 18-19 2006,

School of Computer and Systems Sciences, JNU, New Delhi, India, pp. 26-34.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

26

35. Rajnish. K and Bhattacherjee. V, “Class Cohesion: An Empirical and Analytical Approach” International

Journal of Science and Research (IJSR), Victoria, Australia, Vol.2, No.2, 2007, pp. 53-62.

36. Rajnish. K and Bhattacherjee. V, “Class Inheritance Metrics and development Time: A Study”,

International Journal Titled as “PCTE Journal of Computer Science”, Vol.2, Issue 2, July-Dec-06, pp. 22-

28.

37. Rajnish. K and Bhattacherjee. V, “Object-Oriented Class Complexity Metric-A Case Study”, Proceedings

of 5
th

 Annual International Conference on Information Science Technology and Management (CISTM),

2020 Pennsylvania Ave NW, Ste 904, Washington DC, published by the Information Institute, USA, July

16-18, Hyderabad, 2007, pp.36-45 http://www.cistm.org.

38. Rajnish. K and Bhattacherjee. V, “Applicability of Weyuker Property 9 to Object-Oriented Inheritance

Tree Metric-A Discussion”, proceedings of IEEE 10
th

 International Conference on Information

Technology (ICIT-2007), published by IEEE Computer Society Press, pp. 234-236, December-2007,

http://ICIT2007.home.comcast.net/ , http://www.computer.org.

39. Rajnish. K and Bhattacherjee. V, "Class Inheritance Metrics-An Analytical and Empirical Approach",

INFOCOMP Journal of Computer Science, Federal University of Lavras, Brazil, Vol. 7, No. 3, 2008, pp.

25-34.

40. Sheldon. T. F, Jerath. K and Chung. H," Metrics for maintainability of class inheritance hierarchies",

Journal of software maintenance and evolution: Research and practice, Vol. 14, pp. 1-14, 2002.

41. Hender-Seller. B," Object-Oriented Metrics: measures of Complexity" Prentice Hall PTR Englewood

Cliffs NJ, 1996.

42. Website: http:// www.msquaredTechnologies.com/ ftp / rsmdocs.zip.

43. Rajnish. K, Bhattacherjee. V and Singh. S. K, "An Empirical approach to Inheritance Tree Metrics",

Department of MCA, Shri Shankaraacharya college of Information Science and Technology, Bhillai,

2008, pp. 145-150.

Authors

Dr. Kumar Rajnish is a Senior Lecturer in the

Department of CS&E at Birla Institute of

Technology, International Centre Muscat, Sultanate

of Oman. He received his PhD in Engineering from

BIT Mesra Ranchi, Jharkhand, India in the year of

2009. His Research area is Object-Oriented

Metrics, Object-Oriented Software Engineering,

Programming Languages, and Database System.

Mr. Arbind Kumar Choudhary is a Senior

Lecturer in the Department of CS&E at Birla

Institute of Technology, International Centre

Muscat, Sultanate of Oman. His Research area is

Object-Oriented Metrics, Software Engineering and

Programming Languages.

Dr. Anand Mohan Agrawal is a Professor of

Mangement at Birla Institute of Technology Mesra

Ranchi, Jharkhand, India. Currently, He is working

in Muscat, Oman. His Research Interest is

Operation Management, E-Commerce and

Information Technology.

