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Abstract 

Optimizing interconnection networks is a prime object in switching schemes. In this work the authors 

present a novel approach for obtaining a required channel arrangement in a multi-stage interconnection 

network, using a new concept – a fundamental arrangement. The fundamental arrangement is an initial 

N-1 stage switch arrangement that allows obtaining any required output channel arrangement given an 

input arrangement, using N/2 binary switches at each stage. The paper demonstrates how a fundamental 

arrangement can be achieved and how, once this is done, any required arrangement may be obtained 

within 2(N-1) steps. 
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1. Introduction: Multi-stage interconnection networks 

One common use for multi-stage processing is in Optical switching (Saleh and Teich, 1991 and 

Pan et al., 1999). It has been shown that Multi-stage Interconnection Networks (MIN) are the 

preferred way to implement compact switches by means of shuffle and exchange (Parker, 

1980). In recent years much work has been done in the field of compact optical MINs 

(Reinhorn et al., 1997 and Marom et al., 1998). This led the way to an all-optical switch (Cohen 

et al., 1998 and Mendlovic et al., 1999), which is faster and more flexible than common 

electronic switches used for fiber communication. The multi stage switching setup is similar to 

the multi stage processor and many concepts may be shared between the two.  

First we define some common classes of connectivity. Partial connection: One input channel 

may connect to at least one output channel. Fully Connected System: Any single input can be 

connected to any (arbitrary) output. However, after this is achieved it may prevent other 

connections from being implemented. This condition is known as a BLOCK (Clos, 1953). 

Rearrangeable Non-blocking (RNB) System: Any permutation of an input-to-output connection 

can be established. However, if a new connection has to be made, some of or all the existing 

connections have to be reconnected, thus introducing a temporary channel interruption until the 
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rearrangement is complete. Wide-sense Non-blocking (WSNB) System: If while connecting the 

inputs to the outputs a proper algorithm is applied, a new connection can be established without 

disturbing any of the existing ones. WSNB allows any set of input channels to connect with any 

set of output channels with no need to alter the dynamic routing structure except in specific 

modules, connected directly to the alteration. Unfortunately, in standard MIN architectures, a 

general solution for wide-sense non-blocking is yet to be found. Strictly non-blocking (SNB): 

Allows any set of input channels to connect with any set of output channels with no need to 

alter the dynamic routing structure except in specific modules, regardless of the inner-structure. 

Unfortunately, in standard MIN architectures, strictly non-blocking cannot be achieved. 

To connect a set of input channels to a set of output channels one might use a crossbar switch as 

described in Figure 1. In this structure any input channel may be connected to a free 

(unconnected) output channel without any blocking, always. It also allows broadcasting a single 

channel to several output channels in a simple manner. However, such a structure requires 
2N  

switches, which is a large number of dynamic elements.  

 

Figure 1. An N-by-N crossbar switch connecting N lines to N lines. 

For this reason we turn to Multi-stage Interconnection Networks (MIN). In these networks part 

of the dynamic switching is replaced by static shuffling. At each stage a set of switches can 

convert the input channel arrangement into one of a finite number of arrangements. For 

obtaining the ability to allow any channel arrangement at the output, one requires several 

switching stages accompanied by shuffling/routing stages to ensure that each switching stage 

has the opportunity to deal with different channel combinations. 

Now we define some common MIN routing schemes: Perfect shuffle, Banyan and Crossover. 

The best way to define these routing/shuffling methods is demonstrated in Figure 2: 
  

Figure 2. The first 3 stages of an 8 by 8 MIN setup using the following routing methods (a) 

Perfect Shuffle, (b) reverse Perfect Shuffle, (c) Crossover, and (d) Banyan. 
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In perfect shuffle we shuffle all channels the same way we may shuffle a deck of cards, by 

splitting the deck in two and then taking cards alternately from the two decks. In this routing 

scheme all routing stages are identical, and the same shuffling applies to all stages. A reverse 

shuffle is also commonly used. 

In Crossover, the first stage deals with the entire set of channels and implements a certain 

shuffle. The second stage deals with half the channels using the same shuffling concept and so 

on, until the minimal shuffle is achieved  (crossing or transmitting between channels sharing the 

same switch is not considered shuffling) and then returning to the initial shuffle, addressing all 

channels. 

In Banyan, a slightly different shuffling concept is chosen, and this time the number of channels 

involved in the shuffling increases as we advance to the next stage. Once all the channels are 

used in a single shuffle we return to the initial shuffle, as in the first stage. 

Here we find it necessary to define topological equivalence: Two networks A and B are said to 

be topologically equivalent (or isomorphic) when the links and switches in network A can be 

relabeled with logical addresses so that the resulting topological connections in network A are 

identical to the topological connections described by network B. It is needless to state that all 

the architectures shown in Figure 2 are topologically equivalent. 

In 1986, a simple optical realization of perfect shuffle was suggested (Lohmann et al., 1986). A 

simplified version of this setup is shown in Figure 3 and demonstrates a perfect shuffle for eight 

channels using two lenses and two micro-prism arrays. 

 

Figure 3. An optical realization of perfect shuffle routing for eight channels. 

The micro-prisms are the diffractive equivalent of full size prisms, allowing a slim design for 

the setup and enabling its implementation using planar optics. At the same time, Lohmann 

published a more general work on the possible implementations of digital optical computers 

(Lohmann, 1986). These possibilities, alongside the novel optical switches developed in the 

1990s allow the construction of complete MINs using optics. 

We will focus on the Omega-2 (Ω-2) network that uses dual-channel switches (as illustrated 

before). In such cases the switches may occupy one of the following states: bypass, and 

exchange. Using such switches in an MIN setup generates a sufficient flexibility to implement 

RNB networks, assuming the number of stages is large enough. A more detailed representation 

of shuffling and switching will be given in the specified section, when the authors makes an 

effort to model the MIN and to find solutions to specific problems. 
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2. Using the iterative procedure in MIN optimization 

First we recall that the MIN can be optimized in an iterative manner (Gur et al., 2002). We start 

with an input vector, where each element in the vector corresponds to a single input channel. 

Our purpose is to manipulate these input channels in such a way that the output vector will 

contain the same channels, yet in a different, required, order. Each routing stage contains static, 

or fixed, shuffling architecture (Golomb, 1961, Parker, 1980) such as perfect shuffle, Banyan or 

crossover, given in Figure 4. We present the matrix form of the shuffling architectures since we 

use these matrix notations later on. Each stage of static routing is followed by an active routing 

stage, composed from bypass/exchange switches. We recall that a bypass/exchange module 

accepts two input channels and either leaves them as they are (bypass) or switches between 

them (exchange). In this way, one might reach any desired output from any given input if the 

number of stages is large enough. The matrix representation of these switches is shown in 

Figure 4. 

Figure 4. The first stage in shuffling architectures (a) perfect shuffle, (b) crossover and (c) 

Banyan, all for an 8 by 8 setup. In (d) through (f) one may view the matrix implementation of 

the routing given in (a) through (c), respectively. In perfect shuffle, all stages are identical, in 

contrary to crossover and Banyan. 

 

Given an input vector and an output vector (each representing a set of channels), there are 

several matrices representing a linear system that will lead from one to the other. However, 

there are a few constraints on the matrices available for switching. The dynamic routing matrix 

must contain only “0”s and “1”s and no more than one “1” in a given row or column (each 

input channel can be connected only to one output channel and each output channel can receive 

information only from one input channel at a time). A logical “1” in a given row and column 

coordinate means that the input channel corresponding to the column index is connected to the 

output channel corresponding to the row index. The matrix must be constructed out of bypass 2 

by 2 matrices and exchange 2 by 2 matrices (as drawn in Figure 4), placed on the main 

diagonal, where the other elements of the matrix are all “0”. An example for valid and non-

valid bypass/exchange matrices is given Figure 5. 
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The output of the entire MIN is a result of M stages of both static and dynamic routing (the 

elements in the input and output vectors are the indices of the input channels). In the input 

vector the element location is identical to its value whereas in the output vector an index i in the  

j location refers to the i
th
 input channel moved to the j

th
 output channel). The path of proceeding 

from input to output is as follows. First, the input vector is multiplied by a static routing matrix 

(in the perfect-shuffle architecture all routing matrices are identical, in other architectures, such 

as Banyan and crossover architectures, each stage the routing matrix combines a different 

number of participants, as shown before). Then, the result is multiplied by a switching 

(dynamic routing) matrix, then by a second static routing matrix and so on.  If the number of 

stages is large enough (an order of N or even Nlog2 stages, depending on the value of N) one 

can obtain any output vector from any input vector. 

 

Figure 5. Bypass and exchange sub matrices. The bypass matrix leaves the 

inputs as they are while the exchange matrix switches between the two 

channels. 

3. Different connectivity architectures– discussion 

In this section we demonstrate the difference between Wide-Sense Non-Blocking (WSNB) and 

Strictly Non-Blocking (SNB) and we try to define a general condition for making Wide-Sense 

Non-Blocking possible in common MIN. We also suggest a method for constructing an 

arrangement of switches, referred to as a “Fundamental Arrangement” (FA) that contains all 

possible pairs of channels in an N-1 stage network, and can be used as a basis for fast 

Rearrangeable Non-Blocking  (RNB) MIN. We do this with respect to the perfect shuffle 

arrangement, yet without restricting generality since all MIN architectures are topologically 

equivalent and thus we can find a similar FA for other architectures as well. 

 

3.1 SNB & WSNB – definitions and existence in omega-2 MIN 

First we recall the definition of a Wide-Sense Non-Blocking network: If while connecting the 

inputs to the outputs a proper algorithm is applied, new connection can be established without 

disturbing any of the existing ones. If we take a closer look at the underlined condition and try 

to interpret it in terms of an omega-2 MIN, we find that it refers to the case where switching 

any two channel may be done using a single 2 by 2 switch, thus not disturbing the other 

channels. For this to be true we need that at every moment the MIN will contain all possible 

switches. This might seem logical if we do not limit the number of stages of the MIN. However, 

as we will show below, it requires a certain condition. We first look at a multi stage MIN setup 

as described in Figure 6. 
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Figure 6. An 8 by 8 MIN setup using an omega-2 structure and perfect shuffle routing. 

Although we look at the perfect shuffle architecture, the following remarks apply to all 

topologically equivalent architectures. Let us assume that SNB is possible without restrictions, 

and try to find the requirements of the WSNB algorithm. Therefore, if the number of stages 

presented is sufficient, we will observe all possible switch input combinations. Therefore, any 

input-output connection may be obtained by changing a single switch, without disturbing other 

connections, and performing this change will leave the system Wide-Sense Non-Blocking (and 

SNB if we do not force any demands). Now we start changing the switches one at a time. For 

the prefect shuffle scheme we simply convert each exchange to a bypass. Every change must 

leave the system SNB; otherwise SNB has no meaning. Finally we obtain an all-bypass 

network. Now we note that due to the fully connected system, after N2log stages (N being the 

number of channels), the all-bypass MIN returns to its original channel arrangement, as shown 

in Figure 7. For a different shuffling scheme the switch combination allowing this characteristic 

is different, of course. 

Figure 7. The 8 by 8 MIN setup when all switches are in bypass mode. 

Since after N2log  stages we return to the original channel arrangement, each channel 

encounters only N2log channel along its path, and it encounters them over and over again. 

Thus, the other NN 2log1−− channels are not interacting directly with the specific channel 

and therefore not all pairs are represented by independent switches. The direct conclusion is of 

course that SNB does not exist in MIN, but this is a known fact. 

The new distinction is that a block of consecutive N2log  stages of all-bypass switches is the 

main reason for preventing SNB and therefore the key for planning WSNB. In the early 80s 

Benes and Kurshan (Benes & Kurshan, 1981) showed the private case of a 4-by-4 MIN that 

requires 4 stages for WSNB with the accompanied algorithm that disallows the 2 middle stages 

from being all-bypass. This is merely a private case of our conclusion with respect to 

2log2 =N  for the case 4=N . Over the years many attempts have been made to find a 

general solution to the WSNB problem, yet different solutions were suggested for different N 

values. We hope that the above notation might lead the way to a more general WSNB 

algorithm. The general construction of WSNB is quite difficult and therefore we choose to 

concentrate on RNB as in the next section. 
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If we insist on an SNB setup we can obtain it in non-MIN architectures such as the one shown 

in Figure 8, where 
2N direct connections are required. 

 

Figure 8. A Strictly Non-Blocking architecture allowing to switch any pair of channels without 

disturbing the other channels. 

3.2 RNB and the construction of fundamental arrangements 

 
As shown before the existence of all switching pairs at a specific arrangement does not indicate 

the feasibility of WSNB since exchanging the channels for a single switch may eliminate 

several of the other pairs.  However, the existence of such an arrangement, we will refer to as a 

Fundamental Arrangement (FA), does hold certain characteristics regarding the system 

connectivity. 

 

In recent years a considerable amount of research related to RNB networks in general (Shen at 

al., 2002) and to RNB in MIN in particular (Das et al., 2000 and Cam, 2003) was conducted. In 

the later research it was shown that ( )1log2 2 −N  stages are sufficient for obtaining RNB in 

MIN architecture. This is known to be the theoretical lower bound for RNB. However, the 

algorithm used for rearranging a general set of channels is quite complex. It also relates, as 

most discussion, to a specific number of stages N. In the following paragraphs we present a 

simple algorithm applicable for large MIN architectures ( 1−N  stages). 

We look again at the perfect shuffle routing scheme, without restriction of generality. Since the 

structure is symmetrical with respect to the y-axis in order not to return to a pair of channels 

occupying a single switch before passing through all other pair combinations we use an anti-

symmetric switch choice as the one given in Figure 9. As seen from the MIN sketch, choosing a 

non-symmetric structure, and one that differs from one stage to the next we can obtain an FA. 

This concept was tested for systems containing 4, 8, 16, 32 and 64 channels and it produced the 

FA in each and every one.  

 

We note that we need only )1( −N stages to obtain an FA since we have 2/N  switches per 

stage and the total number of pairs is 2/)1( NN − . This is since the first channel interacts with 

)1( −N  channels, the second with )2( −N channels excluding the first, etc. 

Figure 9. Obtaining a fundamental arrangement in an 8-channel MIN using perfect shuffle. 
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We will now show that from the FA one can reach any output combination, thus that )1( −N

stages are sufficient for obtaining RNB. We start with the 8-by-8 case and explain the 

procedure via an example, and then we give a more general explanation. 

Let us assume that we have the 7 stages setup given in Figure 9 and we want the output to 

become (from top to bottom): 1,3,5,7,2,4,6,8. Thus, from comparison to the current FA output, 

we look for the following channel pairs: 8-1, 7-3, 6-5, 5-7, 4-2, 3-4, 2-6 and 1-8. We start from 

the 1st stage and find the pairs: 5-7 and 2-4. We switch them making the output 8,5,6,7,2,3,4,1. 

So now we require different pairs: 8-1, 5-3, 6-5, 3-4, 4-6 and 1-8. None of them appears in the 

1st stage, nor in the 2nd stage now being 5,1,4,8,7,3,2,6. We proceed to the 3rd stage where we 

find 1-8. We change this switch and obtain at the output: 1,5,6,7,2,3,4,8. 

 

 

Figure 10. A 5-step example for obtaining a required output from the basic FA output. 

Next we need to change 5-6 and 3-4, both present at the 5th stage. The output now is 

1,6,5,7,2,4,3,8 and thus we need only to find the pair 3-6, and it exists in the 3rd stage. Thus, 

after altering the last switch, we obtained the required output from the FA arrangement. From 
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this example we anticipate that there’s a way to obtain any output arrangement by first 

changing the switches to the FA and then proceeding according to the steps described above. 

The network described in this example is shown in Figure 10. For a more general description 

we present the next paragraphs. 

We start with 2/)1( NN −  switches, according to FA, such that all couples are present. Let us 

give arbitrary names to the input channels (‘1’ does not have to be the actual first channel etc.) 

and use the 8-channel case for better understanding. The alterations required to switch from one 

output order to another has a variety of options from 4 cyclic groups of 2 elements: 1-2, 3-4, 5-

6, 7-8, meaning that 4 switches are enough and there’s no cross-connection between pairs, to 

the complete cycle (remember the names of the channels are arbitrary) which means actually no 

cycle: 1-2-3-4-5-6-7-8 (which means channel 1 is redirected to the second position, channel 2 to 

the third position etc., leaving channel 8 to occupy the first position), through various 

arrangements such as: 1-2-3-1, 4-5, 6-7-8-6. 

Without restriction of generality we write the following:  

• At a given stage channels 1 and 2 where swapped using a single switch. This switch will be 

denoted as S12 (In the worst case scenario this will happen in the first step, using the FA). 

• Thus, switches in following stages have changed if one of their inputs was 1 or 2, e.g., the 

previous S15 will become S25. 

• Next, a new pair of channels has to be swapped, and the options are as follows: 

1. The new pair contains channels such as 3 and 4, i.e., no connection with S12. Therefore, it is 

certain that S34 exists, and a single switch may be used. 

2. The new pair contains channels such as 1 and 3 (or 2 and 3), and thus there are three sub-

options: 

2.1. In the FA, S13 preceded S12 (comes at an earlier stage) and therefore it still exists. 

Hence, channels 1 and 3 may be swapped using a single switch. 

2.2. In the FA, S13 follows S12 (comes at a later stage), but S23 also follows S12. Thus, 

S13 and S23 will simply change roles, i.e., S13 exists and channels 1 and 3 may be 

swapped using a single switch. 

2.3. In the FA, S13 follows S12, but S23 precedes S12. This means that after S12 has been 

switched S13 becomes S23. Thus, two switches S23 are present, one before S12 and 

one after S12. The later S23 may be used to generate an indirect connection between 

channels 1 and 3, which may require concatenation (chaining) of several switches. The 

earlier S23 will be used to return to the initial state, except for swapping 1 and 3.  

In 2.1, it has been noted that: “In the FA, S13 preceded S12 (comes at an earlier stage) and 

therefore it still exists. Hence, channels 1 and 3 may be swapped using a single switch”. We 

note that changing S13 will change S12 and therefore it may vanish, BUT we will use S13 only 

if S12 was used to place channel 2 in the proper position. If however, S12 was used to place 

channel 1 in the proper position, then the next switch we look for will be S2#, e.g. S24, which 

involves channel 2 rather than channel 1. 

Finally we write the straightforward algorithm as follows:  

1. Place the switches in the FA arrangement. 

2. Compare the initial output to the required output and thus obtain N required pairs 

switches (or less if a certain channel is already in place). 

3. Search for any of the pairs in the first stage and move up the stages until a pair (or 

more) is found in the Kth stage. Such a switch is sure to be found within the N-1 

stages. 

4. Change the switch position from bypass to exchange or vice versa. 
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5. Obtain the current output and compare it to the required one to obtain the new required 

pairs (less than N since at least one channel is now in place). 

6. Search for any of the pairs in the first stage and move up the stages until a pair (or 

more) is found. 

7. Proceed with steps 4 to 6 until all output channel are in place. 

It is important to note that due to the FA we will never need more than (N-1) stages since the 

first switch may eliminate up to (N-1) switches, the second up to an extra (N-2) switches (since 

combinations of pairs from both steps are not eliminated) etc., until finally the Nth switch 

eliminates no switches. Summing up we obtain 2/)1( NN −  different switches as present 

initially in the FA. Comparable research either showed an increase in the number of stages by a 

factor of 3 (Bergen, 2003), or used iterative methods (Khandker et al., 2002) thus requiring a 

longer time to converge to the final arrangement. 

Thus, we presented an algorithm for obtaining any required channel arrangement from any 

given arrangement using a maximum of 2(N-1) steps: first we find the required steps from the 

FA to the original arrangement and reverse the steps to obtain the FA, next we find the required 

steps from the FA to the required channel arrangement. Each of these two parts contains a 

maximum number of (N-1) steps and thus the entire procedure requires 2(N-1) steps at the 

most. It is clear that this is not always the fastest way to obtain one channel arrangement from 

to another (e.g., if they differ by a single switchable pair) but it is a no-fail method. 

 

4. Conclusions 

In this paper the authors showed a novel algorithm required to obtain RNB connectivity using 

analytical procedures rather than iterative procedures. The suggested approach uses a reference 

arrangement named a fundamental arrangement. The original channel arrangement is first 

transformed into a fundamental arrangement in N-1 steps, at the most, and then transformed 

into the required channel arrangement. The result is a fast routing procedure that uses only N-1 

stages and 2(N-1) steps to obtain the required output, in contrary to an order of NN 2log stages 

used in previous algorithms. Finally, the results led to a discussion on several insights regarding 

WSNB and SNB architectures. Although the method is shown for the perfect shuffle 

arrangement, all MIN architectures are topologically equivalent and therefore the results apply 

to any multi-stage architecture. 
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