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ABSTRACT 

In this study, the concept of the chemical substance pheromone is utilized for the robotic tasks. This paper 

first illustrates the model of pheromone-based potential field. The field is constructed through the 

interaction between mobile robots and data carriers, such as RFID tags. The emphasis in the modeling of 

the system is on the possibility of the practical implementable ideas. The stability analysis of the 

pheromone potential field is carried out also aiming at the implementation on a real robotic environment. 

The comprehensive analysis on stability provides the criteria for how the parameters are to be set for the 

proper potential field, and has led to a new filter design scheme called pheromone filter, which satisfies 

both the stability and accuracy of the field. The unique structures of both the revised mobile robot and the 

designed filter show that the proposed method facilitates a more straightforward and practical 

implementation. 
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1. INTRODUCTION 

It has been known for some time that social insects such as ants and bees communicate with 

each other through a process which is generally called stigmergy, and perform given tasks 

effectively by using the chemical substance pheromone [1]. Although the term stigmergy was 

originally introduced to explain the behavior of termite societies, it later came to describe 

indirect communication mediated by modifications of the environment that can also be observed 

in other social insects [2]. Inspired from these biological characteristics, researchers have been 

recently motivated to undertake studies on pheromone-based robotics [3, 4]. In addition to this, 

there are other studies that make use of the RFID (Radio-Frequency Identification)  technology 

[5] for realizing digital or artificial pheromones [6, 7], wherein the agents communicate with 

other agents by updating a pheromone trail through the RFID tags distributed in an 

environment.  

In particular, interests in RFID technology for navigation of the mobile robot have been 

currently growing [8, 9]. For instance, Vorst et al. focused on SLAM (Simultaneous 

Localization And Mapping) techniques that map static tags' locations [10], and Kodaka et al. 

tried to build a navigational entropy map using RFID tags distributed on the floor [11]. 

However, few researches have suggested guidelines on stability when applying RFID tags for 

these real robotic tasks.  
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This study utilizes the idea of the artificial pheromone. The study emphasizes that the stability 

analysis is fundamental not only to secure the simple implementation, but also to improve the 

scheme in both stability and accuracy.  

       

 

Figure 1. The shortcut on which pheromone is accumulated in the Lasius niger colony (adapted 

from Camazine et al. [12]) and its realization in robotic platform: the darker objects indicate the 

ants observed from more elapsed time in (a), and the black-filled RFID tags represent those 

storing the information of artificial pheromone in (b) 

 

This paper first illustrates the scheme of pheromone-based interaction. Passive RFID tags are 

spread out onto the floor so that they can be used as storage of the field information. The 

artificial pheromone is effectively distributed over the whole field via the communication 

between robots and RFID tags. The next section details the deployment of the pheromone, 

thereby highlighting how this process can be considered to be similar to the spatial smoothing of 

the image plane, which is typically realized by the masked kernel. After the observation of the 

models, the stability criteria are formulated and evaluated in section 3, where the necessity of 

the less restricted algorithm is raised. As a consequence, the implicit method is introduced in 

section 4. All of these investigations will be concluded as the designing scheme of a new filter 

in section 5, where a proposed method provides more freedom for designing a kernel. Some 

closing remarks will be made in the last section. 

2. MODELING BASED ON PHEROMONE DEPLOYMENT 

In this section, we outline the model and present the real platform that is being developed. Let 

us first introduce the ant colony as the most popular biological model that makes entire use of 

the pheromone.  

Figure 1(a) shows the shortcut-producing process observed from the black garden ant (Lasius 

niger) colony, where the distance between the food source and the nest is set 1 meter and ants 

were randomly distributed at the beginning of the experiment. When a colony is offered a food 

source, a scouting ant discovers the source and returns to the nest, laying a pheromone trail 

which dissipates over time and distance. At the nest, other foraging ants detect the trail and 

follow it to the food source. Those that arrive at the source load food and return to the nest, 

thereby reinforcing the trail. By contrast, unsuccessful pheromone trail-followers explore the 

field before either returning to the nest or finding the food source. Since the trail is reinforced, 

more ants are recruited in accordance with the time, and as a result, the shortcut between the 

(a) The shortcut between food source and 

nest in ant colony 

(b) The shortest path between goal and home 

in robotic platform 
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food source and the nest is formed by the strengthened pheromone trail. Likewise, if there are 

sufficient number of robots and data storing devices such as RIFD tags, the robots may also 

form and follow the shortest path between home and goal as shown in Figure 1(b),   which is the 

                 

 

 

 

Figure 2. The revised robot and the illustration of the interaction in the experimental field: in 

(b), the arrow denotes the heading of the robot and the black-filled RFID tags indicate those to 

be updated 

 

fundamental concept of pheromone-based robotics. How, then, can the numbers of the robots 

and RFID tags be determined so that the system works properly? Also, what kinds of functions 

are required for each agent? This study has been launched in order to provide an answer for 

these questions. 

In the framework of this study, the system illustrated in Figure 1(b) can be realized via the 

interaction between mobile agents with RFID transceivers and RFID tags, on which the digital 

equivalent of pheromones is laid by the agents.  

For mobile agents, we use revised e-puck robots that have RFID readers and writers on their 

forward and backward side, as shown in Figure 2(a). The passive RFID tags, which are the 

white rectangular tags in Figure 2(a), are adopted for this study in the same way as our previous 

work [7]. The RFID tags are wireless and battery-free, and each tag is marked with a unique 

identifier and is equipped with a small memory that allows it to store data. The data consists of 

the tags' own IDs and scalar pheromone values. The passive nature of the RFID tags implies that 

pheromone can be diffused only via the interaction between robots and RFID tags, which is 

illustrated in Figure 2(b).  

If we assume that the RFID tags are uniformly distributed over the whole field, the concept of 

the pheromone deployment is equivalent to the smoothing or blurring of a digital image. In 

other words, since the spatial filtering process consists simply of moving the filter mask from 

point to point in an image, the diffusion of the pheromone over the field of the RFID tags using 

a mobile robot can be considered as a filtering operation of the image. In this mechanic, the 

robot corresponds to the filter mask and the RFID tags act as pixel points. This paper evaluates 

and develops all algorithms on the assumption that the field consists of a uniform lattice. Note 

that, from Figure 2, the structure of the revised robot is fairly similar in shape to the one-

dimensional filter mask. By virtue of this unique feature, it is expected to be adequately 

(a) Revised e-puck robot with RFID reader 

and writer and RFID tags distributed on the 

floor 

(b) Concept of the interaction between a 

mobile robot and RFID tags 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 5, Oct 2011 

110 

 

 

 

straightforward to implement an algorithm after evaluation. We will thoroughly use this 

structural concept when developing a new scheme, pheromone filter, in the latter section. The 

filter is to be implemented on the mobile robot as an action algorithm so that the artificial 

pheromone is propagated through the RFID tags in a stable way.  

3. PHEROMONE POTENTIAL FIELD 

3.1. Stability condition of the model  

The mathematical pheromone model in one-dimensional space x is  

2

2

( , ) ( , )
( , ) ,

u t x u t x
D Ku t x

t x

∂ ∂
= −

∂ ∂
          (1) 

where the coefficients D and K represent diffusion and evaporation rate respectively [13]. We 

can easily extend the same idea to the two-dimensional space without losing generality, for 

example, the pheromone model in two-dimensional space ( , )x y  is 

2 2

2 2

( , , ) ( , , ) ( , , )
( , , ) .

u t x y u t x y u t x y
D Ku t x y

t x y

 ∂ ∂ ∂
= + − 

∂ ∂ ∂ 
         (2) 

This paper, therefore, focuses on the one-dimensional case for reasons of simplicity. Although 

there are several solutions for this sort of PDE (Partial Differential Equation) problem, this 

study adopts the finite difference calculus method, because it is considered to be the most 

suitable for implementation on a real robotic environment. Equation (1) can be discretized as 

following difference equation through using the FTCS (Forward Time Central Space) scheme 

{ }

{ }2

1
( , ) ( , )

( , ) 2 ( , ) ( , ) ( , ) ,
( )

n i n i

n i n i n i n i

u t t x u t x
t

D
u t x x u t x u t x x Ku t x

x

+ ∆ −
∆

= − ∆ − + + ∆ −
∆

 

     (3)

 

where we calculate the time derivative in a forward manner and calculate the space 

derivative in a centered manner.  

The numerical stability is estimated with relation to the growth or decrease of the rounding error 

in the calculation scheme of the finite difference method. In this study, we consider the 

perturbation stability analysis [14], which is, in our opinion, the simplest and most 

straightforward.  

Let us slightly simplify the equations by using the notation that temporal indices are represented 

by a superscript and spatial indices are represented by a subscript, such that the value of the 

function U at the time tn and at the point xi is expressed as Ui
n, i.e., ( , ) n

n i iu t x U= . 

The pheromone equation using this notation becomes  

{ } { }1

1 12

1
2 .

( )

n n n n n n

i i i i i i

D
U U U U U KU

t x

+
− +− = − + −

∆ ∆
          (4) 

If we add the perturbation εi
n
 to around Ui

n
, the difference equation is written  

{ } { }1

1 12

1
( ) 2( ) ( ) .

( )

n n n n n n n n n

i i i i i i i i i

D
U U U U U K U

t x
ε ε ε+

− +− + = − + + − +
∆ ∆

      (5) 
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Having rearranged the equation, we get  

{ }
1

1
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1 12 2

ˆ

2
(1 ) 2 1 .

( ) ( )
n n
i i

n n n n n n

i i i i i i

U

D t D t
U K t U U U U K t

x x

ε

ε

+
+

+

− +

 ∆ ∆
= − ∆ + − + + − − ∆ 

∆ ∆ 14444444244444443 144424443

       (6) 

       

 

       

 

Figure 3. The outputs of the pheromone equation for varying parameters  

 

For the stable behavior of the system, the perturbation should be decreased, which means the 

condition 

1

1
n

i

n

i

ε

ε

+

<            (7) 

must hold. In view of the case of no overshoot, the above condition should be changed as 

(a) Stable case (b) Unstable for large D 

(c) Unstable for large K (d) Unstable for large ∆t 
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From Equation (6) and (8), the stability condition without overshoot leads to 

2

1
.

( ) 2 2

D K
t

x

 
+ ∆ ≤ 

∆ 
            (9) 

For a two-dimensional case, if a square cell is assumed, the following condition is required for 

each x and y direction. 

2 2

1 1
,

( ) 4 4 ( ) 4 4

D K D K
t t

x y

   
+ ∆ ≤ + ∆ ≤   

∆ ∆   
        (10) 

3.2. Numerical simulation 

From the derived stability condition, it is noted that all varying parameters, i.e., K, D, ∆t and ∆x, 

are coupled together for the stable solution, thus we performed a numerical simulation in a 

leave-one-out cross validation way. That is, we observe the outputs as varying one coefficient 

while keeping all other parameters the same. The only parameter ∆x is fixed as ∆x=1 for 

displaying the simulation results in a more comprehensible way. In addition, throughout the 

simulations presented in this paper, we assign constant boundary conditions at the left-hand and 

right-hand edges, i.e., the Dirichlet boundary conditions are imposed.  

Figure 3 shows the outputs of the pheromone equation. Unstable behaviors are observed for the 

larger D, K and ∆t than the formulated criterion (9). The results of the simulation indicate that 

the derived stability condition works properly, and, what is more, illustrate that all parameters 

contribute strictly and independently to the stability of the potential field. It is obvious that ∆x 

and ∆t are critical coefficients, especially in pheromone-based implementation, because 

updating the frequency of the potential field depends mainly on the number of RFID tags and 

the speed of the robots.  

Unfortunately, however, it is not possible to precisely configure these parameters in advance, 

partly because of the inherent uncertainty of the real experimental environment, and partly 

because of the highly-coupled properties of each parameter in the stability condition.  

From this point on, we use D=0.4, K=0.02, ∆t = 1 and  ∆x =1 as typical stable parameters. The 

parameters that consist of the unstable cases for large K and ∆t, i.e., Figure 3(c) and Figure 3(d), 

will be used when comparing the stability of the other schemes in the next section. 

4. STABLE SOLUTION FOR THE PHEROMONE MODEL 

When applying a pheromone model to the real robotic system, as we have examined, all 

parameters consisting of stability condition need to be carefully designed, otherwise they can be 

a bottleneck. To relax these restrictions, we have noticed the fact that the implicit time stepping 

can improve or even eliminate stability limitations, which suggests that combining a backward 

scheme in time with a central difference approximation in space, i.e., the so-called BTCS 

(Backward Time Central Space) scheme, may make a pheromone potential field more stable. 

4.1. BTCS scheme  

The BTCS scheme can be written  
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which is logical and obvious from the definition of the scheme. If we define diffusion number 

and evaporation number as  
2( )

D t
d

x

∆
=

∆
 and k tK= −∆ , respectively, the equation is written 

{ } { }1 1 1 1 1

1 1
2 .n n n n n n

i i i i i i
U U d U U U kU

+ + + + +

− +− = − + −        (12) 

There is a general knowledge that the Fourier coefficient of the solution of Equation (12) can be 

written 

( )
,xj i xn n

iU V e
ω ∆=          (13) 

where 1j = − , and 
n

V is the amplitude of the nth harmonic. If we set phase angle θ=ωx∆x , 

n

iU and 
1

1

n

iU
+

±  can be described as the following Fourier series. 

1 1 ( )

1,n n ji n n j i

i iU V e U V e
θ θ+ + ±

±= =         (14) 

Let us substitute Equation (14) into Equation (12) and divide by 
ji

e
θ

, then 

     
1 1 1( 2)n n n j j n

V V dV e e kV
θ θ+ + − +− = + − −         (15) 

is derived. Using the Euler's formula, the equation is rearranged as 

1(1 2 (1 cos ) ) .n n
V d k Vθ+ + − + =         (16) 

If we define an amplification factor G as 

1 1
,

(1 2 (1 cos ) )

n n n
V V GV

d kθ
+ = =

+ − +
       (17) 

the condition 

1
1

(1 2 (1 cos ) )
G

d kθ
= ≤

+ − +
        (18) 

must apply for the converging solution. This inequality is called the von Neumann stability 

condition. From the fact that d > 0, (1-cosθ) ≥ 0 and k > 0, the condition (18) is always the case. 

This means that the BTCS scheme is unconditionally stable for any parameters.  

If we define diffusion matrix Dm as 
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Figure 4. The outputs of the pheromone equation for varying parameters using the BTCS 

scheme 

 

and represent Equation (12) in matrix form, the scheme is written as the following simplified 

form. 

1 1 1

1( )

n n n n

n n

d k

d k

+ + +

+

= + −

− + =

m

m

U U D U U

I D I U U
         

(19)
 

Note that the rank of ( )d k− +mI D I  is never reduced, hence the solution  

1 1( )n n
d k

+ −= − +mU I D I U         (20) 

always exists. The stable behavior can be observed from Figure 4 in comparison with the output 

under the same condition as that used for Figure 3. We present only the case for the large K and 

∆t parameters, at which the output appeared unstable when using the FTCS scheme. 

4.2. Crank-Nicolson scheme 

As far as stability is concerned, we are definitely able to get a solution for the pheromone 

equation. We also anticipate that the computational cost is not that expensive, because 

( )d k− +mI D I  forms a tri-diagonal matrix [15].  

However, when it comes to the implementation of Equation (20), we encounter with a crucial 

difficulty, due to the fact that the inverse of a tri-diagonal matrix is no longer tri-diagonal. That 

is, most of the elements are required in order to retrieve the temporal and spatial information 

(a) Stable for large K (b) Stable for large ∆t 
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from an inverse matrix. Also, regarding the accuracy of the BTCS scheme, since it is a temporal 

approximation, the method contains more numerical errors than the FTCS scheme.  

On the basis of these considerations, the Crank-Nicolson method was deemed to be the most 

appropriate solution for this study. It is second-order and implicit in time, and is numerically 

stable [16]. The method was proposed mainly to improve the accuracy of the BTCS scheme, but 

we are, rather, interested in the structure produced by the method. It has the averaged form of 

the FTCS and BTCS schemes at n and n+1, respectively.  

       

 

Figure 5. The outputs of the pheromone equation for varying parameters using the Crank-

Nicolson scheme 
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The von Neumann stability condition is obtained as 

1 (1 2 (1 cos ) )

(1 2 (1 cos ) )

n n nd k
V V GV

d k

θ

θ
+ − − −

= =
+ − +

       (22) 

using the same technique that was used for the BTCS scheme. From the above condition, it is 

obvious that the value |G| will not go higher than 1, and thus the Crank-Nicolson scheme is 

unconditionally stable for all varying parameters. The stability is validated in Figure 5.  

Let us finally represent the method as a matrix form in order to clarify the mathematical 

structure.  

1 1 1( ) ( )n n

n

d k d k
+ − −= − + + −

=

m m
U I D I I D I U

WU
       

(23)
 

It is worthwhile to mention here that the system (23) is stable either when 

1<W          (24) 

(a) Stable for large K (b) Stable for large ∆t 
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where W  represents Euclidean norm, or 

1
max 1 ,j

j n
µ λ

≤ ≤
= ≤w

           (25) 

0.44 0.21 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.21 0.47 0.22 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.03 0.22 0.47 0.22 0.03 0.00 0.00 0.00 0.00 0.00

0.00 0.03 0.22 0.47 0.22 003 0.00 0.00 0.00 0.00

0.00 0.00 0.03 0.22 0.47 0.22 0.03 0.00 0.00 0.00

0.00 0.00 0.00 0.03 0.22 0.47 0.22 0.03 0.00 0.00

0.00 0.00 0.00 0.00 0.03 0.22 0.47 0.22 0.03 0.00

0.00 0.00 0.00 0.00 0.00 0.03 0.22 047 0.22 0.03

0.00 0.00 0.00 0.00 0.00 0.00 0.03 022 0.47 0.21

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.21 0.44









 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure 6. The calculated state transition matrix for an initial delta function: the matrix was 

derived from the Crank-Nicolson scheme with parameters ∆t=1, ∆x = 1, D = 0.4 and K = 0.02 

 

where µw  is called the spectral radius of the matrix, and jλ  represents eigenvalue. The 

relationship between two measures 

µ ≤
w

W          (26) 

is also functional [17], in that the stability of the system can be checked by evaluating the 

maximum eigenvalue while developing a filter in the matrix form.  

5. PHEROMONE FILTER 

5.1. Design concept 

Having recognized the result of the stability analysis, the useful design scheme for a smoothing 

filter is shaped in this section. The filter will be designed based on both the structural 

characteristics of the model and the analytical results on stability. We call a developed filter 

pheromone filter.  

To design a filter, we first observed a generated matrix W from Equation (23) in detail, which is 

generally called the state transition matrix. The calculated matrix is presented in Figure 6. It was 

sampled after running ten steps for an initial delta spike under the one of the typical conditions. 

In the figure, the elements marked 0.00 are not precisely zero, but they are pretty small when 

compared with other numbered elements.  

In the matrix, interestingly enough, each row looks similar to the 1×5 Gaussian kernel. Recall 

that our revised robot has the similar structure to the one-dimensional filter, which suggests that 

the pheromone deployment by mobile robots can be modeled straightforwardly from the state 

transition matrix.  

As a first trial, we directly applied the following representative 1×5 kernel to the pheromone 

model.  
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Although our first attempt was inspired from the intuitive observation, the result of the 

numerical experiment was notable, as shown in Figure 7(a). 

       

 

Figure 7. Comparison of the shape of the output potential field using raw kernel: CN and PF 

represent the Crank-Nicolson and the Pheromone Filter respectively 

 

The figure was sampled at time step 20 and magnified in order to be precisely observed. Since 

the 1× 3 kernel is the one more preferred, and is exactly matched with the structure of our 

revised robot as described in Figure 2, we simply cut off the most end-side entries from 

Equation (27), i.e., we made 

 

β  α  β  ⇔  0.22 0.47 0.22 (28) 

 

and applied it in the same way as before. The produced potential field is compared in Figure 

7(b). As expected from the described operation, the difference in shape to the other methods 

became larger, whereas the field itself remains stable.  

Now, before moving onto the next step, we minimize some inconveniences found in the 

calculated matrix. That is, from Figure 6, it is indicated that each row of the matrix does not 

always consist of symmetric kernel. In addition, the diagonal value near the boundary is 

different to the other diagonal elements. For the latter problem, we can just substitute the major 

other value for the boundary diagonal one. For example, in Figure 6, the values 0.44 were 

changed to 0.47 to produce Figure 7. We then carried out the approximating operation as shown 

in the following equation.  

γ  β  α  β  γ  ⇔  0.03 0.22 0.47 0.22 0.03 (27) 

(a) Using 1×5 kernel (b) Using 1×3 kernel 
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Next, we adjusted the kernel value of 1× 3 filter to ensure that it kept the total sum equal to or 

less than that of Equation (27), and also to ensure that it checks the spectral radius of the 

transition matrix so that the system is kept stable. As a result, a pheromone filter was finally 

designed as 

β̂  α̂  β̂  ⇔  0.24 0.49 0.24 
 

0.49 0.24 0.00 0.00

0.24 0.49 0.24 0.00 0.00

0.00 0.24 0.49 0.24 0.00 0.00

0.00 0.00 0.24 0.49 0.24

0.00 0.00 0.24 0.49

 
 
 
 
 
 
 
  
 

L

L

L

O O O

L L

L

 .     (30) 

We, of course, are aware that the described approximation is not very elegant, and seems to be 

structured primarily through brute force.  Nevertheless, the proposed algorithm is definitely 

intuitive and not very computationally expensive.  

Note that the conventional FTCS scheme can be formed as a filter as well. For example, we can 

simply rearrange Equation (3) as  

1

1 1 ,n n n n

i i i iU aU bU aU
+

− += + +          (31) 

where 
2 2

2
, 1 ,

( ) ( )

D t D t
a b tK

x x

∆ ∆
= = − ∆ −

∆ ∆
 and obviously, when seen in this way, it is easy to 

implement on a real robot. We now have more or less the same structure, yet we also have a 

stability-guaranteed filter. 

For the approximated 100× 100 transition matrix calculated using the finally designed filter, 

µw
was calculated as 0.97, which means that the stability of the systems is secured. 

5.2. Results and discussion 

Using the finally designed filter, the initial pheromone of delta spike was deployed in order to 

observe the propagation of the potential field. Figure 8 shows the enlarged shape of the 

produced potential field and its temporal propagation. In Figure 8(a), the shape agrees 

reasonably well with the other well-known numerical solvers. Note that, compared with Figure 

7, the shape is adjusted to be closer to that generated by the other numerical solvers, and the 

tuning process is relatively simple as mentioned in the previous section. Although the ultimate 

purpose may be somewhat different, the same idea is applicable to the resizing of the Gaussian 

smoothing filter for an image plane. In addition, the pheromone is propagated in a stable and 

gradual way, which is shown in Figure 8(b).  
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From these results, the designed filter seems to provide an efficient way of producing a stable 

potential field. It should be noted that each scalar value of the pheromone filter is virtually 

identical to each element of our model shown in Figure 2, which implies that the revised mobile 

robot could play the role of the diffusion filter of the pheromone through the RFID tags 

distributed in an environment.  

To evaluate the proposed algorithm more quantitatively, the standard deviation of each potential 

field is compared in Table 1. Since the pheromone potential field eventually disappears due to 

evaporation, only a forequarter out of the whole process is being compared. From the table, it is 

again observed that the proposed pheromone filter (PFM) works in nearly the same way as the 

FTCS scheme, which is the closest numerical method in accuracy to the differential pheromone 

model equation.  

       

 

Figure 8. Pheromone potential field generated using the 1×3 modified pheromone filter 

Table 1. Standard deviation of each potential field for given steps: PFR and PFM represent 

Pheromone Filter Raw (Equation (28)) and Pheromone Filter Modified (Equation (30)), 

respectively 

Method 
Stdev. for steps (× 100) 

10 20 30 40 50 

FTCS 7.14 4.85 3.53 2.64 2.02 

PFR 3.89 1.27 0.44 0.16 006 

PFM 7.32 4.54 3.00 2.04 1.41 

 

6. CONCLUSIONS 

This paper has formulated the stability condition for the pheromone potential field. The 

established criterion can provide a general guideline for researchers in the relevant field. Based 

on the result of the stability analysis, we further presented a new methodology of making a 

smoothing kernel, called pheromone filter. The developed method demonstrated stable and 

accurate performance through the numerical simulation; the stability is guaranteed from the 

implicit structure and the high-level accuracy was achieved by modification of the kernel 

elements with observing the output behavior. It is expected that the proposed scheme could 

provide a practical technique for designing a filtering system wherein the stability of the system 

is secured.  

(a) Sampled at step 20 (b) Temporal propagation 
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Despite these advantages, the proposed filter has yet to be evaluated in a batch manner. We are 

developing a sequential filtering algorithm, which is required in order to identify and update the 

kernel value online.  

Last but not least, it is worth noting that an automatic tuning method for each element of the 

filter can make the method more elegant and practical. We are now planning to implement the 

presented method on real robots.  
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