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ABSTRACT 

This paper proposes a generalized Hybrid Real-coded Quantum Evolutionary Algorithm (HRCQEA) for 

optimizing complex functions as well as combinatorial optimization. The main idea of HRCQEA is to 

devise a new technique for mutation and crossover operators. Using the evolutionary equation of PSO a 

Single-Multiple gene Mutation (SMM) is designed and the concept of Arithmetic Crossover (AC) is used in 

the new Crossover operator. In HRCQEA, each triploid chromosome represents a particle and the 

position of the particle is updated using SMM and Quantum Rotation Gate (QRG), which can make the 

balance between exploration and exploitation. Crossover is employed to expand the search space, Hill 

Climbing Selection (HCS) and elitism help to accelerate the convergence speed. Simulation results on 

Knapsack Problem and five benchmark complex functions with high dimension show that HRCQEA 

performs better in terms of ability to discover the global optimum and convergence speed. 
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1. INTRODUCTION 

Complex optimization functions characterized by high dimension, non-linear, no convexity, non-

differential, a large number of local optima and so on are often used model of many engineering 

problems. The typical deterministic optimization methods are not suitable for solving complex 

functions because of its high sensitivity to initial guess and local convergence. Evolutionary 

Algorithms (EAs) such as Genetic Algorithms (GA), inspired by biological evolution use 

techniques such as mutation, selection and crossover for optimizing complex functions and have 

been widely used in many areas for solving practical problems to replace the deterministic 

optimization methods. But unfortunately, EAs often has the problems of premature convergence 

and to trap into local optimum. Complex numerical functions as well as many real world 

problems such as Face detection [1], [2], Disk allocation method [3] etc. are not effectively and 

efficiently solvable by EAs. A novel evolutionary algorithm known as Quantum Evolutionary 

Algorithm (QEA) is developed to overcome the shortcomings of EAs. It is characterized on the 

basis of the concept and the principles of quantum computing such as qubits and superposition of 

states [4] – [7]. Although it has a better characteristic of diversity in the population than EA, it 

has been observed that QEA is suitable for combinatorial optimization problems such as 

knapsack problem, but it traps into local optima during solving multi-peaks complex 

optimization functions [8], [9].  

Particle Swarm Optimization (PSO) is a stochastic optimization technique modeled on swarm 

intelligence. This technique is developed based on fish schooling, bird flocking etc. PSO has no 

evolution operators such as crossover and mutation like GA. In PSO, the potential solutions, 
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called particles, fly through the problem space by following the current optimum particles. PSO 

is easy to implement than QEA and there are few parameters to adjust and has faster 

convergence speed [10], [11]. PSO has been extended to optimize functions [12], control system 

[13], parameters optimization of fuzzy system [14], etc. To optimize the complex function 

effectively and efficiently, real-coded quantum evolutionary algorithm (RCQEA) is proposed in 

[15]. In RCQEA, real-coded triploid chromosome is used to keep the diversity of the solution 

instead of qubit chromosome which is used in QEA. Complementary Double Mutation Operator 

(CDMO) and Quantum Rotation Gate (QRG) are used to update chromosomes which make the 

balance between the exploration and exploitation. Discrete Crossover (DC) is employed to 

expand the search space and Hill-climbing selection (HCS) helps to accelerate the convergence 

speed [15].  

Using the advantages of PSO and RCQEA, this paper proposes a Generalized Hybrid Real-

coded Quantum Evolutionary Algorithm (HRCQEA) to solve complex numerical problems as 

well as combinatorial optimization problems. HRCQEA maintains a population of real-coded 

triploid chromosomes. Each chromosome is considered as a particle which is a potential 

solution. The Single- Multiple gene Mutation (SMM) is designed using the evolutionary 

equation of PSO. SMM and Quantum Rotation Gate (QRG) are used to update the position of 

particle which can treat the balance between exploration and exploitation more effectively and 

efficiently. A new crossover mechanism based on Arithmetic crossover (AC) is used to expand 

the search space. Hill Climbing Selection (HCS) and elitism are used to accelerate the 

convergence speed. Simulation results on five benchmark problems and knapsack problem show 

that HRCQEA performs better than QEA, PSO, and RCQEA in terms of convergence speed, 

search capability, and adaptability with dimensions.  

The paper is organized as follows. Section 2 includes the related work and Section 3 describes 

some recent evolutionary techniques such as QEA, PSO, and RCQEA. In Section 4, the 

mechanism and procedure of proposed algorithm is explained. Section 5 analyzes the 

experimental result of proposed algorithm based on five benchmark complex functions and 0-1 

knapsack problem. Finally, section 6 concludes the paper. 

2. RELATED WORK 

Genetic algorithms were formally introduced in the United States in the 1970s by John Holland 

at University of Michigan. To optimize complex numerical and combinatorial optimization 

problems genetic algorithm has been used in [16]-[19]. But the algorithm has the problems of 

premature convergence and it easily trap into local optimum. To overcome the problems a novel 

algorithm called Quantum- inspired Evolutionary Algorithm (QEA) has been introduced from 

the last decade in [4]-[9], [21]. But the algorithm still traps in local optimum when it solves the 

complex optimum problems because it uses only the information of the individual with optimum 

performance, but does not use the information of the individuals with the suboptimum 

performance of the population. Therefore, to solve complex numerical problem effectively a 

special algorithm called Real-coded Quantum Evolutionary Algorithm (RCQEA) has been 

proposed in [15].  

A Particle Swarm Optimization (PSO) is a population based stochastic search technique 

which has also been applied to solve numerical and combinatorial optimization problem 

in [10], [22], [23]. The PSO uses both the values from global optimum and suboptimum 

solutions of the population in its evolutionary equation to keep balance of exploration 

and exploitation. In this paper a generalized approach, HRCQEA is proposed to solve 

both numerical and combinatorial optimization problem effectively. HRCQEA works 

with a mutation operator (SMM) designed based on PSO and Arithmetic Crossover (AC) 
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which are applied on the population of real coded triploid chromosome. The 

experimental results show that the proposed method is superior to other techniques. 

3. OVERVIEW OF SOME EVOLUTIONARY TECHNIQUES 

3.1 Quantum Evolutionary Algorithm 

In QEA, A quantum bit is defined as the smallest unit information in two- state computer [20] 

which is defined with a pair of numbers (α, β) as follows: 

����                                                                                                                         (1) 

  A Q-bit individual as a string of m Q-bits is defined as 

��� �� …�	
� 
� …
	�                                                                                                 (2) 

where αi and βi are the probability amplitudes of i
th
 qubit and they satisfy the condition |αi|

2
 +|βi|

2  

= 1, i = 1, 2, 3…..m. |αi|
2  and |βi|

2 gives the probability that the qubit will be found in ‘0’ state and 

1’ state respectively. Q-bit representation has the advantage that it is able to represent a linear 

superposition of states [21]. The probability amplitudes of a qubit are updated by Q-gate which 

is a variation operator of QEA. After applying Q-gate, the qubit should satisfy the normalization 

condition |α΄|2 + |β΄|2 = 1, where |α΄|2 and |β΄|2 are the values of updated Q-bit. The following 

rotation gate is used as Q-gate: 

����� �  �cos���� �sin����sin���� cos���� �                                                                  (3) 

where ∆θi, i = 1, 2, 3…., m, is the rotation angle of a qubit towards the ”0” state or ”1” state 

depending on its sign. From the above description, it can be seen that solutions of QEA are 

represented directly or indirectly by binary string, which implies that QEA has some 

disadvantages such as the inconvenient process of coding and decoding. It does not adapt to the 

dimensions, the precision, and low search efficiency when applied for numerical optimization 

problems. 

3.2 Real-coded Quantum Evolutionary Algorithm 

RCQEA was proposed to solve complex numerical optimization problems. In RCQEA, a real-

coded triploid chromosome is represented as follows [15]  

�             ��⋅⋅⋅  ��⋅⋅⋅  ��  ��⋅⋅⋅  ��⋅⋅⋅  ��
�⋅⋅⋅ 
�⋅⋅⋅  
� �                                                                                             (4) 

where (xi αi βi)
T
, i =1, 2…. n is the i

th 
allele of real-coded triploid chromosome, xi is the real 

variable, a pair of probability amplitudes of one qubit is (αi, βi)
T which must satisfy the 

normalization condition |αi|
2
+|βi|

2
=1.  Here, n is the length of real-coded triploid chromosome. 

3.3 Particle Swarm Optimization  

PSO is a population-based, self-adaptive search optimization technique introduced by Kennedy 

and Eberhart in 1995 [10]. In PSO, each single solution is a ”particle” in the search space. All of 

particles have fitness values which are evaluated by the fitness function to be optimized, and 

have velocities which direct the flying of the particles. The trajectory of each particle in the 
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search space is adjusted by dynamically altering the velocity of each particle, according to its 

own flying experience and the flying experience of the other particles in the search space. The 

position vector and the velocity vector of the i
th
 particle in the D dimensional search space can be 

represented as Xi = (Xi1, Xi2, ···, XiD) and Vi = (Vi1, Vi2, ···, ViD), respectively [22]. At each 

generation, each particle is updated by following two ’best’ values. The first one is the best 

previous location (the position giving the best fitness value) a particle has achieved so far. This 

value is called pBest. The pBest of the i
th
 particle is represented as Pi = (pi1, pi2, ···, piD). Second 

one is the best position discovered by the whole population which is represented as Pg = (Pg1, Pg2, 

···, PgD), and called global best value. Then the new velocities and the position of the particle for 

the next fitness evaluation can be calculated using following two equations [22]: 

Vid = Vid + C1r1(Pid – Xid )+C2r2(Pgd – Xid )                                                           (5) 

Xid = Xid + Vid                                                                                                 (6) 

 where C1 and C2 are acceleration coefficients and r1 and r2 are two separately generated 

uniformly distributed random numbers in the range [0, 1]. The first part of (5) represent the 

previous velocity provides the necessary momentum for particle to roam across the search space. 

The second part is the ”cognitive” component, represents the personal thinking of each particle 

which encourages the particles to move their best positions found so far. The third component is 

the ”social” component which helps to find the global best position found so far. From (5) it is 

seen that to find the next position of a particle, both the optimal Pgd and suboptimal Pid position 

is used. It means it does not easily fall in local optima. 

4. PROPOSED ALGORITHM 

QEA pilots the evaluation of the qubit chromosomes by applying the quantum gates. The 

algorithm often traps in local optimum when it solves the complex optimum problems because it 

uses only the information of the individual with optimum performance, but does not use the 

information of the individuals with the suboptimum performance. RCQEA also applies quantum 

rotation gate on the qubit chromosomes, but does not use any information of other individuals, 

even though it can solve complex optimization problems efficiently and effectively [15]. PSO 

finds the optimum solution through the communication of individuals of the swarm. Unlike QEA 

only considering the individuals with best performance, PSO not only uses the information of 

optimum individuals, but also the information of suboptimum individuals. So PSO has better 

global search ability than QEA. In addition, the evolutionary equation of PSO is simple that 

makes it easy and fast way. Combining the advantage of PSO and RCQEA, we proposed 

HRCQEA. 

4.1 Mechanism of Proposed Algorithm 

Let, S be the search space and f : F→ R
n
 an objective function and gi : S→ R

n
, i = 1, 2,⋅⋅⋅, q set of 

functions (called constraints). The global optimization problem is then given as the task , 

 

Minimize ƒ(x), such that gi(x) < 0     � = (�1, …, �i, …, �n) ε S                                                                           (7) 
 

where the subset F is called the feasible region in S, x ε Rn  defines the n dimensional search 

space and each xi  is bounded within [xi,min , xi,max,], where i=1,2,3,…, n. Here the optimization 

problem has been specified as a minimization problem.  This does not restrict the generality 

since every maximization problem can be specified as minimization problem using the following 

relation: 
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Figure 1.  Overall Structure of HRCQEA 
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HRCQEA is proposed to optimize the complex numerical functions as well as constraint 

satisfaction problem such as knapsack problem and to accelerate the convergence speed of the 

evolutionary algorithm. Figure 1 describes the mechanism of HRCQEA. Where )*+  and ),+  are 

real-coded triploid chromosomes, u ≠ v, u, v = 1, …, N and they define u
th
 and v

th 
particle in the 

particle swarm. Here, each individual in the population is considered as a particle of the swarm. -*+  is the previous state with the best performance of the u
th
 individual. -.+  is the global best 

solution which is the  state with best performance so far in the neighborhood. To find the global 

optimum solution using HRCQEA, each particle )*+ , u = 1, 2, · · ·N is represented by real-coded 

triploid chromosome which communicates with its own best position -*+  and global best position -.+  through QRG which uses the basic evolutionary equation of PSO. The position of )*+  is 

updated using the information gathered from the population by SMM. AC is used to expand the 

search space and HCS along with elitist selection is used for selecting elite. 
 

4.1.1 Representation 

Each particle or individual in HRCQEA is represented by the real-coded triploid chromosome as 

(4), where n is the length of the real-coded triploid chromosome i.e., the dimensions of function 

to be optimized, the vector x = (x1, ⋅⋅⋅, �/, ⋅⋅⋅, �0 ) represents the position of a particle that is a 

solution of optimization problem and xi is the real variable of the function to be optimized. (αi, 

βi)
T is a pair of probability amplitudes of the ith allele (xi, αi, βi)

T, i = 1, 2 · · · n of the triploid 

chromosome and satisfy the condition |αi|
2
+|βi|

2 
= 1.  

4.1.2 Mutation  

In single-gene mutation, only one gene is mutated which is selected randomly from the 

individual chosen to mutate, but all other genes are fixed. Similarly, in multiple-gene mutation a 

number of genes are selected to mutate. In HRCQEA, single and multiple gene mutation are 

employed alternatively under a set of conditions. In Single-Multiple gene Mutation (SMM), 

Complementary Double Mutation Operator (CDMO) is used to update real variable of qubit(s) 

selected to mutate and QRG is used to update the pair of probability amplitudes of that qubit(s).  

p23  p23  
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AC AC AC 
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In HRCQEA, a swarm of particles or a population of real-coded triploid chromosomes 8+= {)�+, 
⋅⋅⋅, )9+, ⋅⋅⋅, ):+ ( is maintained at generation t, where N is the size of population and )9+ is a particle 

or individual defined as (4) and {$�+, ⋅⋅⋅, $9+, ⋅⋅⋅,  $:+} describe the corresponding fitness values of 

individuals. Another population ;+={-�+, ⋅⋅⋅, -9+, ⋅⋅⋅, -:+ } is used to hold the suboptimum 

solutions. For each particle )9+, an average rotation angle �9+ � ��∑ �9,�+��>�  is maintained where �9,�+  is the rotation angle for the ith allele of  )9+. In single gene mutation, choose the ith allele (�9,�+  �9,�+  
9,�+ )
T
 randomly from all alleles of )9+ and update real variable �9,�+  as follows: 

�9,�+?�,@ = �9,�+  + ( ��,	AB  - ��,	��) *△x * E                                                                          (9) 

Where ∆� and E are defined as follows: 

∆� �  ∑  r7δ7>� � δ/2                                                                                         (10) 

Here r7 is a random number in the range [0, 1]. For minimization problem, 

J �  K L�9,�+ L,          '/0M NMOPQR     L
9,�+ L,          STOPNM NMOPQRU                                                                  (11) 

For maximization problem, 

J �  K    L�9,�+ L,         STOPNM NMOPQRL
9,�+ L,         '/0M  NMOPQR U                                                                    (12) 

Both of Fine and Coarse searches are applied repeatedly to mutate the qubits. It should be noted 

that the new real variable �9,�+?�,@ would exceed the limit of �9,�+  whether the value of J is larger or 

the value of �9,�+  is close to the bound. To avoid making infeasible solution, new real variable �9,�+?�,@ is clipped as follows 

�9,�+?�,@ = V2��,	AB � �9,�+?�,@ , �9,�+?�,@ W ��,	AB  2��,	�� � �9,�+?�,@, �9,�+?�,@ X ��,	�� U                                                                (13) 

Until �9,�+?�,@ lies in the feasible solution space, (13) has to be performed again and again. 

If the new feasible solution (�9,�+ ,⋅⋅⋅,�9,�+?�,@,⋅⋅⋅,�9,�+ ), which is derived from (9), (10),(11),(12) and 

(13), is better than the old feasible solution (�9,�+ ,⋅⋅⋅,�9,�+ ,⋅⋅⋅,�9,�+ ),  we call that the valid evolution is 

carried out, otherwise the invalid evolution is done. When the valid evolution occurs, the 

probability amplitudes (�9,�+  
9,�+ )
Τ
  are fixed, that is  �9,�+?� =  �9,�+ ,  
9,�+?�  =  
9,�+ . On the contrary 

once the invalid evaluation occurs, the probability amplitudes (�9,�+  
9,�+ )
Τ
  are updated by QRG as 

follows: 

Y�9,�+?�
9,�+?�Z = Ycos��9,�+ �    � sin��9,�+ �sin��9,�+ �       cos��9,�+ �Z Y�9,�+
9,�+ Z                                                                       (14) 

Here �9,�+  s the rotation angle and it is defined by the basic equation of the PSO as follows: 
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�9,�+  = C1 (�9,�[,+ - �9,�+ ) + C2(�.,�+  - �9,�+ )                                                                   (15) 

Where C1 and C2 are called the learning factor, �9,�+   is the i
th
 real variable of the )9  +   We have 

defined that (�9,�[,+⋅⋅⋅�9,�[,+⋅⋅⋅�9,�[,+) is the best position of the j
th particle  )9+  which is stored in -9+. �.,� + is the i

th
 real variable of the best performance so far in the neighborhood that is global best 

performance  -.+   whose position is defined as (�.,�+ ⋅⋅⋅�.,�+ ⋅⋅⋅�.,�+ ). 

When the ith allele of   )9+ causes continuously invalid evolution, a new approach will be used to 

update �9,�+  and 
9,�+  at larger scale apart from (14) and (15) so as to accelerate the convergence 

speed and achieve the aim of adaptive controlling of the evolutionary process of algorithms. 

Assume that Q� is used to store the number of invalid evaluation occurred by ith allele. In every 

operation, whether ”Fine search” or ”Coarse search”, if invalid evolution is occurred then real 

variable of ith allele will be hold, and the number of the continuously invalid evolution Q�for that 

allele will be increased by 1. On the contrary, if valid evolution is occurred, real variable of the 

allele appointed will be replaced, and Q� will be cleared. Depending on the value of Q�, i = 1, 2, · · 

· n, alleles are selected from   )9+  to update pair of probability amplitudes of these alleles. If Q� for 

i
th allele of )9+  is 0 then probability amplitudes �9,�+  and 
9,�+  are not changed. If the value of Q� is 

less than or equal to a specified value λ then (14) and (15) are used to update �9,�+  and 
9,�+ , 

otherwise following equation is used to update them.  For minimization problem, 

\�9,�+?� � �9,�+?�/�$/��c�/5�  ^  1�
9,�+?� � `1 � ��9,�+?���                  U                                                             (16) 

For maximization problem, 

\
9,�+?� � 
9,�+?�/�$/��c�/5�  ^  1��9,�+?� � `1 � �
9,�+?���                  U                                                             (17) 

 Where fix(·) is a round function. From the above process, the allele (�9,�+  �9,�+  
9,�+ )
Τ
  of   )9+ is 

updated. For minimization problem, from (14), (15), and (16), it can be seen that with the 

increase of generation t, the value of |�9,�+ | will decrease gradually and then the value of J 

determined by (11) will reduce slowly if it is assigned to |�9,�+ |. So ”Fine search” in the 

neighborhood of current solution is carried out. In reverse, the value of |
9,�+ | will increase 

gradually and then the value of J will enhance slowly if it is assigned to |
9,�+ |, that is ” Coarse 

search” in the whole solution space is realized. Similarly for maximization problem, “Fine 

Search” and ”Coarse Search” are realized subject to the value of J determined by (12).  ”Fine 

search” in local search space and ”Coarse search” in global search space make HRCQEA to treat 

the balance between exploration and exploitation, which is the origin of CDMO. ”Fine search” 

and ”Coarse search” are applied repeatedly for m1 and m2 times respectively for every individual 

in population and usually m1 > m2. In multiple-gene mutation, one or more qubits are selected 

randomly from   )9+   and then (9) to (13) are used to update the real variables and pair of 

probability amplitudes is updated using (14) to (17) for all genes selected to mutate. The number 

of qubits to be selected for mutation is determined as follows: 

0′ � a�b  c1 � +defg?�hi                                                                                     (18) 
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where, j	AB  is the maximum number of generation used in the algorithm. The ceil function 

ensures that at least one qubit will be selected when t become very close to j	AB. The multiple-

gene mutation is employed after a defined interval (κ) of generations if the value of, 

K�9+ X 0, l/0/m/nOo/T0 )PT-pMm�9+ W 0, lO�/m/nOo/T0 )PT-pMmU                                                                  (19)       

Where �9+ is the average rotation angle of  )9+. From (15), it can be seen that for minimization 

problem �9,�+  that is �9+ will be negative if   )9+   goes away from its own best position and the 

global best position of the population. Then multiple-gene mutation is applied to force the 

particle to move quickly towards the optimum solution. Similarly, for maximization problem �9+ 
will be positive for any invalid movement of  )9+   . Thus, the multiple-gene mutation improves 

the convergence speed of the algorithm. 

4.1.3 Crossover 

The crossover operator is designed based on the concept of AC [24]. In HRCQEA, crossover is 

performed after a fixed number of generations that is after a defined interval τ and m times for 

each individual. The process of crossover operator can be explained as follows: For each 

individual )*+ , u = 1, 2, · · ·, N, select randomly another individual ),+ , v = 1, 2, · · ·, N, where u ≠ 

v. Then generate an individual, 

8A,.+ � q�A,.,�+ …    �A,.,�+    … �A,.,�+�A,.,�+ …    �A,.,�+    … �A,.,�+
A,.,�+ …    
A,.,�+    … 
A,.,�+ r                                                    (20) 

Where,   

stu
tv �A,.,�+ � ��*,�+ ^ �,,�+ �/2�A,.,�+ � ��*,�+ ^ �,,�+ �/2 
A,.,�+ � `1 � ��A,.,�+ �� U                                                                                (21) 

Now 8A,.+ and -*+  are considered as parents and two offspring 8w�+  and 8w�+ are generated from 

them as follows: 

stu
tv�w�,�+ � P� .  �*,�[,+ ^ �1 � P�� . �A,.,�+  �w�,�+ � P� .  �*,�[,+ ^ �1 � P�� . �A,.,�+

w�,�+ � `1 � ��w�,�+ ��                      U                                                               (22) 

 

stu
tv�w�,�+ � �1 � P�� .  �*,�[,+ ^  P�  . �A,.,�+  �w�,�+ � �1 � P�� .  �*,�[,+ ^ P� . �A,.,�+  
w�,�+ � `1 � ��w�,�+ ��                       U                                                             (23) 
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Where, ri , i = 1, 2, ···, n are random numbers, uniformly distributed in [0, 1]. y�w�,�+    �w�,�+    
w�,�+  zd, y�w�,�+    �w�,�+    
w�,�+  zdand y�*,�[,+   �*,�[,+    
*,�[,+  zdare the i
th 

allele of  8w�+ , 8w�+  

and -*+  respectively. In HRCQEA, AC would play an important role on preventing the individual 

in the early generations from being trapped in the local optima by expanding search space. 

4.1.4 Hill-Climbing Selection (HCS) and Elitism  

There are many HCS algorithms have been developed [25]. In HRCQEA, a very simple one of 

HCS algorithm has been used. If the offspring, which is formed from either mutation operator or 

AC, are superior to the parents, the parents are substituted for the offspring, otherwise the 

parents are saved. The above process is called ”Hill-climbing” selection (HCS). It is obvious that 

HCS has advantages to guarantee the direction of search and accelerating the convergence speed. 

Along with HCS, elitist selection ensures that most fit members of each generation will be 

selected. Most of the GAs do not use pure elitism, but instead use a modified form where the 

single best or a few of the best individuals from each generation are copied into the next 

generation. In HRCQEA, elitism is used to store the own best positions of particles and the 

global best position of the swarm. 

5. PERFORMANCE EVALUATION AND RESULTS ANALYSIS 

5.1 Test Functions 

To test the performance of HRCQEA five benchmark functions from [7] are used as test 

functions. These functions are described as follows- 

F1: Sphere Function 

{|}|~|��  ���� ���|��
|>�                                                                                                                  ���� 

  where -100 ≤ �i ≤ 100 and D=30. The global minimum value is 0.0 at � = (0, 0 ··· 0). 

F2: Rastrigin Function 

l/0/m/nM $��� � 10� ^������
�>� �  10 cos� 2�����                                                                  �25� 

where -5.12 ≤ �i ≤ 5.12 and D=30. The global minimum value is 0.0 at � = (0, 0 ··· 0).   

F3: Ackley Function 

l/0/m/nM   ƒ��� � �20 M�)���0.2�
1������
�>� ��� M�)�

1��QTN�2����� ^ 20 ^ M     �
�>� �26� 

where -32 ≤ �i ≤ 32 and D=30. The global minimum value is 0.0 at � = (0, 0 ··· 0).    

F4: Schwefel Function 

l/0/m/nM    ƒ��� �418.9829� �����
�>� N/0��|��|�                                                                  �27� 
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where -500 ≤ �i ≤ 500 and D=30. The global minimum value is 0.0 at � = (420.9687, 420.9687 

··· 420.9687).    

F5: Griewank Function 

l/0/m/nM $��� � 14000�����
�>� � �QTN�

�>� ���√/� ^ 1                                                                  �28� 
where -600 ≤ �i ≤ 600 and D = 30. The global minimum value is 0.0 at � = (0, 0 ··· 0).   

5.2 Results and Comparison for above five numerical problems 

For performance comparison, five functions are solved by HRCQEA, RCQEA [15], QEA [7], 

and PSEQEA [22]. The maximum number of generation j	AB = 4000 as termination condition, 

population size N = 10 and run times 50 are used for all of four algorithms. For generalization, 

number of ”Fine Search” and ”Coarse Search” for RCQEA and HRCQEA are defined in terms 

of dimension of the function to be optimized as follows: m1 � 1.5 � �m2 � 0.5 � �                                                                                                      (29) 

Other parameters of four algorithms are initialized as follows: 

a. QEA: The number of qubits for each variable that are used for F1, F2, F3, F4 and F5 are 

set to 28, 24, 26, 30 and 31 respectively.  

b. PSEQEA: The number of qubits used for each variable for each functions is same as 

QEA. The value of c1 and c2 are set to 0.02π.  

c. RCQEA: The period of discrete crossover τ = 500. The number of continuous discrete 

crossover m = 10. The initial rotation angle �� = 0.1π, the scale parameter γ = 5.  

d. HRCQEA: The period of multiple-gene mutation κ = 5. The value of τ = 500 and m = 

10. The value of learning factors c1 and c2 are set to π, λ = 1 and δ = 12. 

Table 1. Experimental Results of Four Algorithms on F1 ~ F5 

Functions Algorithm Best Worst Mean σ 

F1 

QEA 2.211 11.35 5.28 1.90 
PESQEA 0.0098 0.0520 0.0253 0.0095 
RCQEA 7.2e-016 5.7e-015 2.0e-015 1.2e-015 

HRCQEA 1.7e-140 3.3e-124 1.1e-125 5.4e-125 

F2 

QEA 48.56 82.502 67.987 7.519 
PESQEA 33.059 70.895 47.820 8.878 
RCQEA 5.68e-14 3.97e-13 1.84e-13 7.75e-14 

HRCQEA 0 0 0 0 

F3 

QEA 3.829 8.027 6.241 0.9756 
PESQEA 0.767 1.039 0.982 0.0588 
RCQEA 3.9e-14 3.31e-7 2.48e-7 2.75e-8 

HRCQEA 1.7e-007 1.7e-007 1.7e-007 3.5e-015 

F4 

QEA 1785.7 3001.5 2381.2 280.42 
PESQEA 80.14 3954.9 735.38 567.67 
RCQEA 0.0004 236.88 35.532 59.82 

HRCQEA 0.00039 0.00039 0.00039 0 
F5 QEA 2.437 9.738 5.664 1.690 
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PESQEA 0.815 1.049 0.978 0.0591 
RCQEA 3.9e-14 4.7e-13 1.7e-13 1.17e-13 

HRCQEA 0 3.5e-15 3.5e-16 1.11e-15 
Table 1 shows the experimental results of four algorithms on five functions each of dimensions 

D =30. It can be seen that the performance of QEA is the worst, which means that QEA is not 

suitable for numerical optimization problem. The PSEQEA is slightly superior to QEA. The 

performance of RCQEA is much better than QEA and PSEQEA, but HRCQEA has 

meaningfully better performance than RCQEA. Best, Worst and Mean denote the best fitness, 

worst fitness and mean fitness respectively over 50 runs. σ denote standard deviation.  

 

       
            (a) Sphere Function 

 

 
                 (b) Rastrigin Function 

 

                                (c) Ackley Function  

 
                          (d) Schwefel Function 

 

 
(e) Griewank Function 

 
 

Figure 2. Performance Comparison of four algorithms on functions F1 ~ F5 
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Figure 2 shows the progress of mean best fitness of functions F1 - F5 which is obtained by four 

algorithms with generations 4000. For rastrigin function (F2), fitness value has been shown only 

for 1000 generations because after 1000 generation HRCQEA gives the fitness value 0 which 

can’t be plotted in the graph in logarithmic scale. It should be noted that RCQEA performs better 

than both QEA and PSEQEA in terms of search capability and convergence speed. The quality 

of the solutions and convergence speed of HRCQEA are superior to that of QEA, PSEQEA and 

RCQEA for all test functions. The complexity of an algorithm increases with increasing the 

dimensions of test functions. So it is necessary to observe the influence of the dimensions of test 

functions on the performance of HRCQEA. HRCQEA is also used to solve test functions by 

setting dimensions to 50 and 100. It is observed that HRCQEA can adjust itself with increasing 

the dimensions. 

5.3 0-1 Knapsack Problem 

In this subsection, the applicability of HRCQEA to the combinatorial optimization problem is 

described using knapsack problem. Let us consider that we have n objects or items and a 

knapsack or bag, Item i has a weight �� , profit )� and the knapsack has capacity C. If an item i is 

placed into the knapsack then the profit of )��� is earned. The objective is to obtain a filling 

knapsack that maximizes the total profit earned. Since the knapsack capacity is C, we require the 

total weight of all chosen objects to be at most C. Formally the problem can be stated as 

maximize total profit, 

$��� ��)����
�>�                                                                                                                    �30� 

Subject to, 
 ������

�>� � S , �� � 0 TP 1                                                                                                  �31� 
If �� � 1 then ith item is selected for the knapsack. The weights and profits are positive numbers. 

A feasible solution is any set x = (x1 ··· xn), satisfying (31). An optimal solution is a feasible 

solution for which (30) is maximized. If the knapsack is overfilled then the same repair method 

is used here as described in [21]. To solve the knapsack problem by HRCQEA, a binary version 

for each triploid chromosome is maintained. Let the binary version of )9+ is �9+ � �n9,�+ ,    n9,�+ ,   , n9,�+ � is constructed from real-coded triploid chromosome )9+  by the following make method: 

procedure make ()9+ , �9+) 
begin 

i ← 0 

while( i < n ) do 

begin 

if corresponding real variable of �9,�+  ≥ 0.5 then n9,�+ ¡ 1  

else n9,�+ ¡ 0  

i ←  i + 1 

end 

end 

5.4. Results and Comparison for Knapsack Problem 
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For performance comparison of the HRCQEA, the knapsack problem is implemented by QEA 

and HRCQEA algorithm. For our test problem, data sets are generated as follows: �� = uniformly random [1· · · v] and   )� = �� + r 

The average knapsack capacity is  

S � 12����
�>�  

Data are generated with the parameter settings: r = 5 and v = 10. Parameters for algorithms are 

initialized as follows: 

a. QEA: The number of qubits for each individual is the number of items given. 

b. HRCQEA: The value of learning factors c1 and c2 is set to π, value of m1 and m2 are set 

to 45 and 15 respectively. The period of multiple-gene mutation κ = 1 and all other 

parameters are set to same value as values set for numerical optimization problems. 

TABLE 2: Experimental Results of Knapsack Problem 

No. of items Algorithms Best Worst Mean σ 

100 
QEA 609 599 601.66 2.63888 

HRCQEA 614 604 609.26 1.52275 

250 
QEA 1522 1502 1508.34 5.08944 

HRCQEA 1567 1547 1556.46 4.6564 

 

                (a) Knapsack Problem for 100 Items 
 

      

                     (b) Knapsack Problem for 250 Items 
 

Figure 3. Performance Comparison of QEA and HRCQEA on Knapsack problem 

For both algorithms, j	AB = 2000 is used as termination condition and number of run = 50. 

Table 2 shows the experimental result of Knapsack problem obtained using QEA and HRCQEA 

for 100 and 250 items. Figure 3 shows the performance comparison of QEA and HRCQEA on 0-

1 Knapsack problem for 100 and 250 items. It can be seen that the performance of HRCQEA is 

superior to QEA for 0-1 knapsack problem too. 

5.5 Movement Analysis of the Population 

All evolutionary algorithms always try to make the population to move towards the optimum 

solution. Convergence speed is one of the most important parameters to compare the 

performance of these algorithms. To compare the convergence speed of RCQEA and HRCQEA, 

average rotation angle for the global best particle was considered which indicates the average 

movement of the whole population. 
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Figure 4. Average movement of population in RCQEA and HRCQEA 

 

Figure 4 shows average rotation angle of the global best individual to solve sphere function with 

respect to generations. From (15), it can be seen that for minimization problem, high positive 

value of θ indicates the better movement of the population towards the optimum solution. The 

above figure shows very high value of θ for HRCQEA than RCQEA at early generations which 

implies that the HRCQEA has the highest convergence speed than RCQEA. 

6. CONCLUSION  

In this paper, a generalized hybrid algorithm named HRCQEA is proposed. The main idea of 

HRCQEA is to provide new techniques for variation operators based on Particle Swarm 

Optimization (PSO) and Arithmetic Crossover (AC). The evolutionary equation of PSO used in 

HRCQEA has more profound intelligent background which makes full use of information of the 

swarm. The crossover operator designed here also uses the information of suboptimum solutions 

of the swarm to expand the search space which helps to improve the convergence speed. Using 

the evolutionary equation of PSO, HRCQEA can adjust the rotation angle θ more reasonably. 

The average rotation angle maintained in this method helps the whole swarm to move towards 

the global best position very quickly. Thus, the HRCQEA can find the optimum solution faster. 

Some complex optimization problems and knapsack problem are used to test the performance of 

the proposed approach. The experimental results show that HRCQEA performs better than other 

algorithms in terms of global search capacity and convergence speed. 

As the future work we will try apply the proposed approach to optimize the proportional 

gain and integral gain proportional-integral (PI) controller. This method also can be 

applied to solve multi-objective optimization problems.  
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