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ABSTRACT 

Several approaches have been introduced in literature for active noise control (ANC) systems. Since 

FxLMS algorithm appears to be the best choice as a controller filter, researchers tend to improve 

performance of ANC systems by enhancing and modifying this algorithm. In this paper, the existing 

FxLMS algorithm is modified which provides a new structure for improving the noise reduction and 

convergence rate. Here the proposed method uses two variable step sizes, one for control filter and 

another for modelling filter. The control filter step size is varied based on the secondary path threshold 

signal λδ̂ . The modelling filter step size is varied based on error signal )(nf . It is shown that in the 

proposed method ANC system noise reduction rate and convergence rate are improved dynamically than 

the FxLMS variable step size methods. The computer simulations results indicate effectiveness of the 

proposed method. 
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1. INTRODUCTION 

     Acoustic noise problems become more and more evident as increased numbers of industrial 

equipment such as engines, blowers, fans, transformers, and compressors are in use. The 

traditional approach to acoustic noise control uses passive techniques such as enclosures, 

barriers, and silencers to attenuate the undesired noise [1],[2]. These passive silencers are valued 

for their high attenuation over a broad frequency range; however, they are relatively large, 

costly, and ineffective at low frequencies. Mechanical vibration is another related type of noise 

that commonly creates problems in all areas of transportation and manufacturing, as well as 

with many household appliances. Active noise control (ANC) [3]–[4] involves an electro 

acoustic or electromechanical system that cancels the primary (unwanted) noise based on the 

principle of superposition; specifically, an anti-noise of equal amplitude and the primary 

(unwanted) noise based on the principle of superposition; opposite phase  is  generated  and 

combined with the primary noise, thus resulting in the cancellation of both opposite phase is  

generated and combined with the primary noise, thus resulting in the cancellation of both 

noises. 

     The most popular adaptation algorithm used for ANC applications is the FxLMS algorithm, 

which is a modified version of the LMS algorithm [5]. The schematic diagram for a single-  

channel feed forward ANC system using the FxLMS algorithm is shown in figure.1.Here )(zP  



International journal of computer science & information Technology (IJCSIT) Vol.2, No.4, August 2010 

151 

 

 
 

Figure 1. Block diagram of FxLMS based feed forward ANC system. 

 

is primary acoustic path between the reference noise source and the error microphone and )(zS   

is the secondary path following the ANC (adaptive) filter )(zW . The reference signal )(nx  is 

filtered through )(zS , and appears as anti- noise signal )(ny′  at the error microphone. This 

anti-noise signal combines with the primary noise signal )(nd  to create a zone of silence in the 

vicinity of the error microphone. The error microphone measures the residual noise )(ne  , 

which is used by )(zW  for its adaptation to minimize the sound pressure at error microphone.  

Here (z)Ŝ account for the model of the secondary path )(zS  between the output of the 

controller and the output of the error microphone.  The filtering of  the  reference  signals  )(nx   

through  the  secondary-path  model  (z)Ŝ  is demanded by the fact that the output )(ny  of the 

adaptive controller )(zW  is filtered through  the secondary path )(zS . [7]. 

     The main idea in this paper is to improve the performance of the FxLMS algorithm in terms 

of noise reduction and convergence rate. In modified FxLMS, secondary signal )(ny′  is 

threshold by wavelet transform; the control filter step size is varied dynamically with respect to 

the threshold secondary signal λδ̂ . Since error )(ne at the beginning is large, the threshold 

secondary signals are also large λδ̂ . For the large value of λδ̂ , the method uses small step size 

pµ and vice-versa. In addition to that the method uses a variable step size sµ  for modelling 

filter. The modelling filter step size is varied based on the error signal )(nf . The organization 

of this paper is as follows. Section 2 describes the Secondary path effects. Section 3 describes 

FxLMS algorithm. Section 4 introduces Wavelet transform. Section 5 describes the proposed 

method. Section 6 describes the simulation results and Section 7 gives the conclusion. 

 

2. SECONDARY PATH EFFECTS 

     In ANC system, the primary noise is combined with the output of the adaptive filter. 

Therefore, it is necessary to compensate )(zS
∧

for the secondary-path transfer from y(n) to )e(n , 

which includes the digital-to-analog (D/A) converter, reconstruction filter, power amplifier, 

loudspeaker, acoustic path from loudspeaker to error microphone, error microphone, 

preamplifier, anti-aliasing filter, and analog-to digital (A/D) converter. The schematic diagram 

for a simplified ANC system is shown in figure2. 
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Figure 2. Block diagram of simplified ANC system 

 

 

From Figure 2. , the -transform of the error signal is 

 

 

                                 (z)S(z)W(z)]X[P(z)E(z) −=                                                  (1) 

 

We shall make the simplifying assumption here that after convergence of the adaptive filter, the 

residual error is ideally zero i.e., E (z) =0. This requires )W(z  realizing the optimal transfer 

function. 

                                                  
S(z)

P(z)
(z)W

o =                                                                            (2) 

     In other words, the adaptive filter has to simultaneously Model P(z)  and inversely 

modelS(z) . A key advantage of this approach is that with a proper model of the plant, the 

system can respond instantaneously to changes in the input signal caused by changes in the 

noise sources. However, the performance of an ANC system depends largely upon the transfer 

function of the secondary path. By introducing an equalizer, a more uniform secondary path 

frequency response is achieved. In this way, the amount of noise reduction can often be 

increased significantly [8]. In addition, a sufficiently high-order adaptive FIR filter is required 

to approximate a rational function S(z)1 shown in (2). It is impossible to compensate for the 

inherent delay due to   if the primary path   does not contain a delay of at least equal length. 

 

3. FXLMS ALGORITHM 

     The FxLMS algorithm can be applied to both feedback and feed forward structures. Block 

diagram of a feed forward FxLMS ANC system of Figure 1.Here P (z) accounts for primary 

acoustic path between reference noise source and error microphone. (z)Ŝ is obtained offline and 

kept fixed during the online operation of ANC. The expression for the residual error e (n) is 

given as  

                         (n)yd(n)e(n) ′−=                                                                       (3) 

     Where y’ (n) is the controller output y (n) filtered through the secondary path )(zS . y’(n) and 

y(n) computed as 

 

                                            )()()( nynsny
T=′                                                                          (4) 

 

                                          )()()( nxnwny
T=                                                                            (5) 
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Where w (n) = [w0 (n) w1 (n) …..w L-1(n)]T  is tap weight vector, x(n)= [x(n) x(n-1)…. ….x(n-

L+1) ]
T
 is the reference signal picked by the reference microphone and s(n) is impulse response 

of secondary path S(z). It is assumed that there is no acoustic feedback from secondary 

loudspeaker to reference microphone. The FxLMS update equation for the coefficients of W(z) 

is given as: 

 

                                           )()()()1( nxnenwnw ′+=+ µ                                                       (6)  

 

         Where )(nx′ is reference signal x (n) filtered through secondary path model  (z)Ŝ  

                                                              )()(ˆ)( nxnsnx
T=′                                                        (7)  

 

    For a deep study on feed forward FxLMS algorithm the reader may refer to [7]. 
 
 

4. WAVELET THRESHOLDING 

     The principle under which the wavelet thresholding operates is similar to the subspace 

concept, which relies on the fact that for many real life signals, a limited number of wavelet 

coefficients in the lower bands are sufficient to reconstruct a good estimate of the original 

signal. Usually wavelet coefficients are relatively large compared to other coefficients or to any 

other signal (especially noise) that has its energy spread over a large number of coefficients. 

Therefore, by shrinking coefficients smaller than a specific value, called threshold, we can 

nearly eliminate noise while preserving the important information of the original signal. 

 

The proposed denoising algorithm is summarized as follow: 
 

i)   Compute the discrete wavelet transform for noisy signal. 
 

ii)   Based on an algorithm, called thresholding algorithm and a threshold 

       value, shrink some detail wavelet coefficients. 
 

iii)  Compute the inverse discrete wavelet transform. 
 

     Figure.4. shows the block diagram of the basic wavelet thresholding for signal denoising. 

Wave shrink, which is the basic method for denoising by wavelet thresholding, shrinks the 

detail coefficients because these coefficients represent the high frequency components of the 

signal and it supposes that the most important parts of signal information reside at low 

frequencies. Therefore, the assumption is that in high frequencies the noise can have a bigger 

effect than the signal. Denoising by wavelet is performed by a thresholding algorithm, in which 

the wavelet coefficients smaller than a specific value, or threshold, will be shrunk or scaled [9] 

and [10]. 
 

     The standard thresholding functions used in the wavelet based enhancement systems are hard 

and soft thresholding functions [11], which we review before introducing a new thresholding 

algorithm that offers improved performance for signal. 
 

 
4.1. Hard thresholding algorithm  
 
Hard thresholding is similar to setting the components of the noise subspace to zero. The hard 

threshold algorithm is defined as  

 

 

                                        



>

≤
=

λ|y|y

λ|y|0
δ

H

λ                                                                      (8) 
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In this hard thresholding algorithm, the wavelet coefficients less than the threshold λ will are 

replaced with zero which is represented in fig. 3-(a). 

 
4.2. Soft thresholding algorithm  
 
In soft thresholding, the thresholding algorithm is defined as follow :( see Figure 3-(b)). 

 

 

                         



>−

≤
=

λ|y|λ)|ysign(y)(|

λ|y|0
δ

S

λ
                                                             (9) 

 

Soft thresholding goes one step further and decreases the magnitude of the remaining 

coefficients by the threshold value. Hard thresholding maintains the scale of the signal but 

introduces ringing and artifacts after reconstruction due to a discontinuity in the wavelet 

coefficients. Soft thresholding eliminates this discontinuity resulting in smoother signals but 

slightly decreases the magnitude of the reconstructed signal. 
 

 

                          
 

a)    Hard thresholding algorithm                         (b) Soft thresholding algorithm 
 

Figure.3. Thresholding algorithms (a) Hard. (b) Soft 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 4. Denoising by wavelet thresholding block diagram 
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5. PROPOSED METHOD 

     In modified FxLMS, the secondary signal )(ny′  is thresholded by wavelet transform λδ ; the 

control filter step size is varied dynamically with respect to the threshold secondary signal λδ̂ . 

Since error )(ne at the beginning is large, the threshold secondary signal λδ̂ is also large. For 

the large value of λδ̂ , the method uses small step size pµ and vice-versa. The method also 

introduces a new variable step size sµ  for modelling filter. The modelling filter step size   sµ  

adaptively changes based on the error signal )(nf .Here the step size sµ is inversely 

proportional to the error signal )(nf . If the error signal )(nf  is large, then the step size sµ   is 

small and vice versa. This in turn increases the performance of the proposed method shown in 

figure 5. 

    
     Consider Figure 5 which shows the block diagram of the proposed method. Assuming that 

)(zW  is an FIR filter of tap-weight length L, the output signal )(ny  is computed as 

 

                                         
(n)(n)xwy(n) L

T=
                                                              (10) 

 

     Here 
T

L nwnwnwnw )](......)()([)( 110 −=  is tap weight vector,  

T
Lnxnxnxnx )]1()......1()([)( +−−=   is the L sample reference signal vector. An internally 

generated zero means white Gaussian noise signal, v(n)  uncorrelated with the reference 

signal )(nx  is injected at the output )(ny  of the control filter. Thus the residual error signal 

e (n) is given as 

                                                          )](ˆ)([ nnde(n) λδ−=                                           (11) 
 

     Here )(*)()( nxnpnd =  is the primary disturbance signal, y(n)*s(n)(n)y =′  is the 

cancelling signal, v(n)*(n)(n)v s=′ is the modeling signal, )(np   and )(ns  are the impulse 

responses of the )(zP  and )(zS  respectively. The secondary signal )(' ny  is denoised using 

wavelet transform, because wavelet transform is capable of providing the time and frequency 

information simultaneously. The time- domain signal is passed through various high pass and 

low pass filters, which filter out either high frequency or low frequency portions of the signal. 

This operation is called decomposition. Higher frequencies are better resolved in time, and 

lower frequencies are better resolved in frequency. This means that, a certain high frequency 

component can be located better in time (with less relative error) than a low frequency 

component. On contrary, a low frequency component can be located better in frequency 

compared to high frequency component. 
 

In our proposed error de-noise method is performed in the following steps. 
 

1. Decomposing of the noisy-signal )(' ny  using wavelet transform to obtain the denoise 

coefficient λδ̂  . 

2. Thresholding, to obtain the estimated wavelet coefficient λδ̂ . For each level a threshold 

value is found, and it is applied for the denoise coefficient λδ . The method uses soft-

threshold wavelet transform, to find estimated wavelet transform and  estimated wavelet co-

efficient λδ̂  
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3. Reconstructing the denoised signal )(ny′  from λδ̂  by inverse discrete wavelet transform. 
 

      Assuming that the modeling filter )(ˆ zS is an FIR filter of tap-weight length M ,its output   

     )('ˆ nv is given as 

                                             )()(ˆ)('ˆ nvnsnv M

T=                                                       (13) 

   

Here T
M nsnsnsns )](ˆ).......(ˆ),(ˆ[)(ˆ 110 −=  is the impulse response of )(ˆ zS , 

T

M Mnvnvnvnv )]1().......1(),([)( +−−= . 

 

           The control filter step size varied as 
 

                                                          
λδ

µ
µ

ˆ1

0

+
=p                                                                 (14) 

         Here 0µ is the initial step size, whose value is 0.025. 

The error in secondary path )(nf can be obtained as, 

                                            )(ˆ)()( nvnenf ′−=                                                                       (15) 

 

 

Figure 5. Block diagram for purposed Method 
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Finally the weights of the control filter can be updated by using steepest descent FxLMS 

algorithm as  

                                          )()()()1( nxnfµnwnw p
′+=+                                           (16) 

The modelling filter uses VSS –LMS algorithm to update filter coefficients. The step size 
sµ  

of the modelling filter is varied based on )(nf ,which is  

                                             
)(1

0

nf
s

+
=

µ
µ                                                                 (17) 

                                             

Finally the weights of the modeling filter can be updated as 

 

                                       )('ˆ)()()(ˆ)1(ˆ nvnfnnsns sµ+=+                                              (18) 

      

Since )(ˆ nv′ is the estimation of the generated white noise )(nv . 

 

6. SIMULATION RESULTS 
 

     In this section the performance of the proposed modified FxLMS algorithm with wavelet 

thresholding is demonstrated using computer simulation. The performance of the variable 

wavelet thresholding dynamic step size algorithm is compared with FxLMS variable step size 

algorithm on the basis of noise reduction R (dB) and convergence rate is given in (19) and (20). 
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                                                               (19) 

 
 

 

s(e)}20log10{abRateeConvergenc =                                            (20) 
 

 

     The large positive value of R indicates that more noise reduction is achieved at the error 

microphone. The computer simulation for modified FxLMS algorithm is illustrated in Fig.6.and 

Fig.7. Figure.6 shows the characteristics of Noise reduction versus number of iteration times. It 

has been seen that the modified FxLMS with variable soft thresholding having dynamic step-

size produces better noise reduction when compared to FxLMS with variable step size. 
 

 

    Figure 7. Shows the characteristics of convergence rate in dB with respect to number of 

iterations. It has been seen that the convergence rate of modified FxLMS with variable soft 

thresholding having dynamic step-size increases by reducing the number of iterations when 

compared to FxLMS with variable step size. 
 

 

     Figure.8. shows the characteristics of relative modeling error in dB with respect to number 

of iterations. It has been seen that the relative modeling error of modified FxLMS provides 

better performance compared with FxLMS with variable step size. 
 

      Figure.9 shows the characteristic of error versus number of iterations. It has been seen that 

error of the modified FxLMS provides better performance than that of the FxLMS variable step 

size method. 
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Figure 6. Noise reduction versus iteration time (n) 

 

 
 

Figure 7. Characteristics of convergence rate 

 

Figure.8. Characteristics of relative modeling error. 
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Figure.9. Characteristics of residual error )(ne  

6. CONCLUSIONS 

     This paper has proposed an ANC system with on- line secondary path modelling and 

modified FxLMS structure. This method combines the concept of variable wavelet soft 

thresholding and dynamic variable step size. Computer simulations have been conducted for a 

single-channel feed forward ANC system. Comparative result shown in this paper demonstrates 

the effectiveness of the proposed method. It shows better performance and convergence rate 

than the FxLMS variable step size method. 
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