
International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

DOI : 10.5121/ijcsit.2012.4310 113

Crawler Architecture using Grid Computing

M.E.ElAraby

1
, M.M.Sakre

1
, M.Z.Rashad

2
, O.Nomir

2

1 Dept. of Computer Science,

High Institute for Computers and Information Systems,

Al Shorouk Academy, Egypt

{m_s_araby, m_sakre2001}@yahoo.com

2 Dept. of Computer Science, Faculty of Computer and Information Sciences,

Mansoura University, Egypt

{magdi_Z2011r, omnomi}@yahoo.com

ABSTRACT

Crawler is one of the main components in the search engines which use URLs to fetch web pages to build a

repository of web pages starting with entering URL. Each web page is parsed to extract the URLs included

in it and store the extracted URLs in the URLs Queue to fetch by the crawlers in sequential. The process of

crawling takes long time to collect more web pages, and it has become necessary to utilize the unused

computing resources and cost/time savings in organizations. This paper deals with the crawler of search

engine using grid computing. This paper presents the grid computing that has been implemented by

Alchemi. Alchemi is an open source project developed at the University of Melbourne, provides

middleware for creating an enterprise grid computing environment. The crawling processes are passed to

Alchemi manager which distribute the processes over a number of computers as executors. The search

engine crawler with the grid computing is implemented, tested and the results are analyzed. There is an

increase in performance and less time over the single computer.

Keywords:

Crawler, URL, Grid Computing, Alchemi, Manager, Executor, performance, and web pages,

1. Introduction

The internet is one of the main sources of information for a large number of consumers. Thus,

search engines as the mediators between online information and consumers are an important topic

of research. A search engine has at least three main components [1] as shown in figure (1). The

roll of the search engine is to gathering the web pages and indexing them to retrieve easily. One

of the main components in search engines, which fetch the web pages, is the job of crawler.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

114

Figure (1) Search Engine Generic Architecture

Web pages are written in a tagged markup language called the hypertext markup language

(HTML). A hyperlink is expressed as an anchor tag with a href attribute, names another page

using a uniform resource locator (URL). The only way to collect URLs is to scan collected pages

for hyperlinks to other pages that have not been collected yet. This is the basic principle of

crawlers. They start from a given set of URLs, progressively fetch and scan them for new URLs

and then fetch these pages in turn, in an endless cycle [2].

A single page fetch may involve several seconds of network latency, it is essential to fetch many

pages at the same time to utilize the network bandwidth available. Extract URLs and eliminate

duplicates to reduce redundant fetches and to avoid spider traps.

The crawler downloads a series of pages whose sizes in bytes are ��, and has B bytes per second

of available bandwidth for doing it, then it should download all the pages simultaneously at a

speed proportional to the size of each page:

�∗ =
∑��

�

�∗ is the optimal time to use all the available bandwidth. This optimal scenario is depicted in

Figure 2.

Figure (3) Optimal scenario for downloads.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

115

However, there are many restrictions that forbid this optimal scenario. The main restriction is that

it must avoid overloading Web sites: a Web crawler can impose a substantial amount of work on

a Web server, specially if it opens many simultaneous connections for downloading [14]. The

crawler does not download more than one page from the same Web site at a time, and it waits

between 30 and 60 seconds between accesses. This, together with the fact that Web sites have

usually a bandwidth ��
�	
 that is lower than the crawler bandwidth B, originate download time

lines similar to the one shown in figure 3. The optimal time T* is not achieved, because some

bandwidth is wasted due to limitations in the speed of Web sites and to the fact that we must wait

between accesses to a Web. There is another serious practical restriction: the HTTP request has

latency, and the latency time can be over 25% of the total time of the request [15].

Figure (4) more realistic scenario; the hatched portion is wasted bandwidth.

There is a large change in the way of perceiving, using computing in the last ten years. It was

normal to perform computing needs to be processed by localized computing platforms and

infrastructures. This way has been changed. The change has been caused by the take-up of

commodity computer and network components. A consequence of these changes has been the

capability for effective and efficient utilization of widely distributed resources to fulfill a range of

application needs [3, 4, 5].

When computers are interconnected and communicating, we have distributed system, and the

issues in designing, building and deploying distributed computer systems have been discussed in

many years. The Grid computing term was known in the mid1990s that refers to a proposed

distributed computing infrastructure for advanced science and engineering [7, 8]. In general, the

grid computing term is a special type of parallel computing that relies on complete computers

(with onboard CPU, storage, power supply, network interface, etc.) connected to a network

(private, public or the Internet) by a conventional network interface, such as Ethernet. A

computational grid is a hardware and software infrastructure that provides dependable, consistent,

pervasive, and inexpensive access to high-end computational capabilities [9].

2. Related work

There are a number of research groups that have been working in the field of distributed

computing. These groups have created middleware, libraries and tools that allow the cooperative

use of geographically distributed resources unified to act as a single powerful platform for the

execution of parallel and distributed applications. This approach of computing has been known by

several names, such as metacomputing, scalable computing, global computing, Internet

computing and lately as grid computing [6, 7, 8].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

116

There are many research studies in web crawling, such as URL ordering for retrieving high-

quality pages earlier [16], partitioning the web for efficient multi-processor crawling [17],

distributed crawling [18], and focused crawling [19]. There are some crawling architectures that

designed based grid computing that aims to increase the performance in specific issues in web

crawling, such as a grid focused community crawling architecture for medical information

retrieval services [20], Multi Agent System-based crawlers for Virtual Organizations [21], a

dynamic URL assignment method for parallel web crawler [22], A Middleware for Deep Web

Crawling Using the Grid [23], and Architecture of a grid-enabled Web search engine [24].

3. Alchemi Tool

Alchemi system is one of the systems that help in implementing the grid based applications. It is

supported by Microsoft windows-based grid computing infrastructure that plays critical role in

the industry-wide adoption of grids due to the large-scale deployment of windows within

enterprises. Alchemi runs on the Windows operating system in the .NET Framework [10].

Alchemi provides an API for C# and C++, and operates in the Windows .NET framework, so we

use C# APIs to develop.

Alchemi system is open source software toolkits developed at the University of Melbourne,

which provides middleware for creating an enterprise grid computing environment. Alchemi

consists of two main components. These are the manager and the executer components. As it is

explained in figure (4), the executor component can be run on many computers while only one

computer runs the manager component. The manager receives the threads from the client

application and distributes these threads over the connected executors. The manager stores the

execution time and the executor of each thread [11].

While the notion of grid computing is simple enough, the practical realization of grids poses a

number of challenges. Key issues that need to be dealt with are security, heterogeneity, reliability,

application composition, scheduling, and resource management. The Microsoft .NET Framework

provides a powerful toolset that can be leveraged for all of these, in particular support for remote

execution, multithreading, security, asynchronous programming, disconnected data access,

managed execution, and cross-language development, making it an ideal platform for middleware

grid computing [12].

Figure (5) Alchemi's main components

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

117

4. The Crawler Architecture

The crawler consists of multiple processes which send requests and receives responses of the

requests as pages. It parses these pages to extract the URLs contained in the pages and stores

them in the URLs Queue; each URL in the queue is crawled and so on. The aim of these

processes is to collect more pages and extracts more URLs from these pages to create a large

repository of URLs and pages from web. These processes execute large number of process and

consume large time. So, a modification is suggested to distribute the processes of the crawler into

threads and use multiple computers to execute these threads in balancing, to distribute the efforts

and minimize the time of the crawling execution. The block diagram in figure (5) shows the

proposed architecture of the crawler system, using grid computing.

Figure (6) flow of the crawler application

This architecture comes based on concept lies in parallel / distributed processing where the goal is

twofold; reducing the overall elapsed processing time of collecting the same amount of pages,

and utilizing the unused computing resources (processing power). There is an important

classification of grid that classifies it into compute grid and utility grid. Compute grid generally

has an application that requires intense computing actions and that could be divided into subtasks

that could run in parallel and combined later to yield the desired result. These sub-tasks are

executed in different machines in order to ensure time effectiveness and resource utilization.

Utility grid on the other hand is a collection of hardware resources that is virtualized so that

multiple users can submit their individual applications to this pool of resources and have the

benefit of load balancing, maximum use of resources, and optimal turnaround time for each

individual application [13].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

118

In the block diagram first step input the URL, the crawler grid application generates a number of

threads. The threads are passed to Alchemi manager which distributes these threads over the

available executors connected to it, and the results are returned in the reverse direction.

5. Implementation

As Alchemi system provides a Software Development Kit (SDK) that includes a Dynamic Link

Library (DLL) that supports multithreaded applications, the proposed architecture of the crawler

grid application, as in figure (5) is implemented.

Figure (7) flow of the crawler application

The flowchart of the normal crawler application is shown in figure (6) in which the crawling

processes are sequentially executed on single executor. Where the crawling steps as the

following:

1- Start crawling.

2- Entering URL.

3- Add the URL in a queue to_visit_URL.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

119

4- Send request for URL page.

5- Receive response html document.

6- Parse HTML document to extract URLs.

7- Add requested URL in visited_URL queue.

8- Delete requested URL from to_visit_URL queue.

9- Add extracted URLs in to_visit_URL queue.

10- Save HTML document in web pages DB.

11- Get next URL from to_visit_URL queue.

12- IF URL exist in visited_URL queue:

Then delete URL from to_visit_URL queue.

Else go to step 3.

13- If there is URLs in to_visit_URL queue:

Then go to step 3.

Else end Crawling.

When, grid computing architecture is used, the flow chart of the crawler grid application is

shown in figure (7), in which the processes are executed in multithreading methodology. Where

the crawling steps are running in three layers: the application machine, Alchemi manager,

Alchemi executor.the steps are distributed over these layers as the following:

The application machine:

1- Start.

2- Enter URL.

3- Add URL in the to_visited_URL queue.

4- Create thread with URL.

5- Pass the thread to alchemi manager.

6- Receive result of thread execution manager.

7- Add requested URL in visited_URL queue.

8- Delete requested URL from to_visit_URL queue.

9- Add extracted URLs in to_visit_URL queue.

10- Save HTML document in web pages DB.

11- Get next URL from to_visit_URL queue.

12- IF URL exist in visited_URL queue:

Then delete URL from to_visit_URL queue.

Else go to step 3.

13- If there is URLs in to_visit_URL queue:

Then go to step 3.

Else end Crawling.

Alchemi Manager:

1- Get thread from application.

2- Assign thread to an executor.

3- Receive results of finished thread.

4- Send results to the application.

5-

Alchemi Executors:

1- Get thread from manager.

2- Send request RUL page.

3- Receive response HTML document.

4- Parse HTML document to extract URLs.

5- Send results back to manager.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

120

 The programming model of the crawler grid application is shown in figure (8); the system model

is distributed using a programming model as multi-tier implementation approach. The crawler is

composed of four tiers. The 4-tier architecture: The user interface, Control, Data Storage,

Executors.

Figure (8) the crawler grid application

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

121

Figure (9) programming module

The user interface layer is designed to input the list of initial seed URLs.

The control layer is the main core of the system architecture; it has been implemented using C#

language. This layer contains the Crawler class is called by the event handler. This class contains

a method that create Grid Connection 'GConnection' object that set connection to Alchemi

manager by passing the manager IP, port number, username, and password to it, then create Grid

Application 'GApplication' object and instantiate an object of a Grid Thread 'GThread' class then

add the Grid Thread object to the Grid Application.

The executor layer contains the HandlePage class which extends Gthread class and overrides start

method. In start method instantiate an object of CrawlerTools class which contain two main

methods the first called crawl_page that take the URL and return the content page, the second

method called parse_page that take the page content and return list of URLs contained

in that page.

// get settings from user

GConnection gc = GConnection.FromConsole("192.168.10.8", "9000",

"user", "user");

// create a new grid application

GApplication App = new GApplication(gc);

// add the module containing PiCalcGridThread to the application

manifest

 App.Manifest.Add(new

ModuleDependency(typeof(crawlerISA.Handle_page).Module));

for (int i = 0; i < to_visit_urls.Count; i++)

{

Handle_page hp = new Handle_page(to_visit_urls[0], ref

visited_urls, ref to_visit_urls);

}

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

122

The execution details of all threads are stored in Alchemi database which contains table called

Executors that contains the details of all executors connected to the manager, table called

Applications that contains the details of all applications that runs on the manager, and table called

threads that contains the details of all threads the executed through the manager and store the

executor that execute the thread.

The data storage layer contains the links that will request, the links that have been requested and

the web pages that have been collected and stored in the database, it is designed a simple database

in SQL Server Database Engine to store these data as shown in Figure (9), this database consists

of three tables, the first table is document table that contain the HTML document of each fetched

page, the URL of this page and identifier number unique (docID), the second table is

to_visit_URL table that contain the URLs extracted of the HTML document, the third table is

visited_URL table that contain the URLs that have been requested previously. The database is

designed specially to serve the crawling process only in the search engine without any

consideration to the other components in the search engine as indexing and searcher program.

public class CrawlerTools

{

/* instance passing list by reference */

public string crawl_page(string URl, ref List<string> visited_urls,

ref List<string> to_visit_urls)

.

.

/* instance passing list by reference*/

public List<string> parse_page(string pageContent, ref List<string>

visited_urls, ref List<string> to_visit_urls)

.

.

}

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

123

Figure (10)Database has been designed to store the documents, the visited URLs, and URLs to visit.

6. Results and Evaluation

The used testbed consists of five personal computers with 1GB RAM and Intel CPU 2.3 GHz all

the five PCs connected with an internet Line, Alchemi executer program is installed on each

computer as in Figure (10), and Alchemi manager program is installed on a separate computer as

in Figure (11), where SQL server 2008 is installed. Alchemi executor program is installed on the

other computers with Microsoft .NET framework 1.1.

Run the manager node and one or more executor nodes and connect them to the manager node

that is configured when constructing a desktop grid in Alchemi as show in Figure (12), the figure

shows the executer table in the Alchemi database which store the details of each executer. The

threads that are submitted to the manager stored in the threads table in the alchemi database as in

Figure (13).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

124

Figure (11) Alchemi Executor Form

Figure (12) Alchemi Manager Form

Figure (13) Achemi Executors connected to manager

Figure (14) The Threads table in the alchemi database

The crawler grid application is on the computer which contains Alchemi manager, several

experiments are on the executors and collecting 50, 100, 150, 200, 250, 300 pages and record the

results of each experiment as in table 1.

Now, if only one CPU is available then the total time is

 T = � * (� +	��)

 � Be number of pages,

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

125

 � Time of receiving one page,

 �� Time of extracting the URLs in the page,

But if n nodes are available, then total time is

 T =

�
 * (� +	��)

 N Be the number of executor nodes.

Thus, by increasing the number of Executor nodes, the time decreases in a linear fashion,

proportionally to the number of executor nodes in the Grid. This is evident in the results shown

in Table 1 and the graph in Figure (14).

Thus, there will be a great improvement in performance when increasing the number of executor

nodes. It is to be noted that there is no consideration to network overload and the difference in

page sizes.

Table 1 Time of crawling pages that have been collected

no. of Pages 50 100 150 200 250 300

1 Executor 4.8 8 13.2 21.2 24.21 36.12

2 Executor 2.37 3.49 6.54 10.44 12 18.01

3 Executor 1.77 2.61 4.90 7.82 8.99 13.5

4 Executor 1.18 1.72 3.22 5.15 5.91 8.89

5 Executor 1.06 1.61 2.79 4.54 5.18 7.24

Figure (15) Execution time using varying number of executors enabled.

0

5

10

15

20

25

30

35

40

50 100 150 200 250 300

1Executor

2Executors

3Executors

4Executor

5Executor

No. of pages crawled

T
im

e
 i
n

 m
in

u
te

s
(M

in
)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

126

7. Conclusion and Future Work

The implementation of the crawler in search engine requires powerful computers to achieve high

performance. This paper shows that the crawler performance can be enhanced by increasing the

number of executor nodes. So, the required time to collect a greater number of pages is

minimized. This evolution in performance is achieved by aggregating the power of distributed

resources available in a network using grid scheduling system. This cooperation of the execution

of the crawler application is achieved by using an open source application called Alchemi with its

two main components, the manager and executor, to distribute and execute jobs.

The main aim of this paper is to improve the crawler efficiency, in collecting web pages, by better

utilization of the available resources. It is planned, as a future work to implement the crawler

component which updates the collected web pages regularly. Grid computing may be used to

enhance the performance of other search engine components such as Page Ranking.

References:

[1] Sergey Brin and Lawrence Page "The Anatomy of a Large-Scale Hypertextual Web Search Engine",

Computer Science Department, Stanford University, Stanford, CA 94305 :

http://infolab.stanford.edu/~backrub/google.html .

[2] Soumen Chakrabarti, Book: "Mining the web, Discovering knowledge from hypertext data"; August

15, 2002.

[3] Ahmar Abbas, Book: "GRID COMPUTING: A Practical Guide to Technology and Application",

ISBN: 1-58450-276-2, Charles River Media Inc, 2004.

[4] http://www.gridcomputing.com/.

[5] http://www.gridforum.org/.

[6] Ian Foster, Carl Kesselman, Steven Tuecke. The anatomy of the grid: Enabling scalable virtual

organizations, International Journal of High Performance Computing Applications Fall 2001 15: 200-

222.

[7] Ian Foster, Carl Kesselman, Jeffrey M. Nick, Steven Tuecke, The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Integration, Global Grid Forum, June 22, 2002.

[8] Fran Berman, Geoffrey Fox, Tony Hey. Book: Grid Computing: Making the Global Infrastructure a

Reality, published March 2003.

[9] Foster, I. and Kesselman, C. (eds.). The Grid2: Blueprint for a New Computing Infrastructure.

Morgan Kaufmann, 1999.

[10] Akshay Luther et al, “Peer-to-peer grid computing and a .NET-based Alchemi framework”, High

performance computing: paradigm and infrastructure, Laurence Yang and Minyi Guo (eds), Chap 21,

403-429, Wiley Press, New Jersey, USA, June 2005.

[11] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan & Srikumar Venugopal, Alchemi: A .NET-based

Grid Computing Framework and its Integration into Global Grids, Technical Report, GRIDS-TR-

2003-8, Grid Computing and Distributed Systems Laboratory, University of Melbourne, Australia.

[12].Krishna Nadiminti, Yi-Feng Chiu, Nick Teoh, Akshay Luther, Srikumar Venugopal, and Rajkumar

Buyya, ExcelGrid: A .NET Plug-in for Outsourcing Excel Spreadsheet Workload to Enterprise and

Global Grids, Proceedings of the 12th International Conference on Advanced Computing and

Communication (ADCOM 2004, December 15-18, 2004), Ahmedabad, India.

[13] SAS Global Forum 2011, Designing a Grid Computing Architecture: A Case Study of Green

Computing Implementation Using SAS®, Krishnadas N, Indian Institute of Management, Kozhikode,

Kerala, India, Paper 366-2011.

[14] Martijn Koster. Robots in the web: threat or treat ? ConneXions, 9(4), April 1995.

[15] B. Liu and E. A. Fox. Web traf_c latency: Characteristics and implications. J.UCS: Journal of

Universal Computer Science, 4(9):763.778, 1998.

[16] Baeza-Yates, Castillo, Marin, & Rodriguez, 2005; Cho, Garcia-Molina, & Page, 1998; Najork

&Wiener, 2001.

[17] Cambazoglu et al., 2004; Teng, Lu, Eichstaedt, Ford, & Lehman, 1999.

[18] Boldi, Codenotti, Santini, & Vigna, 2002; Zeinalipour-Yazti & Dikaiakos, 2002.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

127

[19] Altingovde & Ulusoy, 2004; Chakrabarti, van den Berg, & Dom, 1999; Diligenti, Coetzee, Lawrence,

Giles, & Gori, 2000.

[20] K. Cerbioni, E. Palanca, A. Starita, F. Costa, P. Frasconi, Conf. on Computational Intelligence in

Medicine and Healthcare, CIMED’2005.

[21] Mohammed Ben-Mubarak; Azrul Hasni, Ian Chai, "Multi Agent System-based crawlers for Virtual

Organizations ", IEEE International Conference of Distributed Frameworks for Multimedia

Applications, May 2006.

[22] Guerriero, A., Ragni, F., Martines, C., "A dynamic URL assignment method for parallel web

crawler", IEEE International Conference of CIMSA, on pages 119 – 123, Sept. 2010.

[23] Jihwan Song, Dong-Hoon Choi, Yoon-Joon Lee, " OGSA-DWC: A Middleware for Deep Web

Crawling Using the Grid ", IEEE Fourth International Conference of eScience, on pages 370 - 371,

Dec. 2008.

[24] B. Barla Cambazoglu, Evren Karaca, Tayfun Kucukyilmaz, Ata Turk, Cevdet Aykanat, " Architecture

of a grid-enabled Web search engine", Available online 11 December 2006, Information Processing

and Management number 43 on pages 609–623, 2007.

