
International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

DOI : 10.5121/ijcsit.2011.3208 112

MODEL-BASED FACTORS TO EXTRACT QUALITY

INDICATIONS IN SOFTWARE LINES OF CODE

Mohammed Abdullah H. Al-Hagery
1

1
Department of Computer Science, Faculty of Computer, Qassim University, KSA

dr_alhagery@Yahoo.com

ABSTRACT

 The lifetime of a product depends on its maintainability. It is proved that a lot of cost spent towards
maintainability. Researchers experienced difficulties to measure and improve software understandability
and maintainability then software quality. In this work a proposed Model-Based Factors (MBF) is
created to help developers to increase software understandability and to improve software quality. MBF
estimate s/w standardization level determined by its Liens Of Code (LOC). Seventeen software products
were used to validate the research results. A standardization set of source code factors was proposed.
The proposed set was created and implemented by the MBF to extract the quality indications through
source code segments. The MBF results illustrate positive effect of documented source code to increase
the level of software quality. This effect will also improve the software readability and reusability,
understandability. Furthermore, it will reduce the maintenance cost of long life software.

KEYWORDS

Software Quality, Quality of Code, Code Standardization, Code-Based Factors, software maintainability

1. INTRODUCTION

Maintainability metrics are commonly language dependent, and to compute them requires tools

that typically assume access to the full definitions of the software entities [16]. A model for

estimating adaptive software maintenance efforts in person hours was described in [13]. It was

found that a number of metrics such as the LOC changed, and the number of operators changed

is strongly correlated to maintenance efforts [14].

The work presented by Reformat et al. proposed a methodology applied to the process software

maintenance data-representing evaluation of maintainability of software objects performed

independently by three programmers [14]. Heitlager et al. discussed several problems with the

maintainability index (MI), and they identified a number of requirements to fulfill by a

maintainability model to be usable in practice. They sketched a maintainability model that

alleviates most of these problems, and discussed their experiences with using such as system for

IT management consultancy activities [15]. Bertoa et al. reported that they presented a set of

measures to assess the maintainability of software components. Furthermore, they described the

process followed to obtain and validate them. Such a process can be maintained for defining and

validating measures for other quality characteristics [9]. The software system maintainability

can be measured in different ways. During the previous studies, maintainability has been

defined as "time required to make changes" and "time to understand, develop, and implement

modification" [11], [12]. As well as, Yuming and Hareton measured the maintainability of a

software system as the number of changes made to code during a maintenance period. They

employed a novel exploratory modeling technique, multiple adaptive regression splines

(MARS), for building maintainability prediction models using the metric data collected from

two different object-oriented systems [10].

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

113

The objective of this paper is to define and create Code-Based quality indicators that can assist

maintainability of long time software in future. Source code quality makes the software

available for enhancement and modification later depends on customer requirements.

This paper organized as follows. After this introduction, Section 2 briefly presents some

fundamentals and concepts of measuring software characteristics. Section 3 provides a summary

discussion about both software modification and then section 4 discusses basics of source code

quality and after that; some details of standard code are given in section 5. Section 6 describes

the research methodology that includes the proposed factors, Quality indicators extraction, and

the experiments performed to validate the proposed model are described in Section 6.2. Then

section 7 discusses the research results. Section 8 is giving some conclusions and section 9

finishes by giving a future work headlines.

2. MEASURING S/W CHARACTERISTICS

A measure relates a defined measurement approach and a measurement scale. A measurement

approach is the logical sequence of operations, described generically, used in quantifying an

attribute with respect to a specified scale [5]. A measure is expressed in units, and can be

defined for more than one attribute. Examples of measures for software component attributes

include the number of provided interfaces, the ratio of methods per required interface, or the

throughput of video frames emitted per input video frame (they correspond, respectively, to

possible measures for the aforementioned attributes size, interface complexity, and

performance)[9].

Measuring Software characteristics can be classified into three types; derived measures, base

measures, and indicators. Base measures do not depend upon any other measure (e.g., the

number of tables in the manuals).

 A derived measure is derived from other base or derived measures (e.g., the ratio of methods

per interface)[9]. An indicator is a measure that is derived from other measures using an

analysis model according to a decision criteria to obtain a measurement result that satisfies an

information need (e.g., the size of a sub-system is “medium” if it has more than 30 assemblies,

provides more than 45 interfaces, and its manuals have more than 7,000 LOC. The act of

measuring software is a measurement, which can be defined as the set of operations that aims at

determining a value of a measurement result, for a given attribute of an entity, using a

measurement approach.

Accurate software metrics-based maintainability prediction can not only enable developers to

better identify the determinants of software quality and thus help them to improve design or

coding, it can also provide managers with useful information to help them plan the use of

valuable resources[10].

The term metric is not present in the measurement terminology of any other engineering

disciplines, at least with the meaning it is commonly used in software measurement [9].

Therefore, the use of the term “software metric” seems to be imprecise, while the term

“software measure” seems to be more appropriate to represent this concept. Accordingly, the

term measure will be used in the following. This is also consistent with ISO/IEC and IEEE

Computer Society positions which, in order to ensure both consensus and consistency with other

fields of sciences, made a decision in the year 2002 to align their terminologies on measurement

with the internationally accepted standards in this field. In particular, ISO-JTC1-SC7 is trying to

follow as much as possible the ISO international vocabulary of basic and general terms on

metrology [4].

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

114

A number of software metrics measuring maintainability has been proposed by means of

theoretical and empirical studies. However, component based system presents a unique

maintenance challenges. Unlike the traditional software systems, one cannot be done by viewing

or changing the source codes of the component, but are restricted to reconfiguring and

reintegrating components [6].

3. SOFTWARE MODIFICATION

Software modification includes four types; Corrective, adaptive, perfective, preventive. Mostly,

corrective process in information systems is performed as 60% and the other three types around

40% only as shown in Figure 1. Firstly, corrective process focuses on changes made to a system

to repair flaws in its design, coding, or implementation. Secondly, adaptive process concentrates

on changes made to a system to evolve its functionality to changing business needs or

technologies. Thirdly, perfective process can include changes made to a system to add new

features or to improve performance. Finally, preventive process means changes made to a

system to avoid possible future problems. Figure 1 illustrates that the most modification works

are correctives [8].

Many software organizations allocate 70% of information systems budget to systems

modification. Methods for improving usability are inspections, automated audits of comments,

test path analysis programs, dual modification of source code, modularity, and structured

program logic flow, and use of pseudo-code documentation. Modification can be measured

direct or indirect. Direct by calculating number of failures, time between each failure, and type

of failure [8].

4. QUALITY OF SOURCE CODE

In general, there is a lack of consensus about how to define and categorize software product

quality characteristics [9].There are two main types of software quality, Quality of process and

quality of products. Quality of system documentation includes quality of external

documentation and quality of internal documentation. Internal documentation is focusing on

LOC.

The development of high-quality software must satisfy both the users’ requirements and the

software firm’s budget [3]. Program restructuring is a key method for improving the quality of

ill-structured programs, thereby increasing the understandability and reducing the modification

cost [7]. Quality is one of the most sought after dimensions of the business software

applications that organizations depend on today. Despite this high demand for quality, very few

Figure 1. Software maintenance types

0

10

20

30

40

50

60

70

80

Corrective Adiptive Pretective Preventive

M
a
in

te
n
a
n
c
e

L
e
v
e
ls

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

115

studies have been done that evaluate the ongoing quality of software applications during the

modification portion of the system life-cycle [2].

The development of different types of systems is challenging, because system engineers have to

deal with a large number of quality requirements such as safety, security, availability, reliability,

maintainability, performance and temporal correctness requirements. The fulfillment of these

runtime observable quality requirements is important for customer satisfaction and project

success. Often they are more important than the functional requirements. Consequently, a

rigorous assessment, evaluation and analysis of the system and its models are necessary and

there is a growing need to predict and evaluate these quality properties in the development

process [1]. The quality metrics include adaptability, complexity of interfaces and integration

test coverage, end to end test converge, reliability, and customer satisfaction [18]. Quality is

measuring objectively as number of failures and defects per month [2] and quality supported by

a standard implementation of code, which, will result in quality software modification. On the

other hand, Kanellopoulos et al., proposed a methodology for source code quality and static

behaviour evaluation of a software system, based on the standard ISO/IEC-9126. It uses

elements automatically derived from source code enhanced with expert knowledge in the form

of quality characteristic rankings [21].

5. STANDARD CODE

Writing standard code increase its quality, There are some reasons for writing standard code;

large s/w projects are generally undertaken by correspondingly large teams of developers,

readable s/w code is easier to modify, generate a consistent project wide coding style, enable to

apply quality measures to the resultant s/w, support the reuse of s/w project resources, and

allows developers movement from one project to another without requiring re-learning.

On the other hand, writing standard code increase code understandability, reusability and reduce

the modification time. Washizaki et al., proposed a metrics suite for measuring a component’s

understandably, adaptability, portability and reusability based on confidence intervals that were

set by statistical analysis of Java Bean components. Reusability metrics were based on a

reusability model. However, these metrics do not consider architectural and application domain

constraints which are important factors affecting the overall measurements [20].

The following two examples in Figure 2 and 3 present the difference between understanding of

documented and undocumented code. Figure 2 shows undocumented function, there is difficulty

for understanding the idea and the objective of that function, also it can not be modified easily,

for doing this modification; it takes more effort than the required effort for doing the same task

for the function in Figure 3. So, the code of Figure 2 is difficult to understand. In [17],

Aggarwal et al., defined readability of source code as the ratio between LOC and number of

commented lines.

Reuse allows us to efficiently create reuse of software components improves overall software

quality, reduce software costs, and deliver software with fewer defects. Reuse allows us to

efficiently create software systems from existing software artifacts rather than building software

systems from scratch [22]. Reuse has been shown to increase productivity and improve quality

while reducing effort and time[2]. Standard code affects positively on the following; software

readability and reusability, understandability and maintainability. Reuse and reusability can also

be used as quality factors for software development and maintenance. From the user’s point of

view there are four quality factors: maintainability, reliability, reusability and extendibility, are

proposed to strongly contribute to the quality of the software product.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

116

Understandability of the code presented in Figure 2 is lower than understandability of the code

presented in Figure 3 so, the modification effort of the source code in figure 2 is higher than the

modification effort of the source code in Figure 3. There is an inverse relationship between both

of code understandability, maintenance and reusability.

The more documentation process within the code the more quality of the product code, and this

in turn gives greater opportunity for code re-use and development in the future.

6. RESEARCH METHODOLOGY

The research methodology includes the following steps; creation of the proposed factors and

extraction of quality level indicators.

6.1. Proposed Factors

Example1:

 int x1(int i, char s)
{
 if(s = = “m”)
 if(I < 1000)
 return 0;
 else
 if(I < 20000)
 return 1000;
 else
 return 2400;
 else
 return 2600;
}

Figure 2. Undocumented code

Examplel 2:

//Function for calculating the value of tax
int tax(int anEarning, char aStatus)
{
 if(aStatus == ‘m’)
 if(anEarning < 2000)
 return 0; // no tax for married, < $1000
 else
 if(anEarning < 20000)
 return 500; // married, $2000 -$20000
 else
 return 2400; // married, >=$20000
// If not “married”, apply single tax rate of $2600 regardless
 else
 return 2600;
 } //end of function tax

Figure 3. A documented code

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

117

Implementation of the proposed factors is increasing code understandability, this will reduce the

modification time of software. The proposed factors presented in Table 1, classified into three

groups; general factors, class factors and method factors. Each factor can be assigned to any of

the following values{0, 1, 2, 3, 4} where 0 indicates that the factor effect is absent, 1, 2 means

factor effect is very low and low respectively, 3 means factor effect is medium and 4 means

factor effect is completely satisfied.

Assigning a value y to any factor x obtained depends on conditions of formula (1):

The proposed factors in Table 1 include 20 factors for writing a high quality code to reduce the

modification effort, these factors will be measured based on five levels of documentation, as

shown in Table 1.

Table 1. Code Based Factors

FFaaccttoorr

ttyyppee
IInnddeexx

FFaaccttoorr nnaammee
LLeevveellss rraannkk ((LLRR))

00 11 22 33 44

 1 Variables scope and role are defined clearly √

2 Code describes what is being done √

3 Understand the code by reading the comments √

4 Preface comments defined clearly √

5 Use nouns or noun phrases for naming √

6 Use alignment to enhances readability √

7 End of lines comments √

 1 Maximum one screen √

2 The meaning of return values √

3 Use verbs for Function names, Get, Find, … √

4 Write methods as general as possible √

5 The purpose of each method/function √

6 Variables declarations should be left aligned √

7 Method size at most one screen √

 1 Use correct spelling in names √

2 Classes should have one role only √

3 Max class length between 200-300 LOC √

4 Class purpose is defined clearly √

5 Avoid using names that differ only by letter √

6 Use nouns or noun phrases for class names √

 Total Satisfaction = 20 3 7 5 2 3

6.2 Quality indicators extraction

The MBF was proposed in the Formula (2). It was created based on five levels of

documentation with the ranks {0, 1, 2, 3, 4}. They are used as a primary value to discover

quality indicators in source code. These indicators contribute increasing software

understandability and reusability of software. The maximum value of these levels is 20×4 = 80

MM
ee tt hh

oo
dd
'' ss ff aa cc tt oo

rr ss
CC

ll aa ss ss ff aa cc tt oo
rr ss

GG
ee nn

ee rr aa ll ff aa cc tt oo
rr ss

 F=0: if fi satisfaction within S/W code < 10%
 F=1: if fi satisfaction within S/W code between 10 –25%

 Factor(i) =F, F=2: if fi satisfaction within S/W code between 25 –50% (1)
 F=3: if fi satisfaction within S/W code between 50 –75%

 F=4: if fi satisfaction within S/W code between 75 – 100%

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

118

in case of each factor satisfied completely, and their minimum value is 0 in case of each factor

is satisfying nothing(undocumented code, no quality indicators). The final value of MBF is

multiplied by 1.25 to change the values to degrees of percentage.

 R N K Q

 MBF =(∑ (∑Gi + ∑Mm + ∑Cp) × LRJ) × C (2)
 J=0 i=1 m=1 p=1

 Where, R=4, n=7, k=7, q=6, C=1.25

The contents of Table.2 illustrate the results of MBF when applied on seventeen software

products. The final calculations performed after the measurement of the factors of Table.1, as

shown in the following example,

 MBF = (3×0+7×1+5×2+2×3+3×4) ×C

 = 35×1.25

 = 43.75

7. RESULTS DISCUSSION

After the application of the Formula (1) and use its results in the MBF presented in formula (2),

the contents of Table 2 are formed for 17 software projects. These projects are small projects, it

was used as a sample in the process of the test, some of these projects are documented in full

and some are documented in part, and some other not documented. The purpose of the diversity

of this sample of projects is to cover many different situations of the projects according to the

degree of documentation for each project, and to disseminate the idea of the proposed model.

Table 2 also shows the projects sample used in this research work, and at the same table, the

values of each documentation level (F1, F2, F3, F4, F5) are displayed, their values were chosen

based on the internal documentation of each project, depending on the Formula(1). These values

show to which extent there is a variation and differences in the internal documentation of these

projects.

Table 2. Code Based Factors calculations

Project F1 F2 F3 F4 F5 D-Code-Level Quality-Level

P1 4 0 0 1 15 79 19.8

P2 3 4 7 6 0 45 11.3

P3 3 2 5 6 4 58 14.5

P4 11 7 0 1 1 18 4.5

P5 9 6 2 0 3 28 7

P6 0 4 0 1 15 84 21

P7 12 2 3 0 3 25 6.3

P8 10 5 3 2 0 21 5.3

P9 8 4 3 3 2 34 8.5

P10 0 0 0 0 20 100 25

P11 0 1 10 2 7 69 17.3

P12 0 0 2 3 14 86 21.5

P13 1 3 3 4 9 71 17.8

P14 1 3 3 5 8 70 17.5

P15 0 0 0 20 0 75 18.8

P16 0 2 18 0 0 48 12

P17 19 1 0 0 0 1 0.3

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

119

On the other hand, these values give strong indicators to help determine if there is the feasibility

of future development of these projects or not. For example, the projects results obtained in the

last column in Table 2 with high values, especially those projects that begin with 20 and less

than or equal to 25 easy to develop in future as illustrated in Figure 4, at less time and less cost.

0

10

20

30

40

50

60

70

80

90

100

110

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17

Projects

 L
e
v
e
l

D-Code-Level

Quality Level

8. CONCLUSION

Through the discussion of the above results, found that the software documentation process

according to international standards increases quality of software systems. In addition to that, it

is easy to beneficiary organizations and developers to reuse the source code for these software

systems and the possibility of understanding, improvement and future development at a lower

cost and better results.

It can be concluded that both the proposed model and the obtained results give clear

indications of the importance of documenting the source code. The results affect

positively during the decision making through the maintenance of long life software.

Well-documented software reduces the cost of this type of software and transition of

artefacts to another team members or the development team itself.

9. FUTURE WORK

Many further points can be added to expand this work. First, increasing the number of used

projects for the test. Second, new factors or criteria can be added for measuring software

maintainability then designing a software tool to generate a standard code style. The utility input

is undocumented source code and its output is full documented source code.

REFERENCES

[1] Clements, P.C. & Kazman, R. & Klein, M, (2001) "Evaluating Software Architectures: Methods

and Case Studies", Addison-Wesley Longman.

[2] Ghods, M. & Nelson, K. M, (1998) "Contributors to quality during software maintenance Decision

Support Systems", Vol, 23, p.361–369.

[3] DeMillo, R. A. & Liption, R. J & Perlis. A. J, (1981) "Software Project Forecasting", MIT Press,

Software Metrics, Cambridge, MA.

Figure 4. The relation between documentation of code and S/W quality

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

120

[4] ISO VIM (Second ed.), (1993) "International Vocabulary of Basic and General Terms in

Metrology", International Standards Organization, Geneva, Switzerland.

[5] ISO/IEC 15939, (2002) "Software Engineering–Software Measurement Process".

[6] Voas. J, (1998) "Maintaining component based systems", IEEE Software 15 (4), p. 22–27.

[7] Lung, C & Xu, X & Zaman, M & Srinivasan, A, (2006) "Program restructuring using clustering

techniques", The Journal of Systems and Software 79, p. 1261–1279.

[8] Hoffer, J. A & George, J. F & Valacich, J. S, (2008) "Modern Systems Analysis and Design,

chapter 16”, fifth Edition.

[9] Manuel, F. B & Jose, M. T. & Antonio, V, (2006) "Measuring the usability of software

components", The Journal of Systems and Software 79, 427–439.

[10] Zhou, Y & Leung, H, (2007) "Predicting object-oriented software maintainability using

multivariate adaptive regression splines", The Journal of Systems and Software 80, p. 1349–1361.

[11] Gibson, V. R. & Senn, J. A, (1989) "System structure and software maintenance performance",

Communication of ACM 32 (3), p. 347–358.

[12] Rising, L. S, (1992) "Information hiding metrics for modular programming languages", PhD

dissertation, Arizona State University.

[13] Hayes, J. H. & Patel, S. C & Zhao, L, (2004) "A Metrics- Based Software Maintenance Effort

Model", In Proc Of the Eighth European Working Conference on Software Maintenance and

Reengineering (CSMR'04), p. 254-260.

[14] Reformat, M & Kapoor, A and Pizzi, N. J, (2006) “Software Maintenance: Similarity and Inclusion

of Rules in Knowledge Extraction”, Proceedings of the 18th IEEE International Conference on

Tools with Artificial Intelligence (ICTAI'06).

[15] Heitlager, I & Kuipers, T & Visser, J, (2007) “A Practical Model for Measuring Maintainability, “,

Sixth International Conference on the Quality of Information and Communications Technology,

IEEE.

[16] Hindle, A & Godfrey, M. W & Holt, R. C, (2009) "Reading beside the lines: Using indentation to

rank revisions - by complexity", Software Architecture Group, University of Waterloo, Waterloo-

Ontario, Canada Science of Computer Programming, 74, p. 414-429.

[17] Aggarwal, K. K. & Singh, Y. & Chhabra, J. K, (2002) "An Integrated Measure of Software

Maintainability", In Proceedings of Annual Reliability and Maintainability Symposium, IEEE.

[18] Mahmood, S & Lai, R & Kim, Y. S & Kim, J. H & Park, S. C & Oh, H. S, (2005) "A survey of

component based system quality assurance and assessment", Journal of Science Direct,

Information and Software Technology 47, p. 693–707.

[19] Kim, Y. & Stohr, E. A, (1998) "Software reuse: survey and research directions, Journal of

Management Information Systems", forthcoming.

[20] Washizaki, H. & Yamamoto, H. & Fukazawa, Y, (2003) "A metrics suite for measuring reusability

of software components, In Proceedings of Nineth International Software Metrics", Symposium

(METRICS’03), Sydney, Australia.

[21] Kanellopoulos. Y, Antonellis. P, Antoniou. D, Makris.C, Theodoridis. E, Tjortjis. C, and

Tsirakis.N, (2010) "Code Quality Evaluation Methodology Using The Iso/Iec 9126 Standard",

International Journal of Software Engineering & Applications (IJSEA), Vol.1, No.3.

[22] P.Shireesha and .S.S.V.N.Sharma, (2010) "Building Reusable Software Component For

Optimization Check in ABAP Coding", International Journal of Software Engineering &

Applications (IJSEA), Vol.1, No.3.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

121

Author

Mohammed A. H. Al-Hagery, Ph.D

Al-Hagery received his B.Sc in Computer Science from the University of

Technology in Baghdad Iraq in 1994. He got his MSc in Computer Science from

the University of Science and Technology Yemen in 1998. Al-Hagery finished

his Ph.D. In Computer Science, field of Software Engineering from the Faculty

of Computer Science and Information Technology, University of Putra Malysia

(UPM) in 2004. From 2004 to 2007 he was the head of Comp Science

Department at the Faculty of Science and Engineering, USTY, Sana'a. From

2007 to this date, he is a staff member at the Faculty of Computer, Qassim

University in KSA. He published more than 10 papers in international journals.

