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Abstract

In this work we define Multi Dimensional CTL (MD-CTL in short) by extending CTL which is the
dominant temporal specification language in practice. The need for Multi Dimensional CTL is mainly
due to the advent of semi-structured data. The common path nature of CTL and XPath which provides a
suitable model for semi-structured data, has caused the emergence of work on specifying a relation among
them aiming at exploiting the nice properties of CTL. Although the advantages of such an approach have
already been noticed [36, 26, 5], no formal definition of MD-CTL has been given. The goal of this work
is twofold; a) we define MD-CTL and prove that the “nice” properties of CTL (linear model checking and
bounded model property) transfer also to MD-CTL, b) we establish new results on stratified Datalog. In
particular, we define a fragment of stratified Datalog called Multi Branching Temporal (MBT in short)
programs that has the same expressive power as MD-CTL. We prove that by devising a linear translation
between MBT and MD-CTL. We actually give the exact translation rules for both directions. We further
build on this relation to prove that query evaluation is linear and checking satisfiability, containment and
equivalence are EXPTIME–complete for MBT programs. The class MBT is the largest fragment of stratified
Datalog for which such results exist in the literature.

1 Introduction

Temporal logics are modal logics used for the description and specification of the temporal ordering of
events [21]. The flow of time can be perceived as either linear or branching. According to the former view
at each moment there is only one possible future (a typical example is Linear Temporal Logic), whereas
according to the latter, at each moment time may follow different paths which represent different possible
futures [19, 32]. The most prominent example of the second category are CTL (Computational Tree Logic),
CTL⋆, and µ-calculus.

A major breakthrough in this area was the discovery of algorithmic methods for verifying temporal
logic properties of finite Kripke structures. In such structures each state can be characterized by a fixed
number of atomic propositions. Therefore, the question of checking a program having specific properties
is reduced to that of checking whether a temporal logic formula holds on the Kripke structure that rep-
resents the program (hence the term model checking). Model checking has been widely used for verifying
the correctness of, or finding design errors in many real-life systems [14]. Through the 1990s, CTL has
become the dominant temporal specification language for industrial use [47, 11] mostly due to its balance
of expressive power and efficient model checking complexity.

The recent advent of semi-structured data has caused the emergence of work on exploiting the nice
properties of CTL. Some attempts have been made to relate CTL with XML query languages like XPath
mainly because of their common path nature. Although not much work has been done in this direction,
the advantages of such approach have been noticed [36, 26, 5]. Still, only for limited fragments of XPath
this relation is possible [36]. Trying to extend the results to larger fragments calls for Multi Dimensional
CTL [5] (another term as it appears in [26] is multimodal CTL). An intriguing question is whether the “nice”
properties of CTL transfer also to Multi Dimensional CTL (MD-CTL in short). In the present work we
give a positive answer to this question. We give a formal definition of MD-CTL and prove that it admits
linear time model checking and exhibits the “bounded model property”. We further build on these “nice”
properties of MD-CTL to establish results on stratified Datalog [2, 12].
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The introduction of Datalog played a crucial role in the design of declarative, logic-oriented database
languages due to Datalog’s ability to express recursive queries. Datalog is a rule-based language that has
simple and elegant semantics based on the notion of minimal model or least fixpoint. This leads to an
operational semantics that can be implemented efficiently, as demonstrated by a number of prototypes
of deductive database systems [38, 41, 20]. In order to express queries of practical interest, negation is
allowed in the bodies of Datalog rules. Of particular interest is stratified negation. In stratified Datalog
[2, 12] negation is allowed in any predicate under the constraint that negated predicates are computed in
previous strata. Stratified logic programs were introduced and studied first by Chandra and Harel [12]
and soon attracted the interest of researchers [2, 48, 33, 39, 30, 29]. Simple, intuitive semantics leading
to efficient implementation exists for stratified Datalog. Stratified logic programs were used to handle
negation in the NAIL! system developed at Stanford University [37].

In the present work we define the class of Multi Branching Temporal (MBT in short) Datalog programs
which are built up from a finite number of binary extensional database predicates (EDBs) and an arbitrary
number of unary EDBs. We prove that the class MBT has the same expressive power as MD-CTL by
devising a linear translation between MBT and MD-CTL. We further build on this relation to prove that
checking containment of queries, i.e. checking whether one query yields a subset of the result of the other,
and equivalence i.e. checking whether two queries produce the same answer, are EXPTIME-complete for
programs belonging to the class MBT. Satisfiability is another problem of wide interest. A predicate in a
Datalog program is said to be satisfiable if, for some database the program computes a non empty relation
for it [35]. We prove that for the class MBT satisfiability is EXPTIME-complete and query evaluation is
linear. The class MBT is the largest fragment of stratified Datalog for which such results exist in the
literature. The only other result that exists is the decidability of the equivalence and satisfiability problems
for programs consisting of unary only EDB predicates [35, 27].

Recently researchers have tried to exploit the nice properties of CTL by relating it to semi-structured
query languages like XPath. In [26] Gottlob and Koch observe that axes such as “following” and “following-
sibling” used extensively in XPath call for “multimodal CTL”. They state that a possible translation could
be a generalization of the one from CTL to Datalog LITE given in [25] sketching only the embedding into
Datalog. In this work we give the exact translation rules and devise an embedding for both directions.
Concerning the second aim of the present work, that is establishing results on stratified Datalog, our mo-
tivation was based on the observation that although Datalog has been the subject of research last decades,
few results on stratified Datalog exist in the literature. Table 1 summarizes these results.

Stratified MBT Programs Stratified negation with
negation (Stratified negation with unary EDB predicates unary EDB predicates

& finite number of binary EDB predicates)

Containment undecidable EXPTIME–complete [Section 7] decidable [35, 27]

Equivalence undecidable EXPTIME–complete [Section 7] decidable [35, 27]

Satisfiability undecidable EXPTIME–complete [Section 7] decidable [35, 27]

Evaluation polynomial linear [Section 7] linear [Section 7]

Table 1: Results on Query Containment, Equivalence, Satisfiability and Evaluation for fragments of Datalog
with stratified negation

While trying to define the fragment of stratified Datalog that has the same expressive power with MD-
CTL we have to deal with the fact that MD-CTL is interpreted over infinite paths. This means that finite
Multi Dimensional Kripke structures over which we interpret MD-CTL have to be total with respect to
their accessibility relations Rk. However, relational databases over which Datalog programs are interpreted
do not have any constraints, i.e. the input could be any structure. This is the reason why there exist
translations for the one direction i.e. from fragments of CTL to fragments of Datalog [25]. To overcome the
problem, we add a self loop in those nodes that do not have a successor in Rk. In particular, we encompass
it in the definition of the MBT class allowing thus for any input database to be captured. The example that
follows explains further this point.
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Example 1.1 Consider the following Datalog program:
G(x)←− R(x, y), H(y)
G(x)←− H(x),¬A(x)
H(x)←− P(x), Q(x)
A(x)←− R(x, y)

The above program returns the same set of ground facts for G on any pair of databases which only differ in adding
self loops in R on these nodes that do not have a successor in R. N

Another important observation is that our results go through because we prove that the bounded model
property (if a formula is satisfiable, then it is satisfiable in a “small” finite model, where “small” means
of size bounded by some function of the length of the input formula [21]) holds also in MD-CTL. In sim-
ple words this means that if there is a model for a MD-CTL formula then there is also a finite model of
bounded size. In CTL (and therefore in MD-CTL) we consider infinite models. So if the bounded model
property did not hold, then our results could not carry over to Datalog where finite input is assumed.

The contributions of the present work can be summarized as follows:

• We introduce the Multi Dimensional Computation Tree Logic (in short MD-CTL).

• We prove that the nice properties of CTL (linear model checking, and bounded model property)
transfer also to MD-CTL. We further prove that the validity problem for MD-CTL is EXPTIME–
complete.

• We define a fragment of stratified Datalog called Multi Branching Temporal (MBT in short) programs
which has the same expressive power with MD-CTL.

• We give the exact translation rules for both directions between MD-CTL and MBT. The rules are
succinct and the translation is linear in both directions.

• We prove that the query evaluation for MBT programs is linear by reduction to the model checking
problem for MD-CTL formulae. Moreover, the satisfiability and containment problems are proved to
be EXPTIME–complete by reduction to the validity problem for MD-CTL formulae.

The rest of the paper is organized as follows. Section 1.4 gives an overview of related work. Section 2

is a preliminary section that reviews CTL, Datalog, and stratified Datalog. In Section 3 we formally define
Multi Dimensional CTL (MD-CTL) and in Section 4 we prove that the nice properties of CTL transfer
also to MD-CTL. Section 5 defines the class of Multi Branching Temporal programs which is a fragment
of stratified Datalog that has the same expressive power with MD-CTL and defines an embedding from
MD-CTL to the class of MBT programs. Section 6 gives an embedding from MBT programs to MD-CTL
and discusses the technical challenges that arise. In Section 7 we prove that query evaluation for MBT
programs is linear and that checking satisfiability and containment is EXPTIME–complete. Finally, Section
8 discusses possible future research directions.

1.1 Related work

Recently researchers have tried to exploit the known nice properties of CTL by relating it to semi-structured
query languages like XPath. Miklau and Suciu [36] were the first to notice that the fragment of XPath con-
sisting of predicates (or filters) [ ], wildcards ∗ and the descendant axis //, can be expressed in a fragment
of ECTL (the existential CTL). In an independent work [26] Gottlob and Koch defined the logical core of
XPath (CXPath in short) and noticed that CXPath can be encoded in plain CTL without any extensions.
That is, they used only the axes “self”, “child”, “descendant-or-self” and “descendant”. Reverse axes such
as “parent”, “ancestor”, etc. can be dealt with by using CTL with past operators [21]. In the same work
Gottlob et al. observe that the remaining axes such as “following” and “following-sibling” require multi-
modal CTL. In fact, they notice that multimodal CTL with past operators can still be checked in linear time.
The proof they suggest consists of a generalization of the translation from CTL to Datalog LITE given in
[25]. Another related work is [4] where Afanasieva defines Many Dimensional CTL (CTL∆ in short) in order
to embed XCPath (a fragment of XPath) into CTL. In Section 3 we explain how our work differs from [4].

One effective approach for efficiently implementing model checking consists in translating temporal
logics to Logic Programming [34]. Logic Programming (LP) has been successfully used as an implemen-
tation platform for verification systems such as model checkers. Translations of temporal logics such as
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CTL or µ-calculus into logic programming can be found in [40, 8, 13]. [8] presents the LMC project which
uses XSB, a logic programming system that extends Prolog-style SLD resolution with tabled resolution.
The database query language Datalog has inspired work in [25], where the language Datalog LITE is in-
troduced. Datalog LITE is a variant of Datalog that uses stratified negation, restricted variable occurrences
and a limited form of universal quantification in rule bodies. Datalog LITE is shown to encompass CTL
and the alternation-free µ-calculus. In the same work Gottlob et al. notice that CTL can be embedded
into stratified Datalog. Research on model checking in the modal µ-calculus is pursued in [51] where the
connection between modal µ-calculus and Datalog¬ is observed. Results about the parallel complexity of
Datalog¬ queries and a reduction of ∧-free formulae of the alternation-free modal µ-calculus to Datalog¬

is used to derive results about the parallel computational complexity of this fragment of modal µ-calculus.
The work in [24] shows how the model checking problem for CTL can be reduced to the query evalu-

ation problem for fragments of Datalog. In particular, a direct and modular translation from the temporal
logics CTL, ETL, FCTL (CTL extended with the ability to express fairness) and the modal µ-calculus to
Monadic inf-Datalog with built-in predicates was given. It is called inf-Datalog because the semantics dif-
fers from the conventional Datalog least fixed point semantics, in that some recursive rules (corresponding
to least fixed points) are allowed to unfold only finitely many times, whereas others (corresponding to
greatest fixed points) are allowed to unfold infinitely many times. In [1] an embedding of CTL into a
fragment of DatalogSucc that is Datalog with the successor operator was devised.

Concerning containment of queries, the majority of research refers to conjunctive queries without nega-
tion. In [35, 27] checking equivalence of stratified Datalog programs and satisfiability were proved to be
decidable but only for programs with unary EDB predicates. In the present work we extend this result to
a fragment of stratified Datalog which contains also a finite number of binary EDB predicates. We call this
fragment Multi Branching Temporal (MBT) Datalog programs. For the class MBT we prove that checking
containment, equivalence and satisfiability are EXPTIME-complete and query evaluation is linear. The
class MBT is the largest fragment of stratified Datalog for which such results exist.

2 Preliminaries

2.1 Syntax and Semantics of CTL

Temporal logics are classified as linear or branching according to the way they perceive the nature of time.
In linear temporal logics every moment has a unique future (successor), whereas in branching temporal
logics every moment may have more than one possible futures. Branching temporal logic formulae are
interpreted over infinite trees or graphs that can be unwound into infinite trees. CTL (Computational Tree
Logic) [9, 17] is a branching temporal logic that uses the path quantifiers E (“there exists a path”) and A
(“for all paths”). A path is an infinite sequence of states such that each state and its successor are related
by the transition relation. CTL formulae contain temporal operators as well. For instance, to assert that
“there is a path on which property ψ1 holds until ψ2 becomes true” we write E(ψ1Uψ2), where U is a
temporal operator. The syntax of CTL dictates that each usage of a temporal operator must be preceded
by a path quantifier. These pairs consisting of the path quantifier and the temporal operator can be nested
arbitrarily, but must have at their core a purely propositional formula.

In this paper AP denotes the set of atomic propositions: {p0, p1, p2, . . .} from which formulae are built.
Various temporal operators are listed in the literature as part of the CTL syntax. Two of them, X and
U, form a complete set from which all other (future) operators can be expressed. It is convenient to
assume that CTL formulae are in existential normal form. This means that the universal path quantifier A is
cast in terms of its dual existential path quantifier E using negation and a third temporal operator Ũ. For
instance, instead of writing A(ψ1Uψ2), we equivalently write ¬E(¬ψ1 Ũ¬ψ2). The Ũ operator was initially
introduced in [46, 31] precisely for this purpose.

The syntax of CTL formulae is given by rules S1 − S3:
S1 : Atomic propositions and ⊤ are CTL formulae.
S2 : If φ and ψ are CTL formulae then so are ¬φ and φ ∧ ψ.
S3 : If φ and ψ are CTL formulae then EXφ, E(φUψ) and E(φŨψ) are CTL formulae.

The semantics of CTL is defined in terms of temporal Kripke structures. A temporal Kripke structure
K is a directed labeled graph with node set W, arc set R and labeling function V. K need not be a tree;
however, it can be turned into an infinite labeled tree if unwound from a given state s0 (see [21] and [45] for
details).

Definition 2.1 Let AP be the set of atomic propositions. A Kripke structure K for AP is a tuple ⟨W, R, V⟩, where:
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• W is the set of states,

• R ⊆W ×W is the total accessibility relation, and

• V : W −→ 2AP is the valuation that determines which atomic propositions are true at each state.

A Kripke structure K = ⟨W, R, V⟩ is finite if W is finite. ⊣

Definition 2.2 A path π of K is an infinite sequence s0, s1, s2, . . . of states of W, such that R(si, si+1), i ≥ 0. ⊣

The notation K, s |= φ means that “the formula φ holds at state s of K”. The meaning of |= is formally
defined as follows:

Definition 2.3

• |= ⊤ and ̸|= ⊥

• K, s |= p⇐⇒ p ∈ V(s), for an atomic proposition p ∈ AP

• K, s |= ¬φ⇐⇒ K, s ̸|= φ

• K, s |= φ ∨ ψ⇐⇒ K, s |= φ or K, s |= ψ

• K, s |= φ ∧ ψ⇐⇒ K, s |= φ and K, s |= ψ

• K, s |= Eφ⇐⇒ there exists a path π = s0, s1, . . ., with initial state s = s0, such that K, π |= φ

• K, s |= Aφ⇐⇒ for every path π = s0, s1, . . ., with initial state s = s0 it holds that K, π |= φ

• K, π |= Xφ⇐⇒ K, π1 |= φ

• K, π |= φUψ⇐⇒ there exists i ≥ 0 such that K, πi |= ψ and for all j, 0 ≤ j < i, K, π j |= φ

• K, π |= φŨψ⇐⇒ for all i ≥ 0 such that K, πi ̸|= ψ there exists j, 0 ≤ j < i, such that K, π j |= φ ⊣

A CTL state formula φ is satisfiable if there exists a Kripke structure K = ⟨W, R, V⟩ such that K, s |= φ,
for some s ∈ W. In this case K is a model of φ. If K, s |= φ for every s ∈ W, then φ is true in K, denoted
K |= φ. If K |= φ for every K, then φ is valid, denoted |= φ. If K |= φ for every finite K, we say that φ is
valid with respect to the class of finite Kripke structures, denoted |= f φ.

2.2 Model Checking and Complexity

Model checking is the problem of verifying the conformance of a finite state system to a certain behavior, i.e.
verifying that the labeled transition graph satisfies the formula that specifies the behavior. Hence, given
a labeled transition graph K, a state s and a temporal formula φ, the model checking problem for K and
φ is to decide whether K, s |= φ. The size of the labeled transition system K, denoted |K|, is taken to be
|W|+ |R| and the size of the formula φ, denoted |φ|, is the number of symbols in φ.

For CTL formulae the model checking problem is known to be P–hard [42], something that renders the
development of efficient parallel algorithms highly improbable. However, there exist efficient algorithms
that solve this problem in O(|K| · |φ|) time [10]. Although in most practical applications the crucial factor
is |K|, which is much larger than |φ|, it is insightful to examine how the two parameters |K| and |φ| affect
the complexity. This can be done by introducing the following two complexity measures for the model
checking problem [49]:

• data complexity, which assumes a fixed formula and variable Kripke structures, and

• program or formula complexity, which refers to variable formulae over a fixed Kripke structure.

CTL model checking is NLOGSPACE–complete with respect to data complexity and its formula com-
plexity is in O(log |φ|) space [42].

Another important problem for CTL is the validity problem, that is deciding whether a formula φ is
valid or not. This problem is much harder; it has been shown to be EXPTIME-complete [45].

Theorem 2.1 (Validity) [45] The validity problem for CTL is EXPTIME–complete.
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CTL exhibits an important property, namely the bounded model property: if a formula φ is satisfiable,
then φ is satisfiable in a structure of bounded cardinality. As Vardi remarks in [45] this property is stronger
than the finite model property which says that if φ is satisfiable, then φ is satisfiable in a finite structure.

Theorem 2.2 (Bounded Model Property) [21] If a CTL formula φ has a model, then φ has a model with at most
2c|φ| states, for some c > 0.

In Section 4 we prove that model checking for MD-CTL is linear and Theorems 2.1 and 2.2 also hold for
MD-CTL.

2.3 Datalog

Datalog [43] is a query language for relational databases. An atom is an expression of the form E(x1, . . . , xr),
where E is a predicate symbol and x1, . . . , xr are either variables or constants. A ground fact (or ground atom)
is an atom of the form E(c1, . . . , cr), where c1, . . . , cr are constants. From a logic perspective, a relation
corresponding to a predicate symbol E is just a finite set of ground facts of E and a relational database D
is a finite collection of relations. To simplify notation, in the rest of this paper we use the same symbol for
the relation and the predicate symbol; which one is meant will be clear from the context.

A database schema D [15] is an ordered tuple ⟨W, E1, . . . , En⟩, where W is the domain of the schema and
E1, . . . , En are predicate symbols, each with its associated arity. Given a database schema D, the set of all
ground facts formed from E1, . . ., En using as constants the elements of W is denoted HB(W). A database
D over D is a finite subset of HB(W); in this case, we say that D is the underlying schema of D. The size of
a database D, denoted |D|, is the number of ground facts in D.

Definition 2.4 A Datalog program Π is a finite set of function-free Horn clauses, called rules. Rules have the
following form:

G(x1, . . . , xn)←− B1(y1,1, . . . , y1,n1), . . . , Bk(yk,1, . . . , yk,nk
) (1)

where:

• x1, . . . , xn are variables,

• yi,j’s are either variables or constants,

• G(x1, . . . , xn) is the head of the rule, and

• B1(y1,1, . . . , y1,n1), . . . , Bk(yk,1, . . . , yk,nk
) are the body of the rule. ⊣

Predicates that appear in the head of some rule are called IDB predicates (intensional database predi-
cates), while predicates that appear only in the bodies of the rules are called EDB predicates (extensional
database predicates). Each Datalog program Π is associated with an ordered pair of database schemas
(Di,Do), called the input-output schema, as follows: Di and Do have the same domain and contain exactly
the EDB predicates and the IDB predicates of Π, respectively. Given a database D over Di, the set of
ground facts for the IDB predicates of Π, which can be deduced from D by applications of the rules of
Π, is the output database D′ (over Do), denoted Π(D). In that sense, databases over Di are mapped to
databases over Do via Π. In the sequel of the paper we assume without explicitly mentioning it, that the
input databases for a Datalog program Π have the appropriate schema.

Definition 2.5 Given a Datalog program Π we distinguish an IDB predicate G that we call the goal (or query)
predicate of Π. Let D be an input database; The query evaluation problem for G and D is to compute the set of
ground facts of G in Π(D), denoted GΠ(D). ⊣

The dependency graph of a Datalog program is a directed graph with nodes the set of IDB predicates of
the program; there is an arc from predicate B to predicate G if there is a rule with head an instance of G
and at least one occurrence of B in its body. The size of a rule r, denoted |r|, is the number of symbols

appearing in r. Given a Datalog program Π =

 rn
. . .
r0

, the size of Π, denoted |Π|, is |r0|+ . . . + |rn|.

The data complexity of Datalog is polynomial. However, it has been shown that Datalog only captures
a proper subset of monotonic polynomial-time queries if no order is present [3].
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2.3.1 Stratified Datalog

Intuitively, stratified Datalog is a fragment of Datalog with negation allowed in any predicate under the
constraint that negated predicates are computed in previous strata. Stratified Datalog has strictly higher
expressive power than Datalog. Indeed, stratified programs can be divided into layers, so that at any given
layer all predicates occurring negatively have been defined at a lower layer. Note that the first layer is
negation-free. It follows that every Datalog program can be viewed as a stratified program with a single
layer. To be more precise, each head predicate of Π is a head predicate in precisely one stratum Πi and
appears only in the body of rules of higher strata Πj (j > i) [25]. This means that:

1. If G is the head predicate of a rule that contains a negated subgoal B, then B is in a lower stratum
than G.

2. If G is the head predicate of a rule that contains a non negated subgoal B, then the stratum of G is at
least as high as the stratum of B.

In other words a program Π is stratified, if there is an assignment str() of integers 0, 1, . . . to the
predicates in Π, such that for each clause r of Π the following holds: if G is the head predicate of r and B
a predicate in the body of r, then str(G) ≥ str(B) if B is non negated, and str(G) > str(B) if B is negated.

Example 2.1 For the stratified program: 
P←− ¬Q
Q←− ¬R
R←− S

str() is the following: str(R) = str(S) = 0, str(Q) = 1 and str(P) = 2. N

The dependency graph can be used to define strata in a given program as follows: whenever there is
a rule with head predicate G and negated subgoal predicate B, there is no path from G to B. There is no
recursion through negation in the dependency graph of a stratified program. For more details on stratified
Datalog see [43, 50].

2.3.2 Bottom-up evaluation and complexity

The bottom-up evaluation of a query initializes the IDB predicates to be empty and repeatedly applies the
program rules to add tuples to the IDB predicates, until no new tuples can be added [6, 43, 50]. In stratified
Datalog strata are used in order to structure the computation in a bottom-up fashion. The head predicates
of a given stratum are evaluated only after all head predicates of the lower strata have been computed.
This way any negated subgoal is treated as if it were an EDB relation.

There are two main complexity measures for Datalog and its extensions.

• data complexity which assumes a fixed Datalog program and variable input databases, and

• program complexity which refers to variable Datalog programs over a fixed input database.

In general, Datalog is P–complete with respect to data complexity and EXPTIME–complete with respect
to program complexity [44, 28]. The queries computable by stratified logic programs contain properly those
computable by Datalog programs, since the former are closed under negation, while the latter are not
[29]. Although there are different semantics for negation in Logic Programming (e.g., stratified negation,
well-founded semantics, stable model semantics, etc.), for stratified programs these semantics coincide.
Stratified programs have a unique stable model which coincides with the stratified model, obtained by
partitioning the program into an ordered number of strata and computing the fixpoints of every stratum
in their order. As shown in [29], stratified Datalog can only express a proper subset of fixpoint queries.
Datalog with stratified negation is P–complete with respect to data complexity and EXPTIME–complete
with respect to program complexity [2]. An excellent survey regarding these issues is [15].
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3 Multi Dimensional CTL

In this section we introduce the Multi Dimensional Computation Tree Logic (in short MD-CTL). Before pro-
ceeding to the definition we discuss some of the technical challenges that arise and how our approach
differs from previous ones.

A key issue when generalizing CTL to more dimensions is how to handle the “totality” requirement of
the accessibility relation. In CTL this presents no problem; the unique accessibility relation R is required
to be total. In multi dimensional CTL however there can be two different approaches:

• demand that every accessibility relation Rk, 1 ≤ k ≤ n be total, or

• demand that the union of all the accessibility relations
∪

1≤k≤n Rk be total.

This affects directly the definition of the path in the multi dimensional Kripke structure. Recall that
formulae are interpreted over infinite paths. So, if the first approach is taken then k-paths may be defined.
For instance, a k-path is comprised of states connected only by Rk. In contrast, if the second approach is
adopted, then such a definition of paths is not permissible because it does not guarantee that a path formed
from a specific Rk is infinite. In this case, it becomes necessary to allow paths to consist of states connected
via all accessibility relations, in order to ensure that they are infinite. In this work we have chosen the first
approach because we find the resulting semantics closer to the spirit of CTL and less restrictive. The second
approach seems more appropriate for interpreting multi dimensional CTL formulae over finite trees. We
refer the reader to [4] to see the difference when the second approach is taken, precisely for reducing
XCPath query evaluation to CTL model checking.

3.1 Multi Dimensional CTL

Multi Dimensional CTL is an extension of CTL to a finite number of mutually independent dimensions.
MD-CTL as opposed to CTL has many, instead of one, dimensions. In CTL we talk about paths but in
MD-CTL we need to be more precise and talk about paths with respect to a particular dimension. We
define a path along dimension k, for simplicity called k-path, to be an infinite sequence of states such that
each state and its successor are related by the transition relation that corresponds to dimension k. We use
the path quantifiers Ek and Ak, meaning “there exists a k-path” and “for all k-paths”, respectively. For
instance, to assert that “property φ is always true on every k-path” or that “there is a k-path on which
property ψ1 is true until ψ2 becomes true” we write AkGk φ and Ek(ψ1Ukψ2), respectively. We adopt the
existential normal form, where the universal quantifier is cast in terms of its dual existential quantifier using
negation. So, instead of writing Ak(ψ1 Uk ψ2), we use the equivalent formula ¬Ek(¬ψ1 Ũk ¬ψ2).

3.1.1 Syntax and Semantics

In the following paragraphs we formally define MD-CTL formulae by giving its syntax and semantics.
We fix the number n of dimensions and for each dimension k, 1 ≤ k ≤ n, we use the “future” temporal
operators Xk, Uk and Ũk. Rules MS1 −MS3 provide the syntax of MD-CTL formulae:
MS1 : Atomic propositions and ⊤ are MD-CTL formulae.
MS2 : If φ and ψ are MD-CTL formulae then ¬φ and φ ∧ ψ are MD-CTL formulae.
MS3 : If φ and ψ are MD-CTL formulae then so are EkXk φ, Ek(φ Uk ψ) and Ek(φ Ũk ψ), 1 ≤ k ≤ n.

MD-CTL formulae are interpreted over Multi Dimensional Kripke structures (MD-Kripke structures in
short), defined as follows:

Definition 3.1 A MD-Kripke structure K for a set AP of atomic propositions is a tuple ⟨W, R1, . . . , Rn, V⟩, where:

• W is the set of states,

• Rk ⊆ W ×W is the accessibility relation along dimension k (in the sequel of the paper just k-accessibility
relation) which must be total, i.e. ∀s∃tRk(s, t), and

• V : W −→ 2AP is a valuation that determines which atomic propositions are true at each state.

A MD-Kripke structure K = ⟨W, R1, . . . , Rn, V⟩ is finite if W is finite. ⊣
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Definition 3.2 A path π along dimension k (k-path in short) is an infinite sequence s0, s1, s2, . . . of states of W,
such that Rk(si, si+1), i ≥ 0. πi denotes the path si, si+1, si+2, . . . ⊣

Although in MD-Kripke structures the set of states W can be infinite, in this work we study relational
databases, where the universe is finite. Hence, in the sequel of the paper we consider finite structures.
In CTL and, therefore, in MD-CTL the computation paths are infinite, which means that in order for the
accessibility relations Rk to be meaningful, they must be total, something that Definition 3.1 asserts ([31]):

∀x∃y Rk(x, y) (2)

The notation K, s |= φ means that the formula φ holds at state s of K. The meaning of |= is formally
defined as follows:

Definition 3.3

• |= ⊤,

• K, s |= p⇐⇒ p ∈ V(s), for p ∈ AP,

• K, s |= ¬φ⇐⇒ K, s ̸|= φ,

• K, s |= φ ∧ ψ⇐⇒ K, s |= φ and K, s |= ψ,

• K, s |= EkXk φ⇐⇒ there exists a k-path π = s0, s1, . . ., with initial state s = s0, such that K, s1 |= φ,

• K, s |= Ek(φUkψ) ⇐⇒ there exists a k-path π = s0, . . . , si, . . ., with initial state s = s0, such that
K, si |= ψ, (i ≥ 0), and for all j, 0 ≤ j < i, K, sj |= φ, and

• K, s |= Ek(φŨkψ) ⇐⇒ there exists a k-path π = s0, . . . , si, . . ., with initial state s = s0, which has the
following property: for all i ≥ 0 such that K, si ̸|= ψ there exists j, 0 ≤ j < i, such that K, sj |= φ. ⊣

We can think of Ek(ψ1 Ũk ψ2) as saying that there exists a k-path on which: (1) either ψ2 always holds,
or (2) the first occurrence of ¬ψ2 is strictly preceded by an occurrence of ψ1.

A MD-CTL formula φ is satisfiable if there exists a MD-Kripke structure K = ⟨W, R1, . . . , Rn, V⟩ such
that K, s |= φ, for some s ∈ W. In this case K is a model of φ. If K, s |= φ for every s ∈ W, then φ is true
in K, denoted K |= φ. If K |= φ for every K, then φ is valid, denoted |= φ. If K |= φ for every finite K, we
say that φ is valid with respect to the class of finite MD-Kripke structures, denoted |= f φ. The truth set of a
formula φ with respect to a structure K, is the set of states of K at which φ is true.

Definition 3.4 (Truth set) Given a MD-CTL formula φ and a MD-Kripke structure K = ⟨W, R1, . . . , Rn, V⟩, the
truth set of φ with respect to K, denoted φ[K], is {s ∈W | K, s |= φ}. ⊣

4 The “nice” properties of MD-CTL

In this section we prove that the nice properties of CTL transfer also to MD-CTL. In particular, we prove
that (1) model checking for MD-CTL formulae is linear (Section 4.1), (2) MD-CTL exhibits the bounded
model property (Section 4.2), and (3) validity for MD-CTL formulae is EXPTIME–complete (Section 4.3).
The proofs are extensions of the corresponding proofs for CTL. This is mainly due to the way we defined
MD-CTL by avoiding to mix dimensions. That is, by treating each dimension in separate, CTL formulae
are just the fragment of MD-CTL formulae corresponding to a particular dimension.

4.1 Model checking for MD-CTL is linear

Clarke et al. in [10] presented an algorithm for verifying that a Kripke structure K meets a specification
expressed in CTL. The complexity of the algorithm is linear in both the size of the formula and the size
of the Kripke structure. In this subsection we argue that the algorithm in [10] (pp. 249-251) can be
extended in a straightforward way to apply to MD-CTL formulae and MD-Kripke structures. Moreover,
the complexity remains linear in both the size of the formula and the size of the structure. We present the
extended algorithm which is the following:

37



International journal of computer science & information Technology (IJCSIT), Vol.2, No.1, February 2010

(A1) The procedure label_graph(φ) labels with φ those states of K for which φ holds. label_graph(φ)
handles 3× n + 4 cases, depending on whether φ is ⊤, or an atomic proposition, or has one of the
following forms: ¬ϕ1, ψ1 ∧ ψ2, EkXkψ1, Ek(ψ1 Uk ψ2) and Ek(ψ1 Ũk ψ2) (1 ≤ k ≤ n).

(A2) The procedures for handling formulae of the form EkXkψ1 and Ek (ψ1 Uk ψ2) are the same as in [10],
only now they use the corresponding k-accessibility relation Rk instead of R.

(A3) The operator Ũ, which was not used in [10], necessitates the introduction of the new recursive pro-
cedure eu_tilde(φ, k, s, b). eu_tilde(φ, k, s, b) determines whether φ is true at state s, when φ is
of the form Ek(ψ1 Ũk ψ2). Upon termination the boolean variable b is true iff K, s |= φ and false

otherwise. The specifics are shown in pseudocode in Figure 1.

procedure label_graph(φ)
begin

. . .
{main operator is EkŨk}
begin

ST:=empty_stack;

for all s ∈W do

marked(s):=false;

for all s ∈W do

if ¬marked(s) then

eu_tilde(φ, k, s, b)
end

. . .
end {label_graph}

procedure eu_tilde(φ, k, s, b)
begin

if marked(s) then

begin

if labeled(s, φ) or stacked(s) then

b:=true;

else

b:=false;

return;

end

marked(s):=true;

if labeled(s, ψ1) and labeled(s, ψ2) then

begin

add_label(s, φ);
b:=true;

return;

end

else if ¬labeled(s, ψ2) then

begin

b:=false;

return;

end

push(s,ST);
for all t such that Rk(s, t) do
begin

eu_tilde(φ, k, t, b1);
if b1 then

begin

pop(ST);

add_label(s, φ);
b:=true;

return;

end

end

pop(ST);
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b:=false;

return;

end {eu_tilde}

Figure 1: The pseudocode for the recursive procedure eu tilde.

The correctness of the above algorithm is based on the following facts:

• If s is already marked, then:

1. If s is labeled with φ, this means that φ holds at s, so b is set to true and the procedure
terminates.

2. If s is in the stack, this means that there is a cycle containing s in K and ψ2 is true at all states
of this cycle. By construction the stack has the following property: if states t0, . . . , ti are in the
stack, then Rk(tj, tj+1), 0 ≤ j < i and ψ2 holds at tj, 0 ≤ j ≤ i (see [10] pages 258-259 for details).
This in turn implies that φ holds at s, so again b is set to true and the procedure terminates.

3. If none of the above holds, then a depth-first search from s must have been completed and φ is
false at s. Therefore, b is set to false and the procedure terminates.

• If s is not marked, i.e. it is visited for the first time, then:

1. If s is labeled with ψ1 and ψ2, meaning that ψ1 and ψ2 hold at s, then φ also holds at s. Conse-
quently, s is labeled with φ, b is set to true and the procedure terminates.

2. If ψ2 is false at s, then φ is also false at s, so b is set to false and the procedure terminates.
3. If none of the above holds, then ψ2 holds at s but ψ1 does not. Hence, a depth-first search from

s is initiated; s is pushed onto the stack and its k-successors are visited in a systematic fashion.
If φ is true at a k-successor of s, then φ is also true at s, in which case s, after popped from the
stack, is labeled with φ, b is set to true and the procedure terminates. If however φ is false at
all the k-successors of s, then φ too is false at s. Therefore, s is popped from the stack, b is set to
false and the procedure terminates.

The main observation regarding the complexity is that the time for each call of eu_tilde(φ, k, s, b) is
proportional to the number of outgoing Rk edges from s (excluding of course the time required by recursive
calls). Therefore, all calls to eu_tilde require time proportional to the number of states plus the number
of edges, i.e. time O(|W| + |R1| + . . . + |Rn|) = O(|K|). Given a formula φ we apply the label_graph

procedure to the subformulae of φ beginning with the simplest and gradually working our way towards φ.
It requires a trivial induction to check that the number of subformulae of φ is O(|φ|) (see [10] for details).
Thus, we derive the next theorem.

Theorem 4.1 The model checking problem for MD-CTL formulae is linear in the size of the formula and in the size of
the Kripke structure, that is given a MD-CTL formula φ and a finite MD-Kripke structure K, φ[K] can be compiled
in time O(|K| · |φ|).

4.2 Bounded model property

Emerson and Halpern in [18] proved that CTL has the bounded model property: if a formula is satisfiable,
then it is satisfiable in a finite model of size bounded by some function of the length of the input formula.
One way to prove such results for modal logics is to “collapse” a (possibly infinite) model by identifying
states according to an equivalence relation of small finite index and then showing that the resulting finite
quotient structure is still a model for the formula in question. Fischer and Ladner used this technique
to prove that PDL has the small model property [23]. Emerson and Halpern in [18] demonstrated how
this technique fails when applied to CTL. Still, the Fischer-Ladner quotient structure obtained from a CTL
model may be viewed as a “pseudo-model” which can be unwound into a model still small. That is,
they proved that a satisfiable CTL formula is satisfiable in a small finite model obtained from the “pseudo
model” resulting from the Fischer-Ladner quotient construction.

The way they used to construct this pseudo-model resembles the one used in [7] to prove the cor-
responding results for DPDL. In particular, Emerson and Halpern reproved the results in [7] using the
fixpoint characterizations [16] of the temporal operators to construct a tableau that may be viewed as a
small pseudo-model. We prove now that the bounded model property transfers also to MD-CTL.

39



International journal of computer science & information Technology (IJCSIT), Vol.2, No.1, February 2010

Theorem 4.2 (Bounded Model Property) If a MD-CTL formula φ has a model, then it has a model with at most
2c|φ| states, for some c > 0.

Proof:
The proofs of Lemmata 3.8, 4.3, 4.4, 4.5, 4.6 in [18] pages 7-12 go through with minor modifications. In
particular:

• The notion of fragment which is appropriate for Kripke structures with one accessibility relation
must be refined to accommodate MD-Kripke structures. Thus, we define a k-fragment as in [18] page
7, only that now we use the k-th accessibility relation Rk.

• Although the path quantifier A is part of the syntax of CTL in [18], the temporal operator Ũ is not.
So every formula of the form Ek(ψ1 Ũk ψ2) is replaced with the equivalent ¬Ak(¬ψ1 Uk ¬ψ2). �

4.3 Validity

In this subsection we show that the validity problem for MD-CTL, i.e. deciding whether a given MD-CTL
formula holds at all states in all transition systems, is decidable. To be more precise, the validity problem
for MD-CTL is EXPTIME–complete.

In [18] pages 12-13 Emerson and Halpern give an algorithm for deciding if a CTL formula φ is satisfiable
that runs in time 2c|φ| for some c > 0. This algorithm can also be applied to MD-CTL formulae provided
that each occurrence of Ek(ψ1 Ũk ψ2) is replaced by ¬Ak(¬ψ1 Uk ¬ψ2). In this way we derive as an upper
bound that the validity problem for MD-CTL formulae is in EXPTIME. Furthermore, we know from [45]
that the validity problem for CTL is EXPTIME–complete. In view of the fact that CTL is a special case of
MD-CTL, this provides a lower bound for MD-CTL. Hence, the next theorem follows immediately:

Theorem 4.3 (Validity) The validity problem for MD-CTL is EXPTIME–complete.

5 Embedding MD-CTL into stratified Datalog

In this section, we define an embedding from MD-CTL into a fragment of stratified Datalog that we call
the class of Multi Branching Temporal (in short MBT) programs. The results of this section combined with
the results of Section 6 prove that the class MBT has the same expressive power with MD-CTL over finite
structures. We start with the formal definition of MBT programs and then proceed to show how MD-
Kripke structures can be seen as relational databases and MD-CTL formulae as relational queries. Finally
we give the exact rules of this embedding.

5.1 Multi Branching Temporal programs

Multi Branching Temporal programs are built up from unary and binary EDB predicates and contain only
unary and binary IDB predicates. One particular IDB predicate is chosen to be the goal predicate of the
program. Inductively if Π1, Π2 are MBT programs with goal predicates G1, G2, respectively, and with
disjoint sets of IDB predicates (with the exception of Ak and W which are the same in all programs) then
Π is the union of the rules of Π1, Π2 and one of the following five sets of rules.

{
G(x)←−W(x),¬G1(x)
Πn

dom

 G(x)←− G1(x),¬Ak(x)
G(x)←− Rk(x, y), G1(y)
Ak(x)←− Rk(x, y){

G(x)←− G1(x), G2(x)

{
G(x)←− G2(x)
G(x)←− G1(x), Rk(x, y), G(y)



G(x)←− G1(x), G2(x)
G(x)←− G2(x),¬Ak(x)
G(x)←− Bk(x, x)
G(x)←− G2(x), Rk(x, y), G(y)
Bk(x, y)←− G2(x), Rk(x, y), G2(y)
Bk(x, y)←− G2(x), Rk(x, u), Bk(u, y)
Ak(x)←− Rk(x, y)

For a more succinct presentation we use the program operators [·], ∧[·, ·], Xk[·],
∪

k[·, ·] and
∪̃

k[·, ·]. The
correspondence between the programs and the operators is shown in Figure 2. Πn

dom is a convenient
abbreviation of the set of rules depicted above and the superscript n indicates that the predicate symbols
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R1, . . . , Rn are used in the construction of the program. Π1 and Π2 are MBT programs with goal predicates
G1 and G2 respectively. The subscript k appearing in the operators Xk[·],

∪
k[·, ·] and

∪̃
k[·, ·] corresponds to

Rk, e.g., operator X1[·] contains R1, X2[·] contains R2 etc. G and Bk are “fresh” predicate symbols, i.e. they
must not appear in Π1 or Π2. In contrast, Ak may occur in Π1 or Π2.

Definition 5.1

• The programs
{

G(x)←−W(x)
Πn

dom
and G(x)←− Pi(x) are MBTn programs and G is their goal predicate.

• If Π1 and Π2 are MBTn programs with goal predicates G1 and G2 respectively, then [Π1],
∧
[Π1, Π2], Xk[Π1],∪

k[Π1, Π2] and
∪̃

k[Π1, Π2], where 1 ≤ k ≤ n, are also MBTn programs with goal predicate G.

• The class MBT is the union of the MBTn subclasses:

MBT =
∪

n≥0 MBTn ⊣

An MBT program will, generally, contain one or more unary Gi IDBs and, possibly, one or more binary
Bk,j IDBs. In fact the number of the latter is equal to the number of applications of the

∪̃
k operator. As

already mentioned all these predicate symbols are different, whereas A1, . . . , An and W are the same in all
programs. The intuition behind W, A1, . . . , An and Bk, is the following:
• W(x) means that x belongs to the “domain” of the database, i.e. appears in the relations that comprise
the database.
• Ak(x) means that state x has at least one k-successor.
• Bk(x, y) captures the notion of a k-path from state x to state y, such that G2 holds at every state along
this path. In view of the fact that G2 corresponds to a MD-CTL formula (let’s say ψ), Bk(x, x) asserts the
existence of a cycle having the property that ψ holds at every state of this cycle.

Note that the goal predicate is always in the last stratum and captures the meaning of the query better
than any other IDB predicate. The following proposition proves that the MBD class is a fragment of
stratified Datalog.

Operators used in the definition of MBT programs.

Πn
dom =



W(x)←− R1(x, y)
W(x)←− R1(y, x)
. . .
W(x)←− Rn(x, y)
W(x)←− Rn(y, x)
W(x)←− P0(x)
. . .
W(x)←− Pm(x)

Xk [Π1] =


G(x)←− G1(x),¬Ak(x)
G(x)←− Rk(x, y), G1(y)
Ak(x)←− Rk(x, y)
Π1

[Π1] =

 G(x)←−W(x),¬G1(x)
Π1
Πn

dom∧
[Π1, Π2] =

 G(x)←− G1(x), G2(x)
Π1
Π2

∪
k [Π1, Π2] =


G(x)←− G2(x)
G(x)←− G1(x), Rk(x, y), G(y)
Π1
Π2

∪̃
k [Π1, Π2] =



G(x)←− G1(x), G2(x)
G(x)←− G2(x),¬Ak(x)
G(x)←− Bk(x, x)
G(x)←− G2(x), Rk(x, y), G(y)
Bk(x, y)←− G2(x), Rk(x, y), G2(y)
Bk(x, y)←− G2(x), Rk(x, u), Bk(u, y)
Ak(x)←− Rk(x, y)
Π1
Π2

Figure 2: The query operators used in the definition of Multi Branching Temporal (in short MBT) programs.

Proposition 5.1 Every MBT program is stratified.

Proof:
Given that Π1, Π2 are stratified programs, any set of rules that might be added to Π1, Π2 according to
Definition 5.1 in order to form program Π preserves the stratification of the program. �
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5.2 From formulae and structures to queries and databases

We embed MD-CTL into the class of MBT programs via a mapping h = (h f , hs) such that:

1. h f maps MD-CTL formulae into MBT programs: given a formula φ, h f (φ) is a program Π with unary
goal predicate G.

2. hs maps MD-Kripke structures to relational databases, i.e. hs(K) is a database D.

3. This mapping is sound and complete in the following sense:

φ[K] = GΠ(D), where Π = h f (φ) and D = hs(K)

The exact mapping h f is given below, where Πi corresponds to the formula ψi, i = 1, 2.

Definition 5.2 Let φ be an n-dimensional CTL formula. The MBTn program h f (φ) is defined recursively as follows:

1. If φ ≡ ⊤ or φ ≡ pi, then h f (φ) is
{

G(x)←−W(x),
Πn

dom
and

{
G(x)←− Pi(x) respectively.

2. If φ ≡ ¬ψ1 or φ ≡ ψ1 ∧ ψ2, then h f (φ) is [Π1] and
∧
[Π1, Π2], respectively.

3. If φ ≡ EkXkψ1 or φ ≡ Ek(ψ1 Uk ψ2) or φ ≡ Ek(ψ1 Ũk ψ2), then h f (φ) is Xk[Π1],
∪

k[Π1, Π2] and∪̃
k[Π1, Π2], respectively. ⊣

The construction of MBT programs that correspond to MD-CTL formulae can be performed very effi-
ciently. This is formalized in Proposition 5.2. The proof is a direct consequence of Definition 5.2.

Proposition 5.2 Given a MD-CTL formula φ, the corresponding MBT program Π is of size O(|φ|) and is con-
structed in time O(|φ|).

Finite MD-Kripke structures can be viewed as relational databases. Definition 5.3 states formally the
details of this mapping.

Definition 5.3 Let AP be a finite set {p0, . . . , pm} of atomic propositions and let K = ⟨W, R1, . . . , Rn, V⟩ be an
n-dimensional Kripke structure for AP. Then hs(K) is the database ⟨R1, . . . , Rn, P0, . . . , Pm⟩, where Pi = {s ∈ W |
pi ∈ V(s)} contains the states at which pi is true (0 ≤ i ≤ m).

In addition, to K corresponds the database schema DK = ⟨W, R1,. . .,Rn, P0, . . ., Pm⟩, with domain the set of
states W, binary predicate symbols R1, . . . , Rn and unary predicate symbols P0, . . . , Pm. A database schema of this
form is called a MD-Kripke schema. ⊣

As we have already pointed out, for simplicity we use the same notation, e.g., R1, . . . , Rn, P0, . . . , Pm
both for the predicate symbols and the relations. The context makes clear whether R1, . . . , Rn, P0, . . . , Pm
stand for predicate symbols or relations. The following proposition is a straightforward consequence of
Definition 5.3.

Proposition 5.3 A finite MD-Kripke structure K can be converted into a relational database D = hs(K) of size
O(|K|) which can be constructed in time O(|K|).

Notice that the relations R1, . . . Rn of hs(K) are total. Moreover, every k-path s0, s1, s2, . . . of K gives rise
to the k-path s0, s1, s2, . . . in hs(K) and vice versa: if s0, s1, s2, . . . is a k-path in hs(K), then

Rk(si, si+1), for every i ≥ 0 (3)

The next proposition states formally the basic property of Bk(x, x).

Proposition 5.4 Bk(s, s) holds iff there exists a finite k-path s0, . . . , sr in D such that s0 = sr = s and G2(si), for
every i, 0 ≤ i ≤ r.

To prove Theorem 5.1 we need the next proposition, which is basically just a simple application of the
pigeonhole principle.
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Proposition 5.5 Let K = ⟨W, R1, . . . , Rn, V⟩ be a finite MD-Kripke structure and let s0, . . . , si, . . . , sj, . . . , sr be
a finite k-path in K, where r ≥ |W|. Then, there exists a state s ∈W such that si = sj = s.

We proceed to the main result of this section, which asserts that the mapping from MD-CTL formulae
to the class of MBT programs is sound and complete. The proof is presented in the Appendix to facilitate
the flow of the paper.

Theorem 5.1 Let K be a finite n-dimensional Kripke structure and let D be the corresponding relational database.
If φ is a n-dimensional CTL formula and Π its corresponding MBTn program, then the following holds:

φ[K] = GΠ(D) (4)

Proof: The proof can be found in the Appendix.

6 Embedding stratified Datalog into MD-CTL

In the previous section we embedded MD-CTL into the MBT class. In this section we work on the opposite
direction, that is we define an embedding from MBT into MD-CTL. This is achieved via a mapping f =
( fq, fd) such that:

1. fq maps MBT programs into MD-CTL formulae, and

2. fd maps relational databases to MD-Kripke structures.

This mapping is also sound and complete in the following sense:

GΠ(D) = φ[K]

The correspondence of MBT programs to MD-CTL formulae is given below (subformula ψi corresponds
to subprogram Πi, i = 1, 2).

Definition 6.1 Given a MBTn program Π, fq(Π) is the mapping defined recursively as follows:

1. If Π =
{

G(x)←−W(x)
Πn

dom
or Π =

{
G(x)←− Pi(x) , then fq(Π) is ⊤ and pi, respectively.

2. If Π = [Π1] or Π =
∧
[Π1, Π2], then fq(Π) is ¬ψ1 and ψ1 ∧ ψ2, respectively.

3. If Π = Xk[Π1] or Π =
∪

k[Π1, Π2] or Π =
∪̃

k[Π1, Π2], then fq(Π) is EkXkψ1, Ek(ψ1 Uk ψ2) and
Ek(ψ1 Ũk ψ2), respectively. ⊣

The following proposition asserts that the construction of MD-CTL formulae that correspond to MBT
programs can be performed very efficiently. The proof is an immediate consequence of Definition 6.1.

Proposition 6.1 Given a MBT Π, the corresponding MD-CTL formula φ, which is of size O(|Π|), can be con-
structed in time O(|Π|).

At this point, we discuss the technical challenges of this embedding. In MD-Kripke structures every
accessibility relation Rk is total and as a result the corresponding relational database contains a total binary
relation Rk. However, a database relation is not necessarily total. A relation that is not total may not give
rise to the (infinite) paths necessary for the interpretation of MD-CTL formulae. To overcome this problem
we define the total closure Rt

k of an arbitrary binary relation Rk with respect to a domain W as follows:

Rt
k = Rk ∪ {(x, x) | x ∈W and ̸ ∃y such that Rk(x, y)} (5)

In simple words, if Rk is not total, we can still get a total relation by adding a self loop to the states
that have no successors. Note that if Rk is already total then Rt

k = Rk. Now a relational database can be
transformed into a finite MD-Kripke structure in a meaningful way. Definition 6.2 gives the details of this
transformation. Note that by a straightforward translation some Datalog rules might not be safe (i.e. they
may have variables that do not occur in nonnegated body subgoals). Thus, we introduce a number of rules
which essentially define the domain by an IDB predicate which is used in rules for safety.
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Definition 6.2 Let D be any database over the MD-Kripke schema DK = ⟨U, R1,. . . , Rn, P0, . . . , Pm⟩. The domain
W of D is defined as W = WRx

∪
WRy

∪
WP, where:

WRx =
n∪

k=0

{x ∈ U | Rk(x, y)}

WRy =
n∪

k=0

{y ∈ U | Rk(x, y)}

WP =
m∪

i=0

{x ∈ U | Pi(x)}

Let Dt be the total database ⟨Rt
1, . . . , Rt

n, P0, . . . , Pm⟩, where Rt
k, 1 ≤ k ≤ n, is the total closure of Rk with respect

to W. Then fd(D) is the finite MD-Kripke structure ⟨W, Rt
1, . . . , Rt

n, V⟩, where V(s) = {pi ∈ AP | Pi(s)}. ⊣

fd(D) is well-defined because Rt
1, . . . , Rt

n are total as required by Definition 2.1. The next proposition
follows directly from Definition 6.2.

Proposition 6.2 A relational database D = ⟨R1, . . . , Rn, P0, . . . , Pm⟩ over a MD-Kripke schema with domain W
can be transformed into a finite MD-Kripke structure K = fd(D) of size O(|W|+ |R1|+ . . . + |Rn|) = O(|D|) in
time O(|D|).

The main result of this section is that the mapping f = ( fq, fd) is sound a complete: GΠ(D) = φ[K],
where φ = fq(Π) and K = fd(D). In order to prove it we have to show that MBT programs cannot
distinguish between a database D and the corresponding total database Dt, i.e. are invariant under total
closure.

Theorem 6.1 Given a MBT program Π with goal predicate G and a database D with MD-Kripke schema, the
following holds:

GΠ(D) = GΠ(Dt) (6)

Proof: The proof can be found in the Appendix.

Theorem 6.2 Let D be a relational database over a MD-Kripke schema and let K be the corresponding finite MD-
Kripke structure. If Π is a MBT and φ its corresponding MD-CTL formula, then the following holds:

GΠ(D) = φ[K] (7)

Proof:
From Theorem 6.1 we know that GΠ(D) = GΠ(Dt). Further, we can show that GΠ(Dt) = φ[K] – the proof
is similar to the proof of Theorem 5.1 and therefore is omitted. This completes the proof. �

Theorem 6.2 proves that the mapping from MBT programs to MD-CTL formulae is sound and complete.
This result in association with Theorem 5.1 leads to the following conclusion:

Theorem 6.3 MD-CTL over finite structures has the same expressive power with the class of MBT programs.

7 Results on Stratified Datalog

The results of Sections 5 and 6 established that MD-CTL and MBT programs have the same expressive
power. In this section we build on this relation to show that the class MBT is an efficient fragment of
stratified Datalog in the sense that: (1) query evaluation is linear and (2) checking satisfiability, containment
and equivalence are EXPTIME-complete.

7.1 Query Evaluation

Definitions 5.2 and 6.1 in essence provide algorithms for constructing a MBT program which corresponds to
a MD-CTL formula and vice versa. The importance lies in that the translation can be carried out efficiently
in both directions. This is formalized by Propositions 5.2 and 6.1, which, together with Propositions 5.3
and 6.2, suggest an efficient method for performing program evaluation in this fragment. Suppose that we
are given a database D (with a MD-Kripke schema), a program Π with goal G and we want to evaluate G
on D, i.e. to compute GΠ(D). This can be done as follows:
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1. From Π and D construct the corresponding φ and K respectively. This step requires O(|Π|+ |D|)
time and results in a formula φ of size O(|Π|) and a MD-Kripke structure K of size O(|D|).

2. Apply a model checking algorithm for K and φ. The algorithm will compile the truth set φ[K], i.e.
the set of states of K on which φ is true. According to Theorem 6.2 φ[K] is exactly the outcome of
the evaluation of G on D.

Since model checking algorithms for MD-CTL run in O(|K| · |φ|) time (see Theorem 4.1), the following
theorem holds.

Theorem 7.1 Given a MBT program Π with goal G and a database D, the evaluation of G on D can be done in
O(|D||Π|) time.

The above result establishes that for the class MBT the query evaluation has linear program and data
complexity.

7.2 Satisfiability

In this section we show that checking the satisfiability of a MBT program can be reduced to checking the
satisfiability of a MD-CTL formula. We begin by stating Theorem 7.2 which is a straightforward extension
of Theorem 4.3, and on which we build later to argue about the satisfiability of MBT programs.

Theorem 7.2 (Satisfiability) The satisfiability problem for MD-CTL is EXPTIME–complete.

Definition 7.1 (Satisfiability for Datalog programs) An IDB predicate G of a program Π is satisfiable if there
exists a database D, such that GΠ(D) ̸= ∅. ⊣

Proposition 7.1 Let Π be a MBT program with goal predicate G and let φ be the corresponding MD-CTL formula;
φ is satisfiable iff G is satisfiable.

Proof:
(⇒) Suppose that φ is satisfiable; then there exists a MD-Kripke structure K = ⟨W, R1, . . . Rn, V⟩, such
that K, s |= φ, for some s ∈ W. If K is finite, then by Theorem 5.1 we obtain that s ∈ GΠ(D), where D is
the database that corresponds to K. If K is infinite, then by Theorem 4.2 there exists a finite MD-Kripke
structure K f = ⟨W f , R f1 , . . . , R fn , Vf ⟩ such that K f , s′ |= φ, for some s′ ∈ W f . Invoking again Theorem 5.1
we derive that s′ ∈ GΠ(D), where D is the database that corresponds to K f . We conclude that in both
cases G is satisfiable.
(⇐) Suppose now that G is satisfiable. This means that there exists a database D = ⟨R1, . . . , Rn, P0, . . . , Pm⟩
over a MD-Kripke schema with domain W, such that GΠ(D) ̸= ∅. Hence, by Theorem 6.2 we obtain that
φ[K] ̸= ∅, where K is the finite MD-Kripke structure that corresponds to D. This of course implies that
there exists a state s ∈W such that K, s |= φ, i.e. φ is satisfiable. �

Proposition 7.1 proves that the problem of checking the satisfiability of the unary goal predicates of MBT
programs is decidable. The following proposition deals with the case of the binary Bk(x, y) predicates.

Proposition 7.2 Let Π be a MBT program and let Bk be a binary IDB predicate of Π. Deciding the satisfiability of
Bk can be reduced to deciding the satisfiability of a goal predicate G of another MBT program in polynomial time.

Proof:
If Π contains a binary IDB predicate Bk(x, y), then it contains a subprogram Π′ =

∪̃
k[Π1, Π2]. Let φ,

ψ1 and ψ2 be the MD-CTL formulae corresponding to Π′, Π1 and Π2. According to Definition 6.1, φ ≡
Ek(ψ1 Ũk ψ2). Let us consider now the MD-CTL formula φ′′ ≡ φ ∧ ¬Ek(⊤ Uk ψ1). Let Π′′ be the MBT
program corresponding to φ′′ and let G be the goal predicate of Π′′. But then Bk is satisfiable iff G is
satisfiable. Finally, it is easy to see that the above reduction takes place in polynomial time.

In order to complete the proof we have to argue about the satisfiability of every IDB predicate. A MBT
program may contain the following IDB predicates: W, Ak, Gi and Bk . The first two predicates are always
satisfiable. Propositions 7.1 and 7.2 handle the remaining two predicates by reducing their satisfiability to
the satisfiability of the appropriate MD-CTL formulae.

The following theorem is an immediate consequence of Theorem 7.2 and Propositions 7.1 and 7.2. �

Theorem 7.3 Checking satisfiability for MBT programs is EXPTIME–complete.
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7.3 Containment

The problem of checking the containment of MBT programs can be reduced to that of checking the impli-
cation of MD-CTL formulae. First we give some basic definitions regarding the notion of containment for
Datalog programs and MD-CTL formulae.

Definition 7.2 (Containment of Datalog queries) Given two Datalog queries Π1 and Π2 with goal predicates G1 and
G2, we say that Π1 is contained in Π2, denoted Π1 ⊑ Π2, if and only if for every database D, G1Π1

(D) ⊆ G2Π2
(D).

Π1 and Π2 are equivalent, denoted Π1 ≡ Π2, if Π1 ⊑ Π2 and Π2 ⊑ Π1. ⊣

A notion of containment for MD-CTL formulae can also be cast in terms of truth sets.

Definition 7.3 (Containment of MD-CTL formulae) Given two MD-CTL formulae φ1 and φ2, we say that φ1 is
contained in φ2, denoted φ1 ⊑ φ2, if and only if for every finite MD-Kripke structure K, φ1[K] ⊆ φ2[K]. ⊣

Suppose we have two MD-CTL formulae φ1 and φ2; we say that φ1 implies φ2 if for every MD-Kripke
structure K = ⟨W, R1, . . . , Rn, V⟩ and for every s ∈ W, K, s |= φ1 implies that K, s |= φ2. If φ1 implies φ2,
then formula φ1 → φ2 is valid and vice versa. Hence, we can use the notation |= φ1 → φ2 to assert that φ1
implies φ2. The following corollary follows directly from Theorem 4.3.

Corollary 7.1 (Implication) The problem of deciding whether a MD-CTL formula φ1 implies a MD-CTL formula
φ2 is EXPTIME–complete.

Note that it is sufficient to consider only finite structures because as we explained in Section 4.2 MD-
CTL has the bounded model property.

Proposition 7.3 Given two MD-CTL formulae φ1 and φ2 the following are equivalent:
1. φ1 ⊑ φ2
2. |= φ1 → φ2

Proof:
(1⇒ 2) φ1 ⊑ φ2 means that for every finite MD-Kripke structure K = ⟨W, R1, . . . , Rn, V⟩, φ1(K) ⊆ φ2(K).
This implies that if s ∈ φ1(K), then s ∈ φ2(K). Therefore, for every finite MD-Kripke structure K =
⟨W, R1, . . . , Rn, V⟩ and for every s ∈W, K, s |= φ1 implies K, s |= φ2, i.e.|= f φ1 → φ2.

It remains to consider the infinite case; we will prove that the next two assertions are equivalent:
(a) |= f φ1 → φ2
(b) |= φ1 → φ2
It is obvious that (b) implies (a). To show that (a) also implies (b) let us assume to the contrary that (a)

holds and (b) does not. This means that φ1 ∧ ¬φ2 is satisfiable, i.e. it has a model K. K cannot be finite
because of (a). It must, therefore, be infinite. Then, from Theorem 4.2 we obtain that φ1 ∧ ¬φ2 has a finite
model K f , which is absurd because of (a).
(2 ⇒ 1) |= φ1 → φ2 means that for every MD-Kripke structure K = ⟨W, R1, . . . , Rn, V⟩, K |= φ1 → φ2.
Consequently, for every s ∈ W, K, s |= φ implies that K, s |= ψ, or in other words, φ1(K) ⊆ φ2(K). Thus,
φ1 ⊑ φ2. �

The following theorem is a direct consequence of Corollary 7.1 and Proposition 7.3.

Theorem 7.4 Checking containment for MD-CTL formulae is EXPTIME–complete.

Theorem 7.5 proves the EXPTIME–completeness of the containment problem for MBT programs.

Theorem 7.5 Checking containment for MBT programs is EXPTIME–complete.

Proof:
Let Π1, Π2 be MBT programs with goal predicates G1, G2 and let φ1, φ2 be the corresponding MD-CTL
formulae. We shall prove that Π1 ⊑ Π2 iff φ1 ⊑ φ2.
(⇒) Suppose that Π1 ⊑ Π2, but it is not the case that φ1 ⊑ φ2, i.e. there exists a finite MD-Kripke structure
K′ such that φ1[K′] ̸⊆ φ2[K′]. Let D′ be the database that corresponds to K′; then by Theorem 5.1 we get
that G1Π1

(D′) ̸⊆ G2Π2
(D′). But this is absurd because the fact that Π1 ⊑ Π2 implies that for every database

D, G1Π1
(D) ⊆ G2Π2

(D). Thus, it must be the case that φ1 ⊑ φ2.
(⇐) Suppose that φ1 ⊑ φ2, but it is not the case that Π1 ⊑ Π2, i.e. there exists a database D′ such that
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G1Π1
(D′) ̸⊆ G2Π2

(D′). Let K′ be the finite MD-Kripke structure that corresponds to D′. Theorem 6.2 then
implies that φ1[K′] ̸⊆ φ2[K′], which is absurd because φ1 ⊑ φ2 means that for every finite MD-Kripke
structure K, φ1(K) ⊆ φ2(K). Hence, it must be the case that Π1 ⊑ Π2. �

The following theorem is an immediate consequence of Theorem 7.5.

Theorem 7.6 Checking equivalence of MBT programs is EXPTIME–complete.

8 Conclusions

In this work we introduced the multidimensional computation tree logic (MD-CTL) and we proved that the
“nice” properties of CTL (linear model checking and bounded model property) transfer also to MD-CTL.
We exploited these properties to establish results on stratified Datalog for which not much work exists in
the literature. In particular, we defined a fragment of stratified Datalog called the class of Multi Branching
Temporal (MBT) programs that has the same expressive power with MD-CTL. To prove that we devised
a translation from both directions between MD-CTL formulae and MBT programs by giving the exact
translation rules. We further built on this relation to prove that checking satisfiability, containment and
equivalence problems are EXPTIME–complete for MBT programs. The MBT class is the largest fragment
of stratified Datalog for which these problems are known to be decidable. We also proved that query
evaluation is linear.

In future work we plan to extend our approach to CTL⋆ (Full Branching Time Logic) [22, 19]. CTL
is a proper and less expressive fragment of CTL⋆. Although we believe that the extension is feasible,
having considered and investigated the problem for a short time, we think that the translation of CTL⋆ will
introduce additional non-trivial complications. Another future direction is to investigate larger fragments
of stratified Datalog for which query containment, equivalence, satisfiability and evaluation are decidable.
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9 Appendix: Proofs

9.1 Proof of Theorem 5.1

We prove that (4) holds by induction on the structure of φ. To increase the readability of the proof, we use
the subscripts in the goal predicates to denote the corresponding formula. For instance, we write GEkXkψ

to denote that G is the goal predicate of the program corresponding to EkXkψ.

1. If φ ≡ ⊤ or φ ≡ p, where p ∈ AP, then the corresponding programs are those of Definition 5.2.(1):

• (⇒) K, s |= ⊤ ⇒ s ∈ W ⇒ (by the totality of the accessibility relations) there exists t ∈ W such
that (s, t) ∈ Rk for some k (1 ≤ k ≤ n) ⇒ s ∈WΠn

dom
(D)⇒ s ∈ G⊤(D).

(⇐) s ∈ G⊤(D) ⇒ s ∈ WΠn
dom

(D) ⇒ s appears in one of R1, . . . , Rn, P0, . . . , Pn ⇒ s ∈ W ⇒
K, s |= ⊤.

• K, s |= p⇔ p ∈ V(s)⇔ P(s) is a ground fact of D⇔ s ∈ Gp(D).

2. If φ ≡ ¬ψ or φ ≡ ψ1 ∧ ψ2, then the corresponding programs are shown in Definition 5.2.(2).

¬ : (⇒) K, s |= φ ⇒ K, s |= ¬ψ ⇒ K, s ̸|= ψ ⇒ (by the induction hypothesis) s ̸∈ Gψ(D) ⇒ s ∈
Gφ(D).
(⇐) s ∈ Gφ(D) ⇒ s ̸∈ Gψ(D) ⇒ (by the induction hypothesis) K, s ̸|= ψ ⇒ K, s |= ¬ψ ⇒
K, s |= φ.

∧ : (⇒) K, s |= φ ⇒ K, s |= ψ1 and K, s |= ψ2 ⇒ (by the induction hypothesis) s ∈ Gψ1(D) and
s ∈ Gψ2(D)⇒ s ∈ Gψ1(D) ∩ Gψ2(D)⇒ s ∈ Gφ(D).
(⇐) s ∈ Gφ(D) ⇒ s ∈ Gψ1(D) ∩ Gψ2(D) ⇒ s ∈ Gψ1(D) and s ∈ Gψ2(D) ⇒ (by the induction
hypothesis) K, s |= ψ1 and K, s |= ψ2 ⇒ K, s |= φ.

3. If φ ≡ EkXkψ, then the corresponding program is that of Definition 5.2.(3).

(⇒) K, s |= EkXkψ ⇒ there exists a k-path π = s0, s1, s2, . . . with initial state s0 = s, such that
K, π |= Xkψ ⇒ K, π1 |= ψ for the path π1 = s1, s2, . . . ⇒ K, s1 |= ψ ⇒ (by the induction
hypothesis) s1 ∈ Gψ(D). Furthermore, from (3) we know that Rk(s0, s1) holds. From the second
rule of Πφ, by combining Gψ(s1) with Rk(s0, s1), we derive Gφ(s0) and, thus, s0 ∈ Gφ(D).

(⇐) Let us assume that s ∈ Gφ(D). In this case the database relation Rk is total. Hence, s ∈ Ak(D)
and the first rule does not add new states to Gφ(D). From the rules of program Πφ there
exists a s1 such that Rk(s, s1) and Gψ(s1) hold. By the induction hypothesis we get K, s1 |= ψ.
Let π = s0, s1, s2, . . . be any k-path with initial state s0 = s and second state s1. Clearly, then
K, π1 |= ψ⇒ K, π |= Xkψ⇒ K, s |= φ.

4. If φ ≡ Ek(ψ1 Uk ψ2), then the corresponding program is that of Definition 5.2.(3).

(⇒) K, s |= Ek(ψ1 Uk ψ2) ⇒ there exists a k-path π = s0, s1, s2, . . . with initial state s0 = s, such
that K, πi |= ψ2 and K, π j |= ψ1 ⇒ K, si |= ψ2 and K, sj |= ψ1 (0 ≤ j ≤ i − 1) ⇒ si ∈
Gψ2(D) and sj ∈ Gψ1(D) (0 ≤ j ≤ i− 1) (by the induction hypothesis). From (3) we know that
Rk(sr, sr+1), 0 ≤ r < i. From the first rule of Πφ : Gφ(x) ←− Gψ2(x) we derive that Gφ(x).
Successive applications of the second rule of Πφ : Gφ(x) ←− Gψ1(x), Rk(x, y), Gφ(y) yield
Gφ(si−1), Gφ(si−2), . . . , Gφ(s1), Gφ(s0). Thus, s0 ∈ Gφ(D).

(⇐) For the inverse direction, suppose that s ∈ Gφ(D). From the rules of program Πφ there exists
a state si (possibly si = s) such that Gψ2(si) holds. In addition, there exists a sequence of states
s0 = s, s1, . . . , si such that Rk(sr, sr+1) and Gψ1(sr) (0 ≤ r < i). By the induction hypothesis we
get that K, si |= ψ2 and K, sj |= ψ1 (0 ≤ j ≤ i− 1). Let π = s0, s1, s2, . . . , si, . . . be any k-path with
initial segment s0, s1, . . . , si. Then, K, πi |= ψ2 and K, π j |= ψ1 (0 ≤ j ≤ i− 1), i.e. K, π |= φ.

5. If φ ≡ Ek(ψ1 Ũk ψ2), then the corresponding program is that of Definition 5.2.(3).

(⇒) Recall from Section 2 that K, s |= Ek(ψ1 Ũk ψ2) means that there exists a k-path π = s0, s1, s2, . . .
with initial state s0 = s, such that either (1) K, πi |= ψ2, for every i ≥ 0, or (2) K, πi |= ψ1 ∧ ψ2
and K, π j |= ψ2, 0 ≤ j ≤ i− 1. We examine both cases:
(a) In the first case K, si |= ψ2, for every i ≥ 0. The induction hypothesis gives that si ∈ Gψ2(D),
for every i ≥ 0. Let s0, s1, s2, . . . , sr be an initial segment of π, with n ≥ |W|. From Proposition
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5.5 we know that in the aforementioned sequence there exists a state t such that t = sk = sl ,
0 ≤ k < l ≤ r. Then Proposition 5.4 implies that (sk, sk) ∈ Bk(D). From the third rule of
Πφ: Gφ(x) ←− Bk(x, x), we derive that Gφ(sk). Successive applications of the rule Gφ(x) ←−
Gψ2(x), Rk(x, y), Gφ(y) yield Gφ(sk−1), Gφ(sk−2), . . . , Gφ(s1), Gφ(s0). Accordingly, s0 ∈ Gφ(D).
(b) In the second case, we know that K, si |= ψ1 ∧ ψ2 and K, sj |= ψ2, 0 ≤ j ≤ i − 1. By the
induction hypothesis we get that si ∈ Gψ1(D) and sj ∈ Gψ2(D), 0 ≤ j ≤ i. From the first rule
of Πφ: Gφ(x) ←− Gψ1(x), Gψ2(x), we derive that Gφ(si). Successive applications of the fourth
rule of Πφ: Gφ(x) ←− Gψ2 (x), Rk(x, y), Gφ(y) yield Gφ(si−1), Gφ(si−2), . . . , Gφ(s1), Gφ(s0).
Therefore, s0 ∈ Gφ(D).

(⇐) For the inverse direction, suppose that s0 ∈ Gφ(D). We define Gφ(D, r) to be the set of ground
facts of the IDB predicate Gφ that have been computed during the first r rounds of the evaluation
of the last stratum of the program Πφ. We shall prove that for every t ∈ Gφ(D, r), there exists
a k-path π = t0, t1, t2, . . . with initial state t0 = t, such that K, π |= φ. We use induction on the
number of rounds r.
(a) If r = 1, then t must appear either due to the first rule of Πφ: Gφ(x) ←− Gψ1(x), Gψ2(x)
or due to the third rule of Πφ: Gφ(x)←− Bk(x, x) if the IDB predicate Bk belongs to a previous
stratum. The database relation Rk is total, meaning that t ∈ Akφ

(D), and, thus, t could not have
appeared from an application of the second rule. Note that if Bk is in the last stratum, then, of
course, t could not have appeared due to the third rule. In the former case t ∈ Gψ1(D)∩Gψ2(D);
the induction hypothesis for ψ1 and ψ2 means that K, t |= ψ1 ∧ ψ2, which immediately implies
that K, π |= φ for any k-path π = t0, t1, t2, . . . with initial state t0 = t. In the latter case, (t, t) ∈
Bkφ

(D) and, in view of Proposition 5.4, this implies the existence of a finite sequence t0, t1, . . . , tl ,
such that t0 = tl = t and K, tj |= ψ2, 0 ≤ j ≤ l. Consider the path π = (t0, t1, . . . , tl)

ω; for this
path we have K, π |= φ.
(b) We show now that the claim holds for r+ 1, assuming that it holds for r. Suppose that t first
appeared in Gφ(D, r + 1) during round r + 1. This could have happened either because of the
third rule: Gφ(x)←− Bk(x, x) or because of the fourth rule: Gφ(x)←− Gψ2(x), Rk(x, y), Gφ(y).
In the first case (t, t) ∈ Bkφ

(D). Then Proposition 5.4 asserts the existence of a finite sequence
t0, t1, . . . , tl of states, such that t0 = tl = t and K, tj |= ψ2, 0 ≤ j ≤ l. Consider the path
π = (t0, t1, . . . , tl)

ω; for this path we have K, π |= φ.
In the second case, we know that Gψ2(t) and that there exists a t1 such that Rk(t, t1) and Gφ(t1).
By the induction hypothesis, we get that K, t |= ψ2 and that K, t1 |= φ. Immediately then we
conclude that K, π |= φ, for the k-path π = t0, t1, t2, . . . with t0 = t. �

9.2 Proof of Theorem 6.1

We prove that (6) holds by induction on the structure of the program Π.

1. If Π =
{

G(x)←−W(x)
Πn

dom
, then:

(⇒) s ∈ WΠn
dom

(D) ⇒ D contains a ground fact of the form Pi(s) or Rk(s, t) or Rk(t, s), for some
k, 1 ≤ k ≤ n. Obviously, Dt also contains this ground fact, which means that s ∈WΠn

dom
(Dt).

(⇐) s ∈ WΠn
dom

(Dt) ⇒ Dt contains a ground fact of the form Pi(s) or Rk(s, t) or Rk(t, s), or Rk(s, s),
for some k, 1 ≤ k ≤ n. In the first three cases D also contains this ground fact; however, D may
not contain a ground fact of Dt that has the form Rk(s, s). If D does not contain Rk(s, s), this implies
(recall the definition of Rt

k) that D contains a fact Pi(s) or a fact Rk(t, s) for some constant t, but does
not contain any fact of the form Rk(s, u). But then we would have that s ∈ WΠn

dom
(D) due to Pi(s) or

Rk(t, s).

2. If Π =
{

G(x)←− Pi(x) , then s ∈ GΠ(D)⇔ Pi(s) is a ground fact of D ⇔ Pi(s) is a ground fact of Dt

⇔ s ∈ GΠ(Dt).

3. If Π = [Π1], then s ∈ GΠ(D) ⇔ s ∈ WΠn
dom

(D) and s ̸∈ G1Π1
(D). Reasoning as above we conclude

that s ∈ WΠn
dom

(D) ⇔ s ∈ WΠn
dom

(Dt). Furthermore, by the induction hypothesis with respect to Π1,
we get that s ∈ G1Π1

(D)⇔ s ∈ G1Π1
(Dt). Hence, s ∈ GΠ(D)⇔ s ∈ GΠ(Dt).
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4. If Π =
∧
[Π1, Π2], then s ∈ GΠ(D)⇔ s ∈ G1Π1

(D) and s ∈ G2Π2
(D)⇔ (by the induction hypothesis)

s ∈ G1Π1
(Dt) and s ∈ G2Π2

(Dt)⇔ s ∈ GΠ(Dt).

5. If Π = Xk[Π1], then:
(⇒) Suppose that s ∈ GΠ(D); this is a result of either the first or the second rule of Π. If it is due
to the first rule, then s ∈ G1Π1

(D) and D does not contain a ground fact of the form Rk(s, u), for any
constant u. If it is due to the second rule, D contains a ground fact Rk(s, u), for some constant u, and
u ∈ G1Π1

(D). In the former case, the induction hypothesis implies that s ∈ G1Π1
(Dt). Moreover, by

construction Dt contains the ground fact Rk(s, s). Hence, s ∈ GΠ(Dt) because of the second rule of
Π. In the latter case, the induction hypothesis implies that u ∈ G1Π1

(Dt). Taking into account that
Dt contains Rk(s, u), we conclude that s ∈ GΠ(Dt) because of the second rule of Π.
(⇐) Suppose that s ∈ GΠ(Dt). Let us assume for a moment that s appears in GΠ(Dt) due to an
application of the first rule of Π. This would imply that s ̸∈ AkΠ(Dt). But this is absurd because Rt

k is
total by construction (i.e. ∀s∃uRk(s, u)) meaning that s ∈ AkΠ(Dt). This shows that when evaluating
Π on “total” databases, such as Dt, the first rule of Π is redundant. Hence, s must appear in GΠ(Dt)
as a result of an application of the second rule of Π. This means that Dt contains a ground fact of
the form Rk(s, u), for some constant u (possibly s = u), and u ∈ G1Π1

(Dt). The induction hypothesis
gives that u ∈ G1Π1

(D) (∗). If D contains the ground fact Rk(s, u), then s ∈ GΠ(D) due to the second
rule of Π. If however D does not contain the ground fact Rk(s, u), then by the definition of Rt

k we
deduce that: (a) D contains no ground fact of the form Rk(s, v), for any v, meaning that s ̸∈ AkΠ(D)

(∗∗) and (b) the ground fact in Dt is actually Rk(s, s), i.e. s = u, which, in view of (∗), means that
s ∈ G1Π1

(D) (∗ ∗ ∗). By (∗∗) and (∗ ∗ ∗) we conclude that s ∈ GΠ(D) due to the first rule of Π.

6. If Π =
∪

k[Π1, Π2], then:
(⇒) Suppose that s ∈ GΠ(D); from the rules of the program Π we see that there is a si (possibly
si = s) such that si ∈ G2Π2

(D). In addition, there exists a sequence s0 = s, s1, . . ., si such that D
contains the ground facts Rk(sr, sr+1) and sr ∈ G1Π1

(D) (0 ≤ r < i). By construction Dt also contains
the ground facts Rk(sr, sr+1) (0 ≤ r < i). Further, the induction hypothesis implies that si ∈ G2Π2

(Dt)

and sr ∈ G1Π1
(Dt) (0 ≤ r < i). Consequently, by successive applications of the second rule, we

conclude that s ∈ GΠ(Dt).
(⇐) Suppose that s ∈ GΠ(Dt). Consider a minimal sequence s0 = s, s1, . . . , si (possibly si = s) such
that Dt contains the ground facts Rk(sr, sr+1), sr ∈ G1Π1

(Dt) and sr ̸∈ G2Π2
(Dt) (0 ≤ r < i) and

si ∈ G2Π2
(Dt). D contains also the facts Rk(sr, sr+1) (0 ≤ r < i). Let us assume that D does not

contain Rk(sk, sk+1), for some k, 0 ≤ k < i. This means that sk = sk+1 = . . . = si (recall (5)), which in
turn implies that si ̸∈ G2Π2

(Dt), i.e, a contradiction. Thus, we have established that D also contains
the facts Rk(sr, sr+1) (0 ≤ r < i). Now, the induction hypothesis implies that s ∈ G2Π2

(D) and
sr ∈ G1Π1

(D) (0 ≤ r < i). Consequently, by successive applications of the second rule, we conclude
that s ∈ GΠ(D).

7. If Π =
∪̃

k[Π1, Π2], then let GΠ(D, r) and GΠ(Dt, r) be the sets of ground facts of G that have been
computed during the first r rounds of the evaluation of the last stratum of Π on D and Dt, respec-
tively. We shall prove that s ∈ GΠ(D, r)⇔ s ∈ GΠ(Dt, r) using induction on the number of rounds r.
i. We prove the claim for r = 1.
(⇒) Let s ∈ GΠ(D, 1); s appears due to one of the first three rules of Π. If it is due to the first
rule: G(x) ←− G1(x), G2(x), then s ∈ G1Π1

(D) ∩ G2Π2
(D) and the induction hypothesis pertaining

to Π1 and Π2 gives that s ∈ G1Π1
(Dt) ∩ G2Π2

(Dt), which immediately implies that s ∈ GΠ(Dt, 1).
If it is due to the second rule: G(x) ←− G2(x),¬Ak(x), then s ∈ G2Π2

(D) and D does not contain
a ground fact of the form Rk(s, u), for any constant u. The induction hypothesis with respect to Π2
implies that s ∈ G2Π2

(Dt). Moreover, by construction Dt contains the ground fact Rk(s, s). Then,
by the fifth rule of Π: Bk(x, y) ←− G2(x), Rk(x, y), G2(y), (s, s) ∈ BkΠ(Dt) and, consequently, by
the third rule s ∈ GΠ(Dt, 1). If it is due to the third rule: G(x) ←− Bk(x, x), then (s, s) ∈ BkΠ(D).
This means that D contains a sequence of ground facts Rk(s0, s1), Rk(s1, s2), . . . , Rk(sl , sl+1) with
sm ∈ G2Π2

(D), 0 ≤ m ≤ l + 1, and s0 = sl+1 = s. Using the induction hypothesis pertaining to Π2

we obtain sm ∈ G2Π2
(Dt), 0 ≤ m ≤ l + 1. Further, by construction Dt contains all the facts of D and,
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therefore, (s, s) ∈ BkΠ(Dt). Finally, by the third rule we conclude that s ∈ GΠ(Dt, 1).
(⇐) Let s ∈ GΠ(Dt, 1); s appears either due to the first or due to the third rule of Π. The totality
of Rt

k precludes the use of the second rule. If it is due to the first rule, a trivial invocation of the
induction hypothesis pertaining to Π1 and Π2 gives that s ∈ GΠ(D, 1). If it is due to the third rule,
then (s, s) ∈ BkΠ(Dt) and s ∈ G2Π2

(Dt). We distinguish two cases, depending on whether Dt contains
the ground fact Rk(s, s) or not. Let us first consider the case where Rk(s, s) is in Dt. If Rk(s, s) is also
in D, then, of course, (s, s) ∈ BkΠ(D) and, consequently, s ∈ GΠ(D, 1). So, let us assume that D does
not contain Rk(s, s). This means that D contains no ground fact of the form Rk(s, u), for any u, or, in
other words, that s ̸∈ AkΠ(D). Then, if we apply the second rule of Π, using the induction hypothe-
sis to derive that s ∈ G2Π2

(D), we conclude that s ∈ GΠ(D, 1). Let us now consider the case where
Rk(s, s) is not in Dt. This means that Dt contains a sequence of ground facts Rk(s0, s1), Rk(s1, s2), . . . ,
Rk(sl , sl+1) with sm ∈ G2Π2

(Dt), 0 ≤ m ≤ l + 1, and s0 = sl+1 = s. Without loss of generality we may
assume that this sequence does not contain any fact of the form Rk(u, u)1. D also contains the facts
Rk(s0, s1), Rk(s1, s2), . . . , Rk(sl , sl+1); for suppose to the contrary that one of these facts is not present
in D. But then this “missing” fact must be of the form Rk(u, u), which is absurd. Hence, using the
induction hypothesis to derive that sm ∈ G2Π2

(D), 0 ≤ m ≤ l + 1, we deduce that (s, s) ∈ BkΠ(D),
and, consequently, that s ∈ GΠ(D, 1).
ii. We show now that the claim holds for r + 1, assuming that it holds for r.
(⇒) Suppose that s first appeared in GΠ(D, r + 1) during round r + 1. This could have happened
due to one of the first four rules of Π. In case one of the first three rules is used, by reasoning
as above, we conclude that s ∈ GΠ(Dt, r + 1). So, let us suppose that the fourth rule: G(x) ←−
G2(x), Rk(x, y), G(y) is used. This implies that s ∈ G2Π2

(D) and that there exists a s1 such that
Rk(s, s1) and s1 ∈ GΠ(D, r). By construction Dt also contains Rk(s, s1). Moreover, the induction hy-
pothesis with respect to the number of rounds gives that s1 ∈ GΠ(Dt, r) and the induction hypothesis
with respect to Π2 gives that s ∈ G2Π2

(Dt). Thus, by the fourth rule we derive that s ∈ GΠ(Dt, r + 1).
(⇐) Suppose now that s first appeared in GΠ(Dt, r + 1) during round r + 1. This could have hap-
pened due to one of the first four rules of Π. In case one of the first three rules is used, then
by reasoning as before, we obtain that s ∈ GΠ(D, r + 1). So, let us suppose that the fourth rule:
G(x)←− G2(x), Rk(x, y), G(y) is used. This implies that s ∈ G2Π2

(Dt) and that there exists a s1 such
that Rk(s, s1) and s1 ∈ GΠ(Dt, n). The fact that s first appeared in GΠ(Dt, r + 1) during round r + 1
means that s ̸= s1 because if s = s1, then s would belong to GΠ(Dt, r). This in turn implies that D
contains Rk(s, s1). Invoking the induction hypothesis we get that s1 ∈ GΠ(D, r) and s ∈ G2Π2

(D).
Thus, by the fourth rule we derive that s ∈ GΠ(D, r + 1).

The bottom-up evaluation of Datalog programs guarantees that there exists n0 ∈ N such that
GΠ(D, n0) = GΠ(D, r) for every r > n0, meaning that GΠ(D) = GΠ(D, n0). Similarly, GΠ(Dt) =
GΠ(Dt, n0) and, hence, GΠ(D) = GΠ(Dt). �

1To see why, let us suppose that it contains the fact Rk(u, u). This means that the sequence is Rk(s0, s1), Rk(s1, s2),
. . . , Rk(si , u), Rk(u, u), Rk(u, si+3), Rk(si+3, si+4), . . . , Rk(sl , sl+1). But then consider the sequence Rk(s0, s1), Rk(s1, s2), . . . ,
Rk(si , u), Rk(u, si+3), Rk(si+3, si+4), . . . , Rk(sl , sl+1) that also gives rise to (s, s) ∈ BkΠ (Dt) without containing Rk(u, u).
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