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ABSTRACT 
 

Explosive and quick growth of the World Wide Web has resulted in intricate Web sites, demanding 

enhanced user skills and sophisticated tools to help the Web user to find the desired information. Finding 

desired information on the Web has become a critical ingredient of everyday personal, educational, and 

business life. Thus, there is a demand for more sophisticated tools to help the user to navigate a Web site 

and find the desired information.  The users must be provided with information and services specific to 

their needs, rather than an undifferentiated mass of information. For discovering interesting and frequent 

navigation patterns from Web server logs many Web usage mining techniques have been applied. The 

recommendation accuracy of solely usage based techniques can be improved by integrating Web site 

content and site structure in the personalization process. 

 

Herein, we propose Semantically enriched Web Usage Mining method (SWUM), which combines the fields 

of Web Usage Mining and Semantic Web. In the proposed method, the undirected graph derived from 

usage data is enriched with rich semantic information extracted from the Web pages and the Web site 

structure. The experimental results show that the SWUM generates accurate recommendations with 

integration of usage, semantic data and Web site structure.  The results shows that proposed method is able 

to achieve 10-20% better accuracy than the solely usage based model, and 5-8% better than an ontology 

based model. 
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1. INTRODUCTION 
 

The World Wide Web has become the biggest and the most popular way of communicating, 

retrieving and disseminating information. The number of Web pages available is increasing very 

rapidly adding to the hundreds of millions pages already on-line. The rapid and chaotic growth 

has resulted into more complex structure of Web sites. When searching and browsing a Web site, 

users are often overwhelmed by huge amount of information and are faced with the big challenge 

of finding the desired information in the right time. For the Web site owner the main issues that 

have to be dealt with are helping the users to find relevant information and providing 

personalization mechanisms to help them fulfill their information needs. Often, this results in 
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higher visitor retention, increased profits for online store owners, in addition to helping users in 

finding the desired information. Thus, automated tools focused on helping users to search, 

extract, and filter the desired information and resources are very useful [1]. 

 

Web mining is a broad research area emerging to address the issues that arise due to the explosive 

growth of the Web and it is usually divided into three general categories: Web content mining, 

Web structure mining and Web usage mining. Web content mining is focused on the development 

of techniques to assist users in finding Web documents that meet a certain criteria. Web structure 

mining analyses the hyperlink structure of Web and it usually involves analysis of in-links and 

out-links of Web pages to, for example, rank search engine results. Web usage mining has been 

defined as the research field focused on developing techniques to model users’ Web navigational 

behavior. According to [1,2], most Web usage mining techniques that use solely usage data are 

based on association rules, sequential patterns and clustering. As noted in [3], usage based 

personalization has limitations in situations where there is insufficient usage data to extract 

patterns related to certain categories, when the site contents changes and when new pages are 

added but are not yet included in the Web log. To address these problems Web content and/or 

Web site structure can be incorporated with the usage data in order to improve the accuracy of the 

personalization process [4].  Many research efforts incorporate Web page content and Web site 

structure with Web usage mining and personalization techniques, but not many have used 

emerging semantic Web technologies and detailed semantic data in the process. 

 

In this work, we propose to extend the WebPUM approach described in [5] with rich semantic 

data characterizing the contents of the Web pages and Web site structure characterizing the 

topology of the Web site. More precisely, we propose a Semantically enriched Web Usage 

Mining method (SWUM) and argue that by incorporating semantic and site structure data into 

WebPUM we will be able to improve the recommendation accuracy. We note that the WebPUM 

is based solely on usage data and it is not capable of capturing the information goals of a user. In 

addition, we expect the new method to be able to address new item problem. WebPUM represents 

usage data by means of an adjacency matrix and induces the navigation patterns using a graph 

partitioning technique. The adjacency matrix derived from usage data is enriched with the 

semantic data and the navigation patterns are induced. These navigation patterns are fed to 

recommendation engine. The performance of the SWUM is evaluated by means of extensive 

experiments conducted on both real world datasets (the Music Machine data set and the Semantic 

Web dog food Web site) and on a synthetically generated data set. The experimental results show 

that the recommendation accuracy of the SWUM is superior to solely usage based method 

presented in [5] and combined mining method [6] that makes use of ontology to represent Web 

page contents. 

 

In summary our key contributions in this paper are: 

 

 The solely usage based approach WebPUM [5] is extended to take into account semantic 

metadata obtained from the page contents and Web site structure. The semantic metadata 

extracted takes into account both the semantics in a page contents and the semantic 

relationship in the Web pages. 

 A recommendation algorithm that integrates content semantics and site structure with the 

users’ navigational behavior is proposed. 

 An extensive set of experiments which demonstrate the effectiveness of the proposed 

method. 
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The structure of the paper is organized as follows:  In Section 2, we review recent research 

advances in Web usage mining. In Section 3, we briefly discuss WebPUM method which is the 

basis of our proposed method. Section 4 describes the architecture of the proposed method. The 

overall performance of the proposed method is evaluated in Section 5. Finally, Section 6 provides 

concluding remarks and sheds light on future directions. 

 

2. RELATED WORK 
 

Several models have been proposed for modelling user browsing behaviour on a Web site and 

generating recommendations for a Web user. These models can be automatically exploited by a 

personalization system to generate recommendations. Many Web usage mining techniques 

integrate Web page content and site structure with usage data to improve accuracy of the 

recommendations. 

 

2.1. Usage Based Techniques 
 

Tak Yan et al. [7] proposed one of the first Web usage mining system. The method discovers 

clusters of users that exhibit similar information needs by examining user access logs. Based on 

which categories an individual user falls into, links are suggested dynamically to the user. The 

approach used for clustering is affected by several limitations related to scalability and the 

effectiveness of the results found. Bamshad Mobasher et al. [8] presented WebPersonalizer, a 

system that provides dynamic recommendations as a list of hypertext links to users. The method 

is based on anonymous usage data combined with the Web site structure. F. Masseglia et al. [9] 

proposed an integrated system, WebTool, that relies on sequential patterns and association rules 

extraction to dynamically customize the hypertext organization. The current user's behaviour is 

compared to one or more previously induced sequential patterns and navigational hints are 

provided to the user. Ranieri Baraglia et al. [10] proposed a Web usage mining system, 

SUGGEST, that is designed to dynamically generate personalized content of potential interest for 

users. Bamshed Mobasher et al. [11] proposed an approach that captures common user profiles 

based on association rule discovery and usage-based clustering. The extracted knowledge is used 

to provide recommendations for users in real-time. The approach suggests visited pages, but is 

unable to include in the suggestions pages that were not visited by users. Dimitrios Pierrakos et 

al. [12] proposed a method that exploits Web usage mining techniques in order to identify 

communities of Web users that exhibit similar navigational behaviour with respect to a particular 

Web site. The information produced by the system can either be used by the administrator, in 

order to improve the structure of the Web site, or it can be fed directly to a personalization 

module to generate recommendations. B. Zhou et al. [13] proposed Sequential Web Access-based 

Recommender System (SWARS) that applies sequential access pattern mining to identify 

sequential Web access patterns with high frequencies. The Pattern-tree constructed from Web 

access patterns is used for matching and generating recommendations. José Borges et al. [14] 

presented a Variable Length Markov Chain (VLMC) model, which is an extension of a Markov 

chain that allows variable length history to be captured. The VLMC model has been shown to 

provide better prediction accuracy while controlling the number of states of the model. 

 

2.2. Approaches based on Usage and Content 
 

Eirinaki et al. [6] presented a semantic Web personalization framework that combines usage data 

with Web contents (annotated in terms of ontology) in order to generate useful recommendations. 
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Stuart Middleton et al. [15] presented a recommender system for online academic publications 

where user profiling is done based on a research papers' topic ontology. Haibin Liu et al. [16] 

proposed a novel approach for classifying navigation patterns and predicting users' future 

requests. The approach is based on the combined mining of Web server logs and the content of 

the Web pages represented in terms of character N-grams. The approach can be improved by 

using content representation technique that takes into account semantics of Web page contents. 

Xin Jin et al. [17] proposed a unified framework which provides dynamic and personalized 

recommendations. The proposed framework is based on Probabilistic Latent Semantic Analysis to 

create models of Web users, taking into account both usage data and Web site contents. Miao 

Wan et al. [18] proposed a Random Indexing approach that is based on a vector space model, to 

discover intrinsic characteristics of Web users’ activities. The Random Indexing with various 

weight functions is used for clustering individual navigational patterns and creating common user 

profiles. The clustering results will be used to predict and prefetch Web requests for grouped 

users. Pinar Senkul et al. [19] proposed a technique for integrating semantic information into 

Web navigation pattern generation process. The frequent navigational patterns are composed of 

ontology instances instead of Web page addresses and these are used for generating 

recommendations. Thi Thanh Sang Nguyen et al. [20] proposed a novel ontology-style model of 

Web usage mining that enables the integration of Web usage data and domain knowledge to 

support semantic recommendations. The recommendations are generated by using Web user 

access sequences that are represented in Web Ontology Language (OWL). 

 

2.3. Other Approaches 
 

Juan D. Velásquez et al. [21] proposed a methodology for identifying Website Key Objects. 

Website Key Objects are the most appealing objects for users within a Website. The accurate 

extraction of Website Key Objects enables the possibility of enhancing the Web site by 

empowering the information that users are looking for. Mehdi Adda et al. [22] studied ontology 

based pattern space and proposed xPminer mining method. The xPminer performs a complete and 

non-redundant traversal of the pattern space and discovers all the frequent patterns. The mined 

frequent patterns are used to generate recommendations. Julia Hoxha et al. [23] presented an 

approach for the formalization of user Web browsing behaviour across multiple sites. The usage 

logs are mapped to comprehensible events from the application domain. The semantic, formal 

description of each log is mapped to concepts of a vocabulary of the domain knowledge. A. C. M. 

Fong et al. [24] proposed a semantic Web usage mining approach for discovering periodic Web 

access patterns from annotated Web usage logs. This approach highlights fuzzy logic to represent 

real-life temporal concepts and requested resource attributes of periodic pattern-based Web 

access activities. 

 

2.4. Summary and Discussion 
 

In summary, all of these works attempt to improve recommendation accuracy by integrating 

usage data, Web site structure and Web page contents. It is possible to generate more effective 

recommendations by incorporating detailed semantic data in the personalization process. The 

combined Web usage mining approaches, i.e. approaches that use usage data as well as Web page 

contents for personalization, can be extended by using detailed semantic metadata inferred from 

Web page contents and expressed by using semantic Web technology, RDF. 
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3. WEBPUM METHOD 
 

The WebPUM approach presented in [5] is based solely on usage data. An undirected graph is 

constructed from the navigation sessions induced from Web server logs. In the process, an 

adjacency matrix is computed that represents degree of connectivity between the Web pages. The 

entry Wa,b in the adjacency matrix between page a and page b is calculated by using a time 

connectivity and a frequency measure. The Time connectivity measures the degree of visit 

ordering between two Web pages, and it is given by the formula, 
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where Ti is the total time duration of the i
th
 session that contain both the pages a and b and Tab is 

difference between requested time of page a and page b in the session. The value of f(k) is the 

position of the page in the session. The time connectivity measure is normalized to hold values 

between 0 and 1. The Frequency measures the co-occurrence of two pages in the sessions and it is 

given by, 
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where Nab is the number of sessions containing both page a and b. Na and Nb are number of 

session containing only page a and page b. The connectivity between any two pages is given by, 
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Each entry Ma,b of the adjacency matrix contains value of Wa,b that represents the degree of 

connectivity between the two pages a and b. The undirected graph is created corresponding to the 

adjacency matrix. To limit the number of edges in the graph, if the value of Wa,b is less than a 

threshold value (named as MinFreq) the edge is discarded. Further details on the undirected graph 

construction process from navigation sessions are available in [5]. 

 

For generating navigation patterns a graph partitioning algorithm is used. The graph partitioning 

algorithm finds the connected components in the undirected graph and it is based on Depth first 

search (DFS) algorithm. The vertices in a connected component represent a navigation pattern. 

The DFS algorithm is invoked repeatedly till all the vertices in the undirected graph are visited. 

The LCS algorithm is used to classify the current active session into one of the navigation pattern 

and recommendations are generated. As described in [5] the WebPUM method does not takes 

into account other Web data like pages' content and the site structure. 

 

4. SWUM METHOD 
 

In this work, we extend the WebPUM method proposed in [5] to incorporate site structure and 

page semantics in the personalization process to generate more precise recommendations. Figure 

1 illustrates the overall architecture of the proposed SWUM method. The following subsections 

describe the components of the method in detail. 
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Figure 1 The structure of the SWUM 

 

4.1. Web Log Preprocessing 
 

The pre-processing task is the first step in Web usage mining, being responsible for reading the 

Web logs and inducing the corresponding user navigation sessions. In the process, the log data is 

cleaned in order to remove entries that are not useful to model the user Web navigation behaviour 

and for repairing erroneous data. User identification is based on information available in the log 

file, such as the IP address, the type of operating system and the browsing software. User 

navigation sessions are derived from the log file. The sessionization task consists of grouping a 

sequence of users’ page requests into a unit named session. A session can be defined as an 

ordered collection of pages accessed by a user in a time window defined by the moment he 

entered the site and the moment he left it. The proposed method makes use of Web log pre-

processing techniques described in [25]. 

 

4.2. Semantic Annotation 
 

The Semantic Web provides a common framework that allows data to be shared and reused 

across applications, and enterprises, in a manner understandable by machines. Semantic 

annotation is a key component for the realization of the Semantic Web that formally identifies 

concepts and the relations between concepts in documents. The RDF is the standard data and 

modelling specification used to encode metadata and digital information. 

 

The SWUM makes use of the OpenCalais
1
 and the AlchemyAPI

2
 Web services for generating the 

semantic annotation of the Web pages, which includes topics, social tags, concept tags, keywords, 

search terms and other metadata. 

 

The system crawls the Web site to collect the Web pages. The OpenCalais processes the pages 

and returns annotated semantic metadata as RDF payloads serialized as XML data containing the 

topics, social tags, identified entities, facts, and events. The metadata also contains the relations 

                                                      
1 http://www.opencalais.com 
2 http://www.alchemyapi.com 
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that involve at least one recognized entity from the content. Relations are generally all subject-

predicate-object relationships without predefining their types.  

 

Web pages are also processed by the Alchemy API to generate complementary semantic 

metadata. AlchemyAPI utilizes statistical algorithms, natural language processing technology and 

machine learning algorithms to analyze Web page contents and extract keywords, search terms, 

concept tags, and information about people, places, companies, topics, languages and more. The 

AlchemyAPI has a concept tagging feature that automatically tags documents and text in a 

manner similar to human-based tagging. The results are also returned as RDF payloads. 

 

The resulting XML data is parsed to extract the metadata and store it in the RDF data store. We 

make use of AllegroGraph RDF Data Store
3
, which is a modern, high-performance, persistent 

RDF graph database. The semantic metadata information is used to calculate the semantic 

similarity between Web pages. The semantic similarity between the Web pages is calculated 

using the method described in [26]. The method returns a similarity value between 0 and 1, where 

1 means that the instances have exactly the same properties and 0 means no shared properties. 

The semantic similarity between Web pages is represented in terms of a semantic similarity 

matrix and used to integrate in the adjacency matrix as discussed in next Section.  

 

4.3. Integration of Semantic Knowledge into Adjacency Matrix  
 

Web users' information goals are better captured by a detailed analysis of the contents of the user 

visited Web pages and other domain knowledge like Web site structure. Thus we enhance a solely 

usage based method WebPUM proposed in [5] and described in the Section 3 in order to take into 

account Web page contents and Web site structure. In this paper we have integrated semantic 

metadata, usage data and site structure in the personalization process to generate more accurate 

recommendations. As discussed in Section 3 usage data is represented by using adjacency matrix 

M and Mi,j is the value of Wi,j between page i and j. For the integration of semantics into a usage 

data, we extend the approach presented in [27]. In [27] the semantic information used to 

characterize Web pages is obtained from a domain ontology that is provided by the ontology 

engineer during the design of the Web site. The authors have assumed that a single Web page 

represents a single concept from the ontology, which is not always the case in real world, and the 

semantic distance between two pages is calculated based on number of edges separating two 

pages in the domain ontology. 

 

The SWUM method makes use of semantic metadata to calculate the semantic similarity instead 

of distance in the domain ontology used in [27]. The semantic similarity is represented in terms of 

a semantic similarity matrix that gives the similarity score between every pair of Web pages. 

Thus, the semantic similarity matrix S is combined with the adjacency matrix M in order to derive 

the semantically enriched weight matrix T by using Eq. (4) as follows: 

 

      
       

       
                (4) 

 

The matrix T is obtained by combining usage data and semantic similarity between Web pages. In 

SWUM a graph partitioning algorithm is applied on the semantically enriched matrix T in order 

to induce the navigation patterns. The set of navigation patterns generated are represented as NP 

                                                      
3 http://www.franz.com/agraph/allegrograph 
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= {np1, np2,...,npk}, in which each npi is a subset of the set of Web pages in the Web site. These 

navigation patterns are generated using semantically enriched matrix T. The semantic similarity 

between pages will have influence on the navigation patterns generated and lead to addition of 

new pages in the navigation pattern. This due to the fact that even though the connectivity weight 

between pages is zero (given by the usage data), there will be semantic similarity score value 

present in the combined matrix T. These navigation patterns are used for the next link of choice 

prediction and personalization process as discussed in Section 4.4. 

 

4.4. Recommendation Engine 
 

As stated in  [28], "Web recommendation is a promising technology that attempts to predict the 

interests of Web users, by providing the users information and/or services that they need without 

the users explicitly asking for them". The recommendation engine is the online component of a 

recommendation system. As discussed in Section 4.3 navigation patterns are generated by 

applying the graph partitioning approach on the semantically enriched adjacency matrix. The 

generated navigation patterns, NP = {np1, np2,...,npk}, are used to generate recommendations. The 

current active user session is classified into one of the navigation pattern npi that is highly similar 

to current active user session using Longest Common Subsequences (LCS) [29] algorithm. The 

recommendation set is generated from the set of Web pages in the navigation pattern npi. If the 

number of Web pages in the generated recommendation set is more than the size of 

recommendation set N, then Web pages in the generated recommendation set will be arranged in 

the order according to decreasing values of PageRank score [30] and only the top N pages are 

added in the recommendation set while the rest of Web pages are not considered in the 

recommendation set. 

 

5. EXPERIMENTAL EVALUATION 
 

In this section, we provide a detailed experimental evaluation of the proposed method SWUM. In 

next subsections we state the data sets description, evaluation metrics, and experimental results 

and its discussion. 

 

5.1. Data Sets Description 
 

For the experimental evaluation of the SWUM approach it is necessary that datasets provide both 

the server log data and the Web page contents. These experiments have been conducted on the 

publicly available Music Machine data set (DS-1)
4
, on the Semantic Web dog food Web site (DS-

2)
5
, and on a synthetic usage data generated for a university Web site (DS-3). The DS-1 data set 

provided is cleaned and sessionized, and we have used access entries in a four month period, from 

January to April 1999.  

 

For DS-2 we have used the access entries from June 2010 to December 2010 for the Semantic 

Web Dog Food Web site. This is a very active Web site of publications, people and organizations 

in the Web and semantic Web fields, covering several of the major conferences and workshops.  

Finally, the DS-3 corresponds to a Web site of a technical university including Web pages of 

individuals (i.e. students and teachers), news group and courses, for which the usage data was 

generated using a technique similar to the described in  [31]. 

                                                      
4 http://machines.hyperreal.org 
5 http://data.semanticweb.org 
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Table 1 depicts summary statistics of the experimental data sets. For each data set, we indicate the 

total number of access entries, number of clean access entries (that is obtained after removing 

entries that are not useful to represent user Web navigation behaviour), number of pages 

occurring in the log, total pages identified by crawler during crawling of the Web site and the 

total users identified. We also give the total number of sessions derived from each data set and the 

number of sessions of lengths more than two; session length is measured by the number of 

requests a session is composed of. We assume that the induced user sessions that have a length of 

more than two pages are more suitable for the experiments since it might carry more information 

about Web users’ intention on the Web site. Therefore, sessions having less than three page 

requests were filtered out from the datasets. 

 

Table 1 Statistics of Experimental Data Set 

 

Attributes DS-1 DS-2 DS-3 

Total access entries 936677 452192 1325198 

Clean access entries 936677 430252 1325198 

Total Web page accessed in log 850 1919 835 

Total pages Identified by Crawler 1037 2105 1050 

Different access users 116183 23245 50000 

Total Identified sessions 143633 26667 50000 

Total Identified sessions (≥2 requests) 91926 21067 49040 

 

Figure 2 shows the distribution of session length for the three data sets. For example, session 

length of two indicates the percentage of sessions with two page requests that occur in the 

collection of sessions. As shown in Figure 2, the percentage of total sessions decreases when 

session length increases. 

 

 
Figure 2 Sessions distribution of the data sets 

 

5.2. Evaluation Metrics 
 

In order to evaluate the effectiveness of the recommendations generated by the proposed method 

the performance is determined using three different standard measures, namely precision, 

coverage, and the F1 measure [32]. Among these, precision and coverage metrics have been 

widely used in recommender system research. As precision and coverage are inversely related, a 
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combination measure, called the F1 measure, is used to give equal weight to both precision and 

coverage [32]. While, precision measures the degree to which the recommendation engine 

produces accurate recommendations, coverage measures the ability of the recommendation 

engine to recommend all the pages that are likely to be visited by the user. 

 

5.3. Experimental Results 
 

A series of experiments focused on evaluating the performance of the SWUM as compared to the 

solely usage based WebPUM technique [5] and ontology based method [6] were conducted. 

Cross validation with k = 5 subsets was used, being the sessions split k subsets, the model is built 

from k − 1 subsets, leaving the k
th
 subset as a test set. In order to simulate active sessions of a 

Web user, each test session is split into two parts. The first part of the session simulates an active 

session of the current user and the second part the Web pages that the user will request during his 

further navigation on the Web site. That is, the first part of the session is used to predict its 

second part. Each active session is then fed into the recommendation engine in order to produce a 

recommendation set. The recommendation set obtained is then compared to the second part of the 

test session in order to compute the precision, coverage, and F1 measure metrics [32].  

 

Experiments were conducted to assess recommendation method proposed in Section 4.4. For the 

experimentation, we have chosen recommendation set size as twelve. By increasing 

recommendation set size it is likely that coverage can be improved, but reduces the precision. It is 

observed during experimentation that F1 measure is maximized for recommendation set size of 

twelve, indicating that the best balance of precision and recall is achieved for typical 

recommendation set sizes. The performance of the SWUM can be tuned by varying the value of 

MinFreq from zero to one.  

 

Table 2 summarizes the average values of Precision, coverage and F1 measure for the WebPUM 

approach [5] (M1), ontology based method [6] (M2) and the proposed recommendation method 

based on navigation patterns derived from semantically enriched adjacency matrix (M3). The 

results obtained for the MinFreq values of 0.0, 0.1, and 1.0 are not significant and hence not 

reported in the Table 2. The concept of MinFreq is not applicable to ontology based method M2. 

As shown in Table 2, the results obtained for the proposed SWUM method shows more accurate 

values for precision, coverage and F1 measure in comparison to the solely usage based technique 

WebPUM and ontology based method. The WebPUM and proposed method achieve better 

performance for the MinFreq range 0.4 to 0.6. The recommendation method proposed in this 

paper outperforms the WebPUM approach and ontology based method. The proposed 

recommendation method achieves 10-20% performance improvement over the WebPUM and 5-

8% performance improvement over ontology method. The accuracy of recommendations 

generated by using navigation patterns derived from semantically enriched adjacency matrix 

indicates that clusters generated are compact and integration of semantics in the adjacency matrix 

improves accuracy of the clustering. The WebPUM approach achieved the best results when we 

choose the value of MinFreq in the range 0.5 to 0.6 and in case of proposed method 0.4 to 0.6. 

The results show that the proposed method is able to improve the accuracy of recommendations 

for different values of MinFreq. The increase in the accuracy of the proposed method over 

ontology based method clearly indicates advantage of using detailed semantic metadata instead of 

ontology in the personalization process. 
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Table 2 Results of Recommendation Engine for Three Data Sets DS-1, DS-2, and DS-3 

 

MinFreq 
Precision Coverage F1 Measure 

M1 M2 M3 M1 M2 M3 M1 M2 M3 

Data Set : Music Machine (DS-1) 

0.2 0.05 

0.60 

0.06 0.09 

0.62 

0.12 0.06 

0.61 

0.08 

0.3 0.17 0.50 0.21 0.56 0.18 0.53 

0.4 0.40 0.61 0.45 0.68 0.42 0.64 

0.5 0.46 0.64 0.49 0.68 0.47 0.66 

0.6 0.47 0.65 0.46 0.64 0.46 0.64 

0.7 0.25 0.34 0.22 0.30 0.23 0.32 

0.8 0.15 0.20 0.12 0.16 0.13 0.18 

0.9 0.10 0.13 0.09 0.12 0.09 0.13 

Data Set : Semantic Web Dog Food Web site (DS-2) 

0.2 0.10 

0.58 

0.13 0.18 

0.63 

0.24 0.12 

0.60 

0.17 

0.3 0.22 0.60 0.27 0.66 0.24 0.63 

0.4 0.43 0.63 0.48 0.69 0.45 0.65 

0.5 0.47 0.61 0.52 0.68 0.49 0.65 

0.6 0.49 0.64 0.50 0.65 0.49 0.65 

0.7 0.21 0.27 0.28 0.31 0.24 0.31 

0.8 0.15 0.19 0.19 0.21 0.16 0.21 

0.9 0.08 0.10 0.10 0.11 0.08 0.11 

Data Set : Synthetic (DS-3) 

0.2 0.11 

0.61 

0.14 0.18 

0.62 

0.66 0.13 

0.61 

0.18 

0.3 0.25 0.63 0.27 0.67 0.25 0.65 

0.4 0.47 0.66 0.49 0.67 0.47 0.67 

0.5 0.49 0.64 0.52 0.67 0.50 0.66 

0.6 0.49 0.63 0.50 0.64 0.49 0.64 

0.7 0.20 0.26 0.26 0.33 0.22 0.29 

0.8 0.15 0.19 0.19 0.25 0.16 0.22 

0.9 0.09 0.12 0.09 0.11 0.09 0.11 

 

The experimental results reveal that the usage, content and Web site structure information 

together improves the recommendation accuracy. It can be observed that recommendations 

generated by SWUM are better than those obtained by WebPUM model and ontology based 

method for all the three data sets. The experimental results indicates that our approach for 

generating recommendations by integrating usage, content and structure is able to improve the 

accuracy of recommendations in the personalization process. 

 

6. CONCLUSIONS AND FUTURE DIRECTIONS 
 

In this paper, we proposed Semantically enriched Web Usage Mining method (SWUM), an 

extension of usage based method WebPUM. The SWUM is used to predict users’ future requests 

by combining usage data, Web site structure and detailed semantic information extracted from 

Web page contents. The proposed recommendation method generates recommendations using 

navigation patterns derived from semantically enriched adjacency matrix and Web site structure. 
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Results of extensive experimental evaluation conducted on three data sets are reported. The 

experimental results show that incorporating semantic data and site structure into WebPUM 

method improves recommendation accuracy. The semantic Web mining that combines semantic 

Web and Web usage mining, results in a more accurate classification of navigation patterns, and 

leads to a more accurate prediction of users’ future requests and accurate recommendations as 

compared to solely usage based techniques and ontology based method.  

 

There are some aspects in which the proposed method can be improved. Due to dynamic nature 

of the Web, researchers have recently paid more attention to mining evolving Web user profiles 

that vary with time. The proposed method can also be extended for a database backed Web site 

that generates the Web pages dynamically based on structured queries performed against backend 

databases. The contents of Web page depends on query parameters, hence these parameters must 

be taken into account in the personalization process. 
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