
International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.3, May 2015

DOI : 10.5121/ijsea.2015.6303 25

SOFTWARE TESTING STRATEGY

APPROACH ON SOURCE CODE APPLYING

CONDITIONAL COVERAGE METHOD

Jaya Srivastaval

1
 and Twinkle Dwivedi

2

1
Department of Computer Science & Engineering, Shri Ramswaroop Memorial

University,India
2
Department of Computer Science & Engineering, Shri Ramswaroop Memorial

University,India

ABSTRACT

Software testing is an important activity of the software development process. Software testing is most

efforts consuming phase in software development. One would like to minimize the effort and maximize the

number of faults detected and automated test case generation contributes to reduce cost and time effort.

Hence test case generation may be treated as an optimization problem In this paper we have used genetic

algorithm to optimize the test case that are generated applying conditional coverage on source code. Test

case data is generated automatically using genetic algorithm are optimized and outperforms the test cases

generated by random testing.

KEYWORDS

Source Code, Testing.

1. INTRODUCTION

Software testing is the procedure of executing a program or system with the intent of finding

faults. Testing is a process of confirming that product is working according to the specification

and satisfying the customer needs. Software testing provides a means to reduce errors, cut

maintenance and overall software costs. Numerous software testing methodologies, tools, and

techniques have emerged over the last few decades promising to enhance software quality.

Software testing is important part in the software development life cycle. Two common

approaches are white box testing and black box testing. There are different coverage measure for

testability to the source code such as statement coverage, branch coverage and condition

coverage. In the branch coverage we make sure that we execute every branch at least once For

conditional branches, this means that, we execute the TRUE branch at least once and the FALSE

branch at least once conditions for conditional branches can be compound boolean expressions a

compound boolean expression consists of a combination of boolean terms combined with logical

connectives AND, OR, and NOT Condition coverage. In this paper we propose a model for

automatic and optimized test case generation. In our proposed method the initial test case

generated using conditional coverage to cover all the paths then genetic algorithm is used for

optimizing the test cases. This is an efficient approach of optimizing test case by using both

genetic algorithm and conditional coverage.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.3, May 2015

26

1.1 Testing strategies

A test strategy is an outline that describes the testing approach of the software development cycle.

A strategy for software testing integrates the design of software test cases into a well planned

series of steps that result in successful development of the software[6][13]. Testing begins at

component level and work outward towards the integration of entire computer based system.

There are different types of testing strategies which are shown in Figure 1:

1. Unit testing- it concentrate on each component function of the software as implemented in the

source code. Components are then assembled and integrated

2. Integration testing- it focus on the design and construction of the software system. It also

focuses on input and output and how well the component fit together and works together.

3. Validation testing- requirements are validated against the constructed software. It provides

final assurance that the software meets all functional and performance requirement.

4. System testing- In this the software and other system elements are testes as a whole that overall

system function and performance is achieved. In this paper we used unit testing we take source

code and focus on the each component function of the source code and internal structure of the

program’s source code.

Figure1: The Testing Strategy

1.2 Coverage Criterion

The adequacy of testing is evaluated by the coverage measure that describes the degree to which a

program’s source code has been tested. Coverage is the extent that a structure has been exercised

as a percentage of items being covered [15][18]. If coverage is not completed then more tests may

be designed to test those items that were missed and therefore increase coverage. There are

different types of coverage used in testing they are as follows

Statement coverage- all statements in the programs should be executed at least once.

Branch coverage- all branches in the program should be executed at least once.

Condition coverage- it executes the true or false outcome of each condition. It is closely related to

the decision coverage but has better sensitivity to the control flow.

In this paper we apply conditional coverage by making the control flow graph of the source code

so that we can detect the faults as much as possible.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.3, May 2015

27

2. PROBLEM IDENTIFICATION

The process of testing any software system is an enormous task which is time consuming and

costly. Software testing is laborious and time-consuming work; it spends almost 50% of software

system development resources . Generally, the goal of software testing is to design a set of

minimal number of test cases such that it reveals as many faults as possible.

An automated software testing can significantly reduce the cost of developing software. Other

benefits include: the test preparation can be done in advance, the test runs would be considerably

fast, and the confidence of the testing result can be increased. Automated test case generation

using genetic algorithm reduce the cost and effort and applying conditional coverage on source

code reveals as many faults as possible by covering all the paths of the source code.

3. PROPOSED WORK

In this paper my motive is to optimize the test cases by making the control flow graph from the

source code by covering all the paths taking conditional coverage and then generate the test cases

randomly. Then genetic algorithm apply on the test cases of the source code and genetic

algorithm optimizes the test cases. Original test cases are generated using random testing

applying conditional coverage on source code after that test cases are refined using genetic

algorithm for automatically test case generation that detect faults as much as possible. In this

paper the model shows how the genetic algorithm optimizes the test cases that are generated

randomly and detect the faults of the source code as much as possible.

We make a model that shows the overall structure of our proposed work. Figure 2 shows the

proposed model.

In our model we start testing process by taking a source code. For testing process we have to

generate test cases. In our methodology we make control flow graph for the source code and then

apply the condition coverage on the control flow graph and test cases are generated randomly.

These test cases are refined using genetic algorithm for producing a set of optimize test case that

can detect all possible faults. The condition coverage executes each true and false outcome of

each condition and the testing adequacy is evaluated by coverage criterion that how much

percentage of source code is exercised by the coverage and condition coverage cover all the paths

of the source code.

For producing the optimize test case we use genetic algorithm. Genetic algorithm starts with

guesses and attempts to improve the guesses by evolution. A GA will typically have five parts:

(1) a representation of a guess called a chromosome, (2) an initial pool of chromosomes, (3) a

fitness function, (4) a selection function and (5) a crossover operator and a mutation operator. A

chromosome can be a binary string or a more elaborate data structure. The initial pool of

chromosomes can be randomly produced or manually created. The fitness function measures the

suitability of a chromosome to meet a specified objective: for coverage based automatic test case

generation, a chromosome is fitter if it corresponds to greater coverage. The selection function

decides which chromosomes will participate in the evolution stage of the genetic algorithm made

up by the crossover and mutation operators. The crossover operator exchanges genes from two

chromosomes and creates two new chromosomes. The mutation operator changes a gene in a

chromosome and creates one new chromosome.

A basic algorithm for a GA is as follows

The pseudo code for GA is:

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.

Initialize (population)

Evaluate (population)

While (stopping condition not satisfied) do

{

Selection (population)

Crossover (population)

Mutate (population)

Evaluate (population)

}

Figure 2: Overall Structure of Proposed Work

4. METHODOLOGY OR MODEL

The adequacy of testing is evaluated by the coverage measure

program’s source code has been tested. The adequacy

coverage and condition coverage.

code. In control flow graph the nodes are statement and the edges represent the flow of control

between statements.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.3, May

While (stopping condition not satisfied) do

Figure 2: Overall Structure of Proposed Work

ETHODOLOGY OR MODEL

he adequacy of testing is evaluated by the coverage measure that describes the degree to which a

program’s source code has been tested. The adequacy criteria include statement coverage, branch

and condition coverage. Condition coverage is apply on the control flow graph of source

code. In control flow graph the nodes are statement and the edges represent the flow of control

May 2015

28

the degree to which a

coverage, branch

on the control flow graph of source

code. In control flow graph the nodes are statement and the edges represent the flow of control

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.3, May 2015

29

In the branch coverage we make sure that we execute every branch at least once. For conditional

branches, this means that, we execute the TRUE branch at least once and the FALSE branch at

least once conditions for conditional branches can be compound boolean expression.

In our model we make control flow graph for the source code then we apply conditional coverage

to cover all the paths of the control flow graph because condition coverage execute every edge of

the graph at least once. We generate test case randomly using conditional coverage. Test cases are

refined by the genetic algorithm for optimizing the test cases. New test cases are generated using

genetic algorithm. Steps to execute genetic algorithm are as follows.

1. Genetic representation of the random test cases.

2. Fitness function to evaluate the test cases.

3. Select the best fit individuals for reproduction.

4. Breed new test cases through crossover and mutation operation.

5. Repeat this generation until the termination condition is satisfied.

Our algorithm works on control flow graph (CFG). CFG is a simple notation for the

representation of control flow. An independent path is any path through the program that

introduces at least one new set of processing statements or a new condition. When stated in terms

of a flow graph an independent path must move along at least edge that has not been traversed

before the path is defined. Condition coverage is applied on the control flow graph for producing

test case randomly. Condition coverage covers all the paths of the source code so that it can detect

maximum faults.

New test cases are generated automatically using genetic algorithm. The mutation and crossover

operation produce new test cases. These test cases are optimized test cases because they detect all

possible faults of the source code because test cases are generated covers all the path of

program’s source code so these test cases detect fault as much as possible. The steps to execute

proposed method is as follows

4.1 Proposed Algorithm

1. Make the control flow graph of the source code.

2. Apply conditional coverage on the control flow graph

3. Generate initial test case randomly.

4. Generate a set of optimize test case using a genetic algorithm.

So in our methodology for producing optimize test case for testing process we make control flow

graph for source code and generate test case randomly by applying conditional coverage on the

control flow graph and then for producing optimize test case that can detect all the faults as much

as possible we refined test case using genetic algorithm. Genetic algorithm produced a set of

optimize test case that is used by the user. Here the user has authority to testing the source code

by using test cases. Genetic algorithm has well defined steps such as initialization, selection,

crossover and mutation. The crossover and mutation process produce new test cases that can

detect maximum faults for the source code. So by using this methodology we can generate test

case automatically that save effort, time and cost for testing process. The algorithm described

above enhances the software testing strategies by saving effort and cost by generating test cases

automatically.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.3, May 2015

30

5. RESULT & CONCLUSION

The model shows that test cases are generated randomly by applying conditional coverage and

genetic algorithm produce a set of optimize test cases automatically that detect all the possible

faults from the source code. Automatically test case generation of my model reduce the effort and

cost of the testing process. In this paper we proposed a methodology for automatic test case

generation of software test cases by focusing on condition coverage of source code. First we

randomly generated initial test cases and refined them using a genetic algorithm. Genetic

algorithm has well defined steps and mutation and crossover operator produce new optimize test

cases.A set of optimized test case detect faults as much as possible from the source code. So

automatically test case generation enhance the software testing strategies and also improve the

software quality.

The overall result shows that this methodology is a promising approach for fully automatic test

case generation for the testing technique that use condition coverage of the source code. To

increase the efficiency and effectiveness, and thus to reduce the overall development cost for

software based systems a systematic and automatic test case generator is required. Genetic

algorithms search for relevant test cases in the input domain of the system under test and our

methodology produce test case automatically using genetic algorithm. The application scope of

genetic algorithm can go further that every technique of testing can be implemented using genetic

algorithm.

ACKNOWLEDGMENT

We are thankful to the faculty of Computer Science and Engineering, Shri Ramswaroop

Memorial University for the motivation and continuous support time to time.

REFERENCES

[1] D.J.Berndt, and A.Watkins , “Investigating the Performance of Genetic Algorithm-Based Software

Test Case generation”,In Proceedings of the Eighth IEEE International Symposium on High

Assurance System Engineering (HASE'04), University of South Florida, pp. 261-262 March 25-26,

2004.

[2] D. P. Mohapatra,” Automated Test Case Generation and Its Optimization for Path Testing Using

Genetic Algorithm and Sampling “, 2009 IEEE.

[3] H. Haga,” Automatic Test Case Generation based on Genetic Algorithm and Mutation Analysis”,

IEEE International Conference on Control System,Computing and Engineering,2012.

[4] R.Kumar,” Automatic Test Suit generation with Genetic Algorithm”, IJETCAS 13-178; 2013.

[5] I.Somerville, “Soft ware engineering,” 7th Ed. Addison-Wesley.

[6] A. P. mathur,”Foundation of Software Testing”, 1st edition Pearson Education 2008.

[7] N.Mansour, M. Salame,” Data Generation for Path Testing”, Software Quality Journal, ,Kluwer

Academic Publishers.12, 121–136, 2004.

[8] P. R. Srivastava , “Generation of test data using Meta heuristic approach” IEEE TENCON , India

available in IEEEXPLORE, 19-21 NOV 2008.

[9] J.Wegener, A.Baresel,, and H.Sthamer, “Suitability of Evolutionary Algorithms for Evolutionary

Testing,” In Proceedings of the 26th Annual International Computer Software and Applications

Conference, Oxford, England, August 26-29, 2002.

[10] P. R.Srivastava1 and Tai-hoon Kim2, “Applicationof Genetic Algorithm in Software Testing”,

InternationalJournal of Software Engineering and ItsApplications Vol. 3,No.4, October 2009.

[11] C.Korel. “Automated software test data generation”. IEEE Transactions on Software Engineering,

16(8),August 1990.

[12] B.F. Jones, H.-H. Sthamer and D.E. Eyres.” Automatic structural testing using genetic algorithms”,

Software Engineering Journal, pages 299- 306, September, 1996.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.3, May 2015

31

[13] D.E.Goldberg, “Genetic Algorithms: in Search, Optimization & Machine Learning”, Addison

Wesley, MA. 1989.

[14] J.Horgan, ,S. London., and M.Lyu, “Achieving Software Quality with Testing Coverage Measures”,

IEEE Computer, Vol. 27 No.9 pp. 60-69, 1994.

[15] D.J.Berndt, J.Fisher, L.Johnson, J.Pinglikar, and A.Watkins,“Breeding Software Test Cases with

Genetic Algorithms,” In Proceedings of the Thirty-Sixth Hawaii International Conference on System

Sciences (HICSS-36), Hawaii, January 2003.

[16] M.Last, S. Eyal1, and A. Kandel, “Effective Black-Box Testing with Genetic Algorithms,” IBM

conference.

[17] J.C.Lin, and P.L.Yeh, “Using Genetic Algorithms for Test Case Generation in Path Testing,” In

Proceedings of the 9th Asian Test Symposium (ATS’00). Taipei, Taiwan, December 4-6, 2000.

[18] A. baresel, H. sthamer and M. schmidt, “fitness function design to improve evolutionary structural

testing,” proceedings of the genetic and evolutionary computation conference, 2002.

[20] Dr V. Rajappa, A. Biradar, and S. Panda, “Efficient Software Test Case Generation Using Genetic

Algorithm Based Graph Theory,” First International Conference on Emerging Trends in Engineering

and Technology, ICETET '08, pp.298-303, 2008.

[21] N.K. Gupta and Dr. M. K. Rohil,”Automatic Test Case GenerationUsing genetic Algorithm For Unit

Testing of Object Oriented Software”, First International conference on Emerging Trends in

Engineering and Technology 2008.

[22] B. T.de Abreu, E.Martins, Fabiano, and L.de Sousa “Automatic test Data generation for path testing

using a genetic Algorithm”,new stochastic algorithm”.2004.

AUTHORS

I Jaya Srivastava pursuing M.Tech in Computer Science & Engineering from Shri

Ramswaroop University and done B.Tech in computer science & Engineering from

United Institute Of Technology, Allahabad.

I Twinkle dwivedi pursuing M.Tech in Computer Science & Engineering from Shri

Ramswaroop University and done B.Tech in information technology from Goel

institution of technology and management lucknow.

