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ABSTRACT 
 
It is a well-known fact that precise definitions play significant role in the development of correct and robust 

software.  It has been recognized and emphasized that appropriately defined formal conceptual framework 

of the context/problem domain proves quite useful in ensuring precise definitions, including those for 

software metrics, which are consistent, unambiguous and language independent. In this paper, a formal 

conceptual framework for defining metrics for component-based system is proposed, where the framework 

formalises the behavioural aspects of the problem domain. The framework in respect of structural aspects 

has been discussed in another paper. 
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1. INTRODUCTION 

 
During the process of software development, the need for formalization—of all definitions in 

general, and of software metrics in particular, so as to overcome problems due to informal, 

imprecise or incomplete definitions—has been emphasized earlier, among others, by [2,3], [15], 

[1] & [16]. Further, these scholars, along with other scholars including [4], [13], [14],  [20] and 

[22], have made significant contributions to the attempts in this direction.  

 

In this paper, these contributions are extended by proposing a formal conceptual framework for 

defining metrics for a component-based system, where the framework takes into consideration the 

dynamics within problem domain. The framework for structural aspects has been discussed in 

[17]. 

 

[3] define a formalism based on set theory and graph theory for defining the coupling measures 

consistently, unambiguously and in language independent manner for object-oriented systems. 

[16] make similar attempt in respect of component-based software development using elementary 

mathematical concepts of set, relation, property and function.  The approach followed in this 

paper is similar to that of [16]. The reason for following the approach as the basis of the work is 

that even by starting with a model based on assumptions of a perfect world (a deterministic, static 

etc) and of a perfect view (precise, complete, consistent, monotonic, factual, with agents having 

single shareable intelligence etc.) of it, one can gradually develop more realistic models and 
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robust solutions by incorporating imperfections (e.g. randomness) of problem domain and its 

knowledge (e.g. incompleteness/impreciseness). It can also be extended when the problem 

domain is dynamic and/or involves multi-agents. Another advantage of the approach is that it 

allows easy extension of the system when some atomic elements need to be considered later as 

composed also. For example, a professor of a university may be initially considered as atomic, 

with some specific attributes like subject specialization, date of birth, date of appointment as 

professor etc. However, the same professor, while being treated as a patient in the university 

clinic, may have to be considered in terms of organs of a human being, with each organ with its 

specific attributes. This type of extension of a system is facilitated by the approach.  

 

The structure of the remainder of the paper is outlined next. The following section, which is the 

core of the paper, contains the details of the proposed formal conceptual framework. Its five 

subsections contain the details respectively of (i) meta model for set of system entities (ii) 

mathematical specification of functions between system entities (iii) mathematical specification 

of properties of functions between system entities (iv) specification of operators/ higher-order 

functions on set of functions and (v) mathematical specification of operations on general and 

binary relations between system entities. Finally, Section 3 concludes the presented work. 

 

2. CONCEPTUAL FRAMEWORK 

 
The conceptual framework by [17] discusses only the structure of the context, and is extended 

here to include formal conceptualisation of the behaviour/dynamics of constituents within the 

context. 

 

As mentioned in [17], for developing software through component-based approach, Assembly, a 

slightly modified version of component, is taken as a unit instead of a component. An assembly is 

a software entity, which may not be a component ( i.e. it is not necessary that it conforms to the 

component model considered for the purpose), but, which may be obtained   through composition 

which uses information only about provided and received interfaces(e.g. horizontal or partial 

vertical composition). The composition process initially starts only with some of the given 

components, and later uses recursively assemblies and components so obtained [4]. The 

advantage of using a set of assemblies instead of a set of components has been discussed in [19]  

and [17].  

 

In order to represent in the meta model, the dynamics/behaviour of the problem domain, one need 

to also include some mathematical entities to represent various operations like composition of two 

components/ assemblies to get a new component/ assembly, or adding or deleting    interfaces 

from a component or from a set of components to get the set of interfaces of a new component/ 

assembly. Similarly, one needs to represent the operations of adding /deleting parameters and 

parametric values of an interface to get new type of interfaces. The operations of addition/deletion 

in general may be represented by the mathematical operations of union, intersection and 

complementation. But, still in more general terms, any operation, whether it is composition or 

addition/deletion, is a function in mathematical sense. For example, if SC is the set of 

components, then composition, in mathematical sense, is a function, say, Comp: SC × SC � SC. 

Similarly, the operation of adding some attributes to the set of attributes of a given interface may 

be represented as a function Add-Attribute-Interface: SI × P(SA) × P(SA) � SI × P(SA), where, 

SI represents the set of interfaces, and P(SA) represents set of sets of attributes. An element of the 

first occurrence P(SA) on L.H.S. may represent the set of already associated attributes of an 

interface and an element of the second occurrence of P(SA) on L.H.S. may represent the set of 

attributes to be added, and  an element of the P(SA) on R.H.S. may represent the new set of 

attributes obtained after addition.  
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Also, the functions may have properties, e.g. a function may be 1-1 or onto. Further, a function as 

an operation on a set may have property of, say, commutativity.  

 

For the definition of the meta-model, it is assumed that a software system S is required to be 

developed to provide all the required services, say Serv. Further, for this purpose, it is also 

assumed that initially a set of components, say CR, is given. And, on the basis of judgement, a 

subset Comp (S) of CR is selected to develop the required software S. 

 

As a first step for formalization, an identifier need to be associated with each of the entities, 

property of an entity, relation between any two entities and property of a relation etc., and also, to 

each of the sets, which may be required in the discussion, of these entities, of relations and of 

properties. Let Si, i=1 to n, be the identifiers associated with required services, and let Cj, j= 1 to 

m, be the identifiers associated with the initially provided components. Then, formally,  

 
 { } { }CmCjCCCRandSnSiSSServ ,.......,,......,2,1,.....,,.....,2,1 ==  

 

In view of the fact that the proposed meta model is to include formal conceptual framework of the 

behaviour/ dynamics of the problem domain through various operations on the underlying set CR, 

which then evolves into larger sets, and finally into the required software S; let SA denote the set 

of assemblies, that represents the evolving (dynamically changing) set, the initial value of which 

is CR. However, a member of SA may be restricted to be a component only, where it is either an 

initially given component or is obtained by composing two members of SA. Also, let Assemb (S), 

the initial value of which is taken as Comp (S) denote the set of selected assemblies, at a 

particular point of time, to construct the required software S. Each of the sets to be defined below 

evolves as SA evolves. 

 

The  meta-model for the Structure of Set of System Entities proposed by [17] consists of  4-tuple 

(E, Prop(E), Rel(E), Rel-prop(E)), in which (a) E represents the set of system entities (in this case, 

an entity  ai is an assembly);(b) Prop(E) denotes the properties of the elements from E; (c) 

Rel(E)denotes the set of relations between the entities constructed out of elements of E; and (d) 

Rel-prop(E) denotes the set of properties of the relations between the entities constructed out of 

elements of E. 

 

In view of the discussion in the preceding paragraph, the proposed meta model also includes (e) 

the set of functions, which mathematically may represent various operations like composition of 

members of components or assemblies. A function is defined by (i) its domain, say D (ii) range, 

say, R and (iii) the rule that associates to each member of D a unique member of R. Also, the 

meta-model includes (f) the set of properties of functions mentioned under (e). 

The process of formal definition of the proposed meta-model for the dynamics/behaviour of the 

context starts with the following semi-formal (partly expressed in natural language) definition. 

 

2.1. A Meta Model for Set of System Entities (SSE) 
 

Definition 1: (A meta-model for Set of System Entities) The 6-tuple 

 
                    ( ) ( ) ( ) ( ) ( ){ }EpropFuncEFuncEoplElEopE −− ,,PrRe,Re,Pr,  

is called a meta-model for Set of System Entities (SSE), where 

a. E represents the set of system entities (in this case, an entity  ai is an assembly); 

b.  Prop(E) denotes the properties of the elements from E; 

c. Rel(E)denotes the set of relations between the entities constructed out of elements of E 

d. Rel-prop(E) denotes the set of properties of relations on E 
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e. Func (E) denotes the set of functions, with domain and range for each being constructed 

out of elements of E 

f. Func-prop (E) denotes the set of properties of functions in Func(E). 

  

Out of the six elements/ components of meta-model  included in the Definition 1 above, the first 

four components, which are about the structure of the context, have been described 

mathematically in [17]. 

 

In the ensuing sections, the semi-formal definitions given above of Func (E) and Func-prop (E) 

about the dynamics/ behaviour within the context are formalized in terms of mathematical 

concepts of set and relation. 

 

In [17], the set of system entities E is formally defined by the following equation: 

 

E = SA ∪ Serv ∪  I(SA) ∪  I(Serv) ∪  Param (SA) ∪  Param (Serv). 

 

where I(SA) denotes the set of all interfaces of SA, I(Serv) the set of all interfaces of Serv, Param 

(SA) the set of all parameters of  SA, and Param (Serv) the set of all parameters of  Serv. 

 

Also, two other sets viz. Types (E)  and Val (E) are associated with E, denoting  respectively 

types of elements of E and values which may be associated with a property of an assembly, 

interface or a parameter in E. It may be noted that the set Val (E) can only be decided and 

computed during the actual process of developing software using component-based approach 

(CBSE).   

 

For formal specification of Func (E) and Func-prop (E), the following notations are required. The 

notations (mathematical specifications) are given only in terms of a generic type T. This is being 

done in view of the fact that mathematical specifications of different types are similar. T may 

denote, at one time, only one of different types. In this connection, it may also be noted that for 

all the elements of a particular type of entities, the properties are same; whereas, for two elements 

of different types, properties may be different. Let EnT denote the set of entities of type T and 

PEnT denote the ordered set of properties of elements of EnT with PEnT = (PT1, PT2, …, PTi, 

…., PTtm), where tm is the number of properties of any entity in EnT. Further,  V-PEnT(i) denote 

the set of values of Property PTi, for i= 1, 2, …., tm.    Then, V-PEnT, the set of values associated 

with all properties of an entity of Type T, is given by the equation   V-PEnT = ∪ V-PEnT(i), 

union being taken over all properties PTi,  of an entity T. For the purpose of defining Val(E), the 

set of  all possible values of properties of elements in E, let  V-PEnT, instead  be denoted as V-

PEn (T), in which T is taken explicitly as parameter. Then   Val(E) = ∪ V-PEn (T), where union 

is taken over all types T of elements of E. 

 

At any point of time, to each entity eTj   and property PTi, a unique value vik is associated. This 

fact may be mathematically specified as:  value (eTj, PTi) = vik. It may be further expressed as 

the function 

 

Fun-Pro-Val-T-i : EnT  � V-PEnT(i), for property PTi, for all i’s.          ….. (A) 

This may be further generalized to function  

 

Fun-Pro-Val-T: EnT �  V-PEnT(1) × V-PEnT(2) × …… × V-PEnT(m) = (let) V-PEnT ….(B). 

    

In the above, the type name T is used as suffix of various names such as EnT, PEnT, V-PEnT etc. 

However, T is to be used as parameter in the further discussion, therefore, instead of EnT, PEnT, 

V-PEnT(i), V-PEnT,  and Fun-Pro-Val-T, respectively the notations En(T), PEn(T), V-PEn(T, i),  
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V-PEn(T),  and Fun-Pro-Val(T) are used. The specification of functions between system entities 

of E, is discussed in detail. 

 

2.2. Mathematical Specification of Functions between system entities. 

 
The description of specification of functions given below is merely an illustration and that it is 

not exact and complete. Rather, it cannot be exact and complete in view of the facts that all the 

functions cannot be determined in advance as these heavily depend on the specific requirement 

and usage context. Therefore, the exact and complete specification of functions is determined by 

the team of designers and potential users of the system as per requirements and context.   

 

Also, though there may be a number of types of functions that can be considered for mathematical 

specification, yet the functions are restricted to having their domains and ranges as only the 

subsets of the set:   

 

E ∪ Val(E)=( SA ∪ Serv ∪ I(SA) ∪ I(Serv) ∪ Param (SA) ∪ Param (Serv)) ∪ Val(E). 
For the purpose of the rest of the discussion, the following assumptions are made: 

 

1. The following  elementary  operations on sets are in-built in the system: union, 

intersection,  cross-product of  two or more given sets, complement of a set in 

some given set, and set-constructor which builds a set out of given elements etc. 

2. The following elementary relations on sets are in-built in the system: Equality of 

two sets, is-a-subset-of, is-a-proper-subset-of etc. 

3. For all natural numbers n and i, with 1≤ i  ≤ n, the following projection functions 

are built-in:   

 such that  

               

The function  maps an n-tuple from 

to its ith component, a member of Ai.  

4. A function g: X�Y can be defined/ constructed when either all the pairs (x, g(x)) 

or some rules for forming such pairs are given.  

5. Through in-built mechanisms, the composition function fog of two given 

functions   f : Y �Z and g: X�Y can be defined such that (fog)(x) = f(g(x)). 

Through in-built mechanisms, the composition function fog of two given 

functions   f : Y �Z and g: X�Y can be defined such that (fog)(x) = f(g(x)). 

6. The elements in the set E ∪ Val(E)  are distinctly represented in such a manner 

that the type of an element is part of its representation and the type of an element 

can be extracted easily from the representation. One of the ways in which the 

objective can be achieved is by representing each element of E ∪  Val(E) as an 

ordered pair (e, t), where e represents  the name of the element and t represents 

the name of the type of e. Then using projection functions defined earlier, the 

type can be specified and determined. In general, it  is assumed that for a set S 

involving elements of different types with the types being members of 

,it is possible to determine the type 

of a given element of S.  

 

Next, the classes of (more complex) functions that are specified under the above-mentioned 

assumptions are enumerated:  
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1. ( ) ( ) ( ) TypesEValSAParamSAISATypeFunc →∪∪− : , where each type being a member 

of the set Types = {T1, T2, ….. ,Ti,  ….,  Tn}. The function Func-Type: S � 

Types returns the type of an element of S.   The function Func-Type may be 

specified in terms of projection functions Func-Proj-n-i for appropriate values of 

n and i. 

2. Func-Type-Properties: Types �  ∪ PEn(T), where union is taken over T ∈  

Types, returns the set of properties associated with each type from Types. One of 

the ways in which this type of functions can be constructed and can be specified 

is:  Consider each element of Types as consisting of  ordered pairs (T, Set-of-

Properties-of-T), where T is type-name and Set-of-Properties-of-T is an ordered 

n-tuple of properties of an element of the type with type-name T, and n is the 

(assumed) number of elements in Set-of-Properties-of-T. 

 

3. Func-Element-Properties: E �  ∪ PEn(T), where union is taken over T ∈ Types, 

returns the set of properties associated with an element of E. Actually, the function 

can be specified through the equation:  Func-Element-Properties = Func-Type-

Properties o  Func-Type 

 

4. (i) Func-Interface: SA�I(SA) such that Func-Interface (a) = Ia, the set of 

interfaces of a  for a ∈ SA  (ii) Func-Provided: SA �PI(SA) such that Func-

Provided (a)=PIa,  for a ∈ SA and (iii) Func-Required: SA�RI(SA) such that 

Func-Required (a)=RIa for a ∈ SA. The mechanism for specifying Func-Interface 

etc. is similar to the mechanism used earlier for specifying Func-Type-Properties. 

For this purpose, each element of SA may be represented as a 3-tuple ( a, PIa, 

RIa). Then using appropriate projection function, each of the two functions Func-

Provided and Func-Required can be specified. And the function Func-Interface  

can be specified by taking functional value  

Func-Interface (a) =Func-Provided (a) ∪  Func-Required (a),   for each a ∈ SA. 

 

5. Func-Compose-Assembly: Rules × SA × SA� SA, where Rules = {Horizontal-

binding, Vertical-binding, Partial-Vertical-binding, …..}, returns an assembly 

obtained after composing two given assemblies according to some given rule in 

Rules [4]. 

One of the possible rules for composing and specifying assemblies may be 

described as follows. Let C be an assembly obtained by composing two 

assemblies, say, A and B. The interfaces PIc and RIc for component C are 

obtained from the provided and required interfaces of A and B as follows: First, 

find those required interfaces  of A which are provided interfaces of B, and also 

find those required interfaces  of B which are provided interfaces of A  i.e. find      

RIa ∩ PIb and  RIb ∩ PIa. Then, one may take PIbPIaPIc ∪= and 

( )RIbRIaRIc ∪= ~ ( ) ( )( )PIaRIbPIbRIa ∩∪∩ . 

The interfaces of the assembly obtained through the composition may be 

added and/or deleted through set operations of union, intersection and 

complementation. Thus, the composition of assemblies/components described 

above is formally specified by sets and set operations.   

 

6. alSAAssemblyWeightFun Re→−−  (may be restricted to [0, 1]). One of the ways in 

which one may define Fun-Weight-Assembly (a) for a ∈SA is through associating 

(relative, but non-negative numbers as) weights with interfaces in PI ∪  RI. Let wi 

be the weight associated with interface i. Then  
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                ( ) ∑∑ −=−−
R

ri

P

pi WWaAssemblyWeightFun   

where wpi is the weight associated with an interface pi ∈ PIa  and wri is the weight 

associated with an interface ri ∈ RIa; ∑P denotes summation over all interfaces in 

PIa, and ∑
R
 denotes summation over all interfaces in RIa. 

  

It may be noted that the above definition of Fun-Weight-Assembly is quite 

simplistic and is only given here just to explain the essential idea of how an 

assembly may be evaluated and specified. Other factors that may be taken into 

consideration for the function include the effort required to convert an assembly 

into a component according to the component model under consideration. 

 

In respect of finding values for a given entity/attribute, the following two types of 

functions are already defined: 

7. , which maps an entity of EnT  to its value 

for its ith property PTi, 

8. , which 

maps an entity of EnT  to ordered set of its values for properties PT1, PT2, ……, 

PTi, ……, PTtm. More explicitly, if eT  is an element of type T, then 

, where viT is some 

value of property PiT. 

In order to define functions for values of an element of E, let type T  be explicitly indicated, in the 

above type of functions, so that this type of functions can be rewritten as  

                      Fun-Pro-Val(T): En(T) �  V-PEnT(1) × V-PEnT(2) ×.. .× PTi×...…× V-PEnT(m) 

If Types = {T1, T2, ….. ,Tk,  ….,  Tn} is the set of all types, these functions may be restricted to 

the functions:    

,  

where union is taken over elements of Type. Then, in order to determine value of an element e of 

E, first its type, say Tk, is determined. Then . 

 

2.3. Mathematical Specification of properties of functions between system entities. 

• Author  

 

•  {constant, identity, linear, polynomial, rational, algebraic, 

analytical, smooth, continuous, measurable, injective, surjective, 

bijective/invertible}  

• Operation-arities = { unary, binary, ternary, quaternary} ∪  {n-ary, with n 

being an integer ≥ 5} 

•  

 
 

A function will be specified as a tuple: 
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It is assumed that function names are assigned uniquely in the sense the operations ‘sum of two 

numbers’ and ‘sum of two vectors’ will be given different names e.g. respectively sum-num and 

sum-vector. Thus, names are assigned in such a way that attribute ‘name’ may serve as a key. 

 

 Some component of the tuple may have a special value say NULL if the property is not relevant. 

For example, property-of-binary-operation is null, if either the function is not an operation on 

some set or if the value of Operation-arities ≠ binary. Also, if corresponding to a property-value 

there are further possible properties, then property will be represented as a tuple. For example, the 

value ‘binary’ of operation-arites will be represented as (binary, {commutative/ non-

commutative, associative/ non-associative}). Further, value of a tuple may be a pointer pointing 

to a procedure, if the value is a method/ procedure.  

 

Using the above facts, a program may be written as specification of the method for finding 

properties and their values. 

 

2.4. Specification of Operators/ Higher-order functions on Set of Functions 

 
The Using the specification for a function as given above and in-built projection operations, one 

can define the following   operators/ Higher-order functions, the arguments of each of which is a 

function: 

 

1. Domain-of-function  2   Co-domain-of-function 

3. Method-of-function         4  Type-of-function 

5. Arity-of-operation           6  Property-of-binary-operation 

7. Composibility-of-a-function1-with-function2, i.e. Is (function1 o function2) 

defined? 

8. Composition-of-functions.   

 

As an example, Composibility-of-a-function1-with-function2 can be specified through the 

program segment: 

                 

If domain (function1) ⊆   range  (function2) then True  

2.5. Mathematical Specification of operations on general and binary relations 

between system entities. 

 
X1, X2, …. Xi, …… , Xk, i.e. R ⊆  X1 × X2 × …. × Xi × …… × Xk. 

 

 , 

where all considered  relations are subsets the product of sets X1, X2,  ….  Xi, …… ,  Xk , 

of the same k sets Xi, in which even the order of the sets also remains the same. When k=2, the 

set may be called ‘Set-of-operations-on-binary-relations’. Further, if K=2 and X1 = X2, 

additionally, one can define the following set: 

 

Set-of-operations-on-binary-relations-in-a-set = { Composition, Reflexive-closure, Reflexive-

reduction, Transitive-closure, Transitive-reduction, Reflexive-transitive-closure, Reflexive-

transitive-symmetric-closure}.  

 

The operations included in Set-of-operations-on-binary-relations, may be defined as follows. 
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If R and S are two binary relations from X to Y, then each of the following is a binary relation 

from X to Y: 

• Union: R ∪  S ⊆  X × Y, defined as R ∪  S = {(x, y) | (x, y) ∈ R or (x, y) ∈ S}. For 

example, ≥ is the union of > and =. 

• Intersection: R ∩ S ⊆  X × Y, defined as R ∩ S = {(x, y) | (x, y) ∈ R and (x, y) ∈ S}.  

• Complementation: If R ⊆   X × Y,  then the  complement of R, denoted  as Complement 

(R) in  X × Y is defined as x Complement(R) y if not x R y. For example, on real 

numbers, ≤ is the complement of >.  

• But Inverse or converse: R −1, defined as R −1 = {(y, x): (x, y) ∈ R} is a binary relation 

from  Y to X.  For example, "is less than" (<) is the inverse of "is greater than" (>) 

The above-mentioned four operations can be generalized when R and S etc. are k-ary relations, 

for k ≥ 3, instead of being just binary, as discussed below: 

Let XkXiXXSandR ×××××⊆ ......21  be k-ary relations, then the operations on relations, viz. 

union R ∪  S, Intersection R ∩ S, complementation  etc. are defined as follows: 

• Union: R ∪  S ⊆  X × Y, defined as =∪ SR {   

∈ R or   ∈ S} is a the k-ary relation. For example, ≥ is the union of > 

and =. 

• Intersection: R ∩ S ⊆ X × Y, defined as R ∩ S = { (x1, x2, … xi, …, xk)  | (x1, x2, … xi, 

…, xk)  ∈ R and (x1, x2, … xi, …, xk)  ∈ S} is a the k-ary relation.  

• Complementation: If R  ⊆ X1 × X2 ×  …. × Xi × …… × Xk,   then the  complement of 

R, denoted  as Complement (R) in X1 × X2 ×  …. × Xi × …… × Xk is defined as (x1, x2, 

… xi, …, xk) ∈ Complement (R) if not (x1, x2, … xi, …, xk) ∉ R.  

• Inverse or converse: R −1, defined as R −1 = { (xk, xk-1, … xi, …, x1): (x1, x2, … xi, …, 

xk) ⊆ R} is an k-ary relation, i.e.   R 
−1

 ⊆  Xk × Xk-1 ×  …. × Xi × …… × X1 

Next, we discuss specification of operations on relations in a set X, i.e. when R ⊆ X × X: 

• Composition: S°R, also denoted R; S (or more ambiguously R°S), defined as S°R = 

{(x, z) | there exists y ∈ Y, such that (x, y) ∈ R and (y, z) ∈ S}. The order of R and S in 

the notation S°R, used here agrees with the standard notational order for composition of 

functions. For example, the composition "is mother of" ° "is father of" yields "is paternal 

grand-mother of", while the composition "is father of" ° "is mother of" yields "is maternal 

grandfather of".   

• Reflexive-closure: R=, defined as R= = {(x, x) | x ∈ X} ∪  R or the smallest reflexive 

relation over X containing R. This can be proven to be equal to the intersection of all 

reflexive relations containing R. 

• Reflexive-reduction: R≠, defined as R≠ = R \ {(x, x) | x ∈ X} or the 

largest irreflexive relation over X contained in R. 

• Transitive-closure: R
+
, defined as the smallest transitive relation over X containing R. 

This can be seen to be equal to the intersection of all transitive relations containing R. 

• Transitive-reduction: R
−
, defined as a minimal relation having the same transitive closure 

as R. 

• Reflexive transitive closure: R*, defined as R* = (R+)=. 

• Reflexive-transitive-symmetric-closure: R≡, defined as the smallest equivalence 

relation over X containing R. 
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3. CONCLUSIONS 

 
In this paper, the concerns, earlier expressed by some researchers are further emphasized, in 

respect of the desirability of defining some formal conceptual framework of the context in order 

to have unambiguous, precise and language independent definitions, including those of system 

metrics, which in turn help in designing robust software. A formal conceptual framework of the 

dynamics within the problem domain is defined; for which instead of component, an assembly—a 

slightly modified and more general concept—is taken as basic building block for design and 

development of software. The advantage of the proposed framework is that it is more efficient 

than a framework in which ‘component’ is necessarily taken as building block. Another 

advantage of proposed framework is its scalability. The definition of the proposed framework is 

given under the assumption—common for most of the software development endeavours so far—

that the problem domain and its knowledge, both are perfect. However, for developing realistic 

models and robust solutions, it is essential to take into consideration both imperfections of 

problem domains (e.g. inherent randomness of domain) and of its knowledge (e.g. 

incompleteness/impreciseness). The proposed framework can be easily extended to the cases 

when the problem domain is imperfect   and/or knowledge of the problem domain is imperfect, 

thereby providing solid foundations for developing robust software. 
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