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ABSTRACT.  

 

Clone group mapping has a very important significance in the evolution of code clone. The topic modeling 

techniques were applied into code clone firstly and a new clone group mapping method was proposed. The 

method is very effective for not only Type-1 and Type-2 clone but also Type-3 clone .By making full use of 

the source text and structure information, topic modeling techniques transform the mapping problem of 

high-dimensional code space into a low-dimensional topic space, the goal of clone group mapping was 

indirectly reached by mapping clone group topics. Experiments on four open source software show that the 

recall and precision are up to 0.99, thus the method can effectively and accurately reach the goal of clone 

group mapping. 
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1. INTRODUCTION 

 
A code clone is a code portion in source files that is identical or similar to another[1]. It is 

suspected that many large systems contain approximately 9%-17% clone code, sometimes as high 

as even 50%[2]. The activities of the programmers including copy, paste and modify result in lots 

of code clone in the software systems. 
 

In the past and in recent years, several researchers have indicated a number of factors that affect 

source code maintainability. So Code clones have been considered as a bad software development 

practice. For example, when a cloned code fragment needs to be changed, for example because of 

a bug fix, it might be necessary to propagate such a change across all clones. Software 

maintenance and evolution are crucial activities in the software development lifecycle, impacting 

up to 80% of the overall cost and effort [3].Although there is a common understanding that 

cloning is a bad practice, recent studies have shown that clones are not necessarily a bad thing. 

For example, copying source code without defect can reduce the potential risk of writing new 

code, save development time and cost. Kapser and Godfrey[4] said, in many cases cloning has 

been used as a development practice, and developers are often able to handle “harmful” 

situations. 

 

To avoid problems clones can cause due to change mis-alignment and exploit the advantages of 

clones, it is necessary to provide the developers with method able to support clone tracking. 

Therefore， in order to meet the demands of clone evolution, an clone mapping method is put 

forward.The topic modeling techniques is applied to code clone firstly and a new clone group 

mapping method is proposed.  
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2. TERMS AND DEFINITIONS 

In this section, we introduce definition of code clone and relevant terminology.  

A code clone is a code fragment (CF) in source files that is identical or similar to another. A clone 

fragment is a contiguous section of source code. As such, a clone fragment has a well-defined 

start and end and is contained in exactly one file in exactly one version of the system. A clone 

pair relates two fragments that are similar to each other and are contained in the same version of 

the system.In contrast to a clone pair, a clone group is composed of two or more similar 

fragments. Clone group mapping reflect how an clone group evolve from a previous version to 

the current version, is the core technology in the evolution of code clone across versions. 

According to the degree of similarity between clones, clone is divided into four different types:  

Type-1Clone(CF and CF1)：Identical code fragments except for variations in white-spaces and 

comments. 

Type-2 Clone(CF and CF2) ：Structurally/syntactically identical fragments except for variations 

in the names of identifiers, literals, types, layout  and  comments.  

Type-3 Clone(CF and CF3) ：Code fragments that exhibit similarity as of  Type-2 clones and also 

allow further differences such as additions, deletions or modifications of statements. 

Type-4 Clone(CF and CF4) ：Code fragments that exhibit identical functional behaviour are 

implemented through very different syntactic structures. 

Figure 1 shows the above four kinds of clones.Type-1 Clone is often called exact clone .Type-2 

and type-3 clones are often collectively called near-miss clone.  

 

Figure 1. Four kinds of clones  

3. RELATED WORK  

Software development and maintenance in practice follow a dynamic process. With the growth of 

the program source, code clones also experience evolution from version to version. What change 

the Clone group have happened from one version to next need to be made judgments by clone 

group mapping. 

To map clone group across consecutive versions of a program, mainly five different approaches 

have been found in the literature. 
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Based on text[5]：：：：It separates clone detection from each version, and then similarity based 

heuristic mapping of clones in pairs of subsequent versions. Text similarity are often computed by 

the Longest Common Subsequence(LCS)or Edit Distance(Levenshtein Distance, LD) algorithm 

that have quadratic runtime, which lead to inefficient clone mapping. The method is susceptible to 

large change in clone. 

Based on version management tools (CVS or SVN)[6]：：：：Clones detected from the first version 

are mapped to consecutive versions based on change logs obtained from source code repositories. 

It is faster than the above technique, but can miss the clones introduced after the first version. 

Based on incremental clone detection algorithm[7]：：：： Clones are mapped during the 

incremental clone detection that used source code changes between revisions. It can reduce the 

redundant computation and save time .So it is faster than the above two techniques, but cannot 

operate on the clone detection results obtained from traditional non-incremental tools.  

Based on functions[8]: It separates clone detection from each version, functions are mapped 

across subsequent versions, then clones are mapped based on the mapped functions. To some 

extent, it improves the efficiency and accuracy of the mapping, but it is susceptible to similar 

overloaded/overridden functions for its over-reliance on function information. 

Based on CRD(Clone Region Descriptor)[9]：：：：Clone code is represented by CRD, then clones 

are mapped based on CRD between versions. It is not easily influenced by position of the code 

clone. Mutations or big difference between versions can reduce the mapping validity greatly. 

4. APPROACH 

In this section we present a new clone group mapping approach based on topic modeling for 

tracking clone groups across different versions. 

4.1 Overview of Topic Model 

 Topic models are generative probabilistic models, originally used in the area of natural language 

processing for representing text documents. LDA (Latent Dirichlet Allocation) has recently been 

applied to a variety of domains, due to its attractive features. First, LDA enables a 

low-dimensional representation of text, which (i) uncovers latent semantic relationships and (ii) 

allows faster analysis on text [10]. Second, LDA is unsupervised, meaning no labeled training 

data is required for it to automatically discover topics in a corpus. And finally, LDA has proven to 

be fast and scalable to millions of documents or more [11]. For these reasons, in this paper we use 

LDA as our topic model. 

In the LDA model, LDA is statistical models that infer latent topics to describe a corpus of text 

documents [12]. Topics are collections of words that co-occur frequently in the corpus. For 

example, a topic discovered from a newspaper collection might contain the words {cash bank 

money finance loan}, representing the “finance industry” concept; another might contain {fish 

river stream water bank}, representing the “river” concept. So, documents can be represented by 

the topics within them. Topic modeling techniques transform the text into topic space. 

Recently, researchers found topics to be effective tools for structuring various software artifacts, 

such as source code, requirements documents, and bug reports. Kuhn [13] made the first attempt 

to apply topic modeling technique to source code, and tried to discover the functional topics. W. 

Thomas[14]performed a detailed investigation of the usefulness of topic evolution models for 

analyzing software evolution, they found that topic models were an effective technique for 

automatically discovering and summarizing software change activities. Asuncion[15] used the 
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topic modeling techniques to study software traceability. In addition, topic model was also used to 

study class cohesion [16]and bug location[17]. 

4.2 Mapping Clone Group Based on Topic Modeling 

4.2.1 Framework of The Algorithm. 

The paper uses the LDA topic modeling technology to map clone group. It mainly works in the 

following three steps: (1) extracting the topics from clone group, (2) calculating the similarity 

between topics,(3) mapping clone group topics. Figure 2 shows the framework of the algorithm. 

Let 	CG� = {cg	
�, cg�

�,⋯ cg
�}be the reported clone groups in V�, 	T� = {t	

�, t�
�,⋯ t

�}refers to the 

clone group topics extracted from the clone group CG� where t�
�  was extracted from cg�

� 

,1 ≤ i ≤ n.  

 

Figure 2. The frame of mapping algorithm 

To track clone groups over two different versions ���	 and ��,we compare every clone group in 

version ���	to every clone group in version ��. Topic modeling technology is used to extract the 

topics from each clone group in the version �� and ���	respectively. At this point, since topic is 

the only representation of corresponding clone group, the problem of mapping clone group 

between two versions of a program is reduced to the mapping of clone group topics between two 

versions. Then clone group topics are mapped by comparing similarity between topics in the 

version ���	 and ��. If the topic ��
��	 of a clone group 	���

��	 in version ���	 matches to the 

topic ��
� of a clone group 	���

� in the version ��, we know that the clone group 	cg�
��		in ���	 and 

the clone group 	cg 
�	in �� are the same. Due to the transitivity of the relation of equivalence， we 

can then conclude that clone group 	cg�
��	 is related to clone group	cg 

� .The algorithm is as 

follows:   

Clone Group Mapping algorithm  

�    	∀		���
��	 ∈ 	#$��	,	#$��	 in ���	 

� extract ��
��	 from 	���

��	 

� 	∀		���
� ∈ 	#$�, #$� in �� 

�   extract ��
� from 	���

� 

� caculate similarity between ��
� and ��

��	, and store similarity value in the array 

unit sim [j] 

� suppose  sim[k]=max{sim[ ]}: 

IF  sim[k]≥δ，���
��		is mapped back to 	���

� ,namely ���
��	—﹥	���

�	； 

  THEN  ���
��	——﹥null. 

� Return all mapping results  

 



International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.2, March 2015 

 

15 

 

4.2.2 Extract Clone Group Topics 

Under the standard programming style, software is suitable for extracting the topics using the 

LDA model. The paper uses MALLET topic modeling toolkit to extract the topics. MALLET is a 

Java-based package for statistical natural language processing, document classification, 

clustering, topic modeling, information extraction, and other machine learning applications to 

text. It contains efficient, sampling-based implementations of LDA. Figure 3 shows the topics 

extracted from source code of clone group by MALLET. 

Preprocess the source code. Each topic is collections of words that co-occur frequently in the 

clone group, and is the only representation of corresponding clone group. The topic contains a 

large number of irrelevant information, such as stop words,comments, which play a small role in 

characterization of clone group information. So, before extracting the topics, we remove 

irrelevant information, mainly ：1）comments of the source code. 2）programming language 

keywords, such as "for", "return", and "class", etc. 3) Programming related words, such as "main", 

"arg", and "util", etc. 4）common English language stop words, such as "the", "it", and "on", etc.  

Choose the number of topic.The proper number of topic is a key to influence the accuracy of 

clone group mapping. For any given corpus, there is no provably optimal choice for the number of 

topics. The choice is a trade-off between coarser topics and finer-grained topics. setting the 

number of topics to extremely small values results in topics that contain multiple concepts, while 

setting the number of topics to extremely large values results in topics that are too fine to be 

meaningful and only reveal the idiosyncrasies of the clone group.  

In the paper, through experimental analysis, it is best for setting the number of topics to one. In the 

same clone group, clone code is a code portion that is identical or similar to another. The whole 

clone group is multiple copies of the same clone whose syntactic or semantic function is same. In 

other words, a clone group can be represented by a topic.  

 

Figure 3.The topics extracted by MALLET 

4.2.3 Mapping Clone Group Topics 

A clone group has an arbitrary number of ancestors which are its occurrences in the previous 

version of the system. Each clone group has zero or one descendant which is its occurrence in the 

next version of the system. Clone group mapping is determined by the degree of similarity 

between clone groups in the different versions.  

The threshold of clone group mapping . Clone group mapping is determined indirectly by 

similarity between clone group topics from different versions. If the similarity between the topic 
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t 
� and topic t�

��	is highest, and the similarity values is not less than certain threshold (δ).In that 

way, we can conclude that the topic t�
��	 is mapped back to the topic t 

�, namely the clone group 

cg�
��	is mapped back to the clone group 	cg 

� . In the paper, Similarity threshold δ is set to 0.8. 

That's because the similarity value between t�
��	and t 

� vary from 0.8 to 1 when cg�
��	 is mapped 

back to the clone group 	cg 
� , and the similarity value between t�

��	and t 
�  is less than 0.8 

when	cg 
�	is not origin of clone group cg�

��	. So, setting similarity threshold δis 0.8.  

Map to origin clone group. The number of clone group is generally on the rise in the process 

of software evolution. If the mapping is carried out from the version V�	to V��	, new clone groups 

are failed to map. On the contrary, disappeared clone groups are failed to map. However, we are 

more interested in clone code near to the current version in the study of clone evolution. That is to 

say, compared with disappeared clone group, we are more interested in new clone group. So, the 

mapping is carried out from the version V��	to V�. 

 

5. CASE STUDY 

 
5.1 Systems Under Study 

 
Due to the difference in size of software system, number of clone group in each version ranging 

from dozens to thousands ,in view of the limitations of manually inspection, so we perform case 

study on the source code of four small and medium-sized, open source software systems which is 

written in different programming languages. The detail of software is shown in Table 1. NiCad is 

used to detect clone code. NiCad, a clone detector, can detect Type-1 、Type-2 and Type-3 

clones written in multiple programming language（C、JAVA、C#）and have a high precision 

rate and recall rate. 

Table 1. The detail of software 

software Bluefish MALLET ArgoUML PostgreSQL 

Implementation language C JAVA JAVA C 

Average size  23MB 31MB 35MB 92MB 

Number of the selected version 2 3 3 4 

Number of Clone group (on average) 20 145 299 506 

5.2 Evaluation Measures 

To evaluate the feasibility and validity of the approach, we use Precision and Recall as Evaluation 

Measures to manually inspect the results of the approach based on topic modeling . Precision and 

Recall are defined as follows: 

Recall: Of all the actual clone group mappings, how many were discovered? 

Recall =
the	number	of	correct	mapping

the	number	of	actual	clone	group	mappings
 

Precision: Of all the clone group mappings discovered, how many are correct? 

Precision =
the	number	of	correct	mapping

the	number	of	correct	and	incorrect	mapping
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5.3 Results 

 
Clone group mapping is carried on consecutive versions of other software, and manually inspect 

the Precision and Recall of the mapping results. The results can be seen in Table 2 and Table 3. 

The Precision and Recall of the approach are as high as 0.99, which reveal the validity and 

feasibility of clone group mapping approach based on topic modeling. The runtime of clone group 

mapping across versions is acceptable. But the results are enough to reveal the feasibility of the 

approach. This method can effectively achieve the clone group mapping. 

 

Unlike the mapping method based on text, the basic collection of the mapping is the clone group 

topics, not intermediate representation of clone code(e.g., token and AST). Topic has a large 

granularity and the higher level of abstraction. However, the difference of topics between 

different clone groups in the same version is very large and the difference of topics between same 

clone groups in the different version is very little, which make the clone group mapping method 

based on topic modeling practicable and effective. 

 
Table 2. The experimental results of the approach 

 

Software and versions 

  

Evaluation Measures 

Bluefish PostgreSQL PostgreSQL PostgreSQL 

2.2.4 2.2.3 9.1.5 9.1.4 9.1.4 9.1.3 9.1.3 9.1.2 

Precision 1 0.996 0.996 0.994 

Recall 0.95 1 1 1 

 

Table 3. The experimental results of the approach 

Software and versions 

  

Evaluation Measures 

ArgoUML ArgoUML MALLET MALLET 

0.27.3 0.27.2 0.27.2 0.27.1 2.0.7 2.0.6 2.0.6 2.0.5 

Precision 1 0.996 1 0.992 

Recall 0.996 0.993 0.982 0.992 

 

Take bluefish for example, mapping results of clone groups between bluefish 2.2.4 and bluefish 

2.2.3 are shown in Figure 3.  
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Figure 3. Mapping results of clone groups between Bluefish 2.2.4 and 2.2.3 

The second and third column of the figure show clone group number of the corresponding version 

in Bluefish. There are 19(From 0 to 18) clone groups in Bluefish 2.2.4. There are 20(From 0 to 19) 

clone groups in Bluefish 2.2.3.The arrows indicate the corresponding clone group is traced to its 

origin clone group. For example, the 14th clone group of Bluefish 2.2.4 is mapped back to the 

16th clone group of Bluefish 2.2.3.But the 14th clone group of Bluefish 2.2.4 is not traced to its 

origin clone group, which indicate that it is a new clone group, probably the great changes have 

taken place in its origin during the software evolution from Bluefish 2.2.3 to Bluefish 2.2.4, which 

similarity value between them is less than the threshold δ. We note that 8th and 9th clone group 

of Bluefish2.2.3 do not appear in the list, probably they are removed or take great change during 

software evolution.  

The first column of the figure show the largest similarity values of clone group topics between 

Bluefish 2.2.4 and Bluefish 2.2.3. If the value is not less than δ(0.8), There is a mapping 

relationship between them. It can be seen in the Figure 3 that most of the similarity value are as 

high as 1, namely most of the clone groups do not change during software evolution. Few of the 

similarity values are not 1, which indicate that clone codes have experienced some degree of 

change, such as the clone group is deleted, a few of clone fragments are added or removed. 

6. DISCUSSION AND THREATS TO VALIDITY 

Limitations of clone detector. The clone detector provides the basis data for clone group 

mapping, so clone group mapping approach directly is affected by clone detector. It is critical for 

clone group mapping to choose an accurate clone detector. 

Limitations of similarity threshold. In the paper, similarity threshold between clone group 

topics across versions is determined based on the experience knowledge, and different software 

use the same similarity threshold, which have an impact on the results. Firstly, similarity 

threshold based on the experience knowledge can't reflect mapping efficiency of the algorithm. 

Secondly, the same threshold is used to different software that they exist remarkable differences 

in programming language, programming style and the degree of change between versions, which 

will reduce the validity of the mapping algorithm. 

The differences between versions. It is discovered by the experimental results that the 

smaller differences between versions  is, the higher accuracy the approach has. If clone group 

have happened so significant changes during software evolution that similarity value between two 

versions exceed the permitted threshold, which clone group that could have been traced to its 

origin clone group is failure to mapping. That is to say, Mutation or big difference between 
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versions can reduce the accuracy of the mapping. Therefore, It contributes to improvement of 

accuracy of clone group mapping that using revision   of software rather than release. 

 

7. CONCLUSIONS 

 
The activities of the programmers including copy, paste and modify result in lots of code clone in 

the software systems. However, Clone group mapping has a very important significance in the 

evolution of code clones. The clone group mapping approach based on topic modeling is 

proposed in the paper. By using topic modeling techniques to transform the mapping problem of 

high-dimensional code space into a low-dimensional topic space, the goal of clone group 

mapping was indirectly reached by mapping clone group topics. Experiments on 12 versions of 4 

open source software show that the recall and precision are up to 0.99, thus the approach can 

effectively and accurately reach the goal of clone group mapping. The method is very effective 

for not only exact clone but also near-miss clones. 
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