
International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.2, March 2015

DOI : 10.5121/ijsea.2015.6202 11

A NOVEL APPROACH FOR CLONE GROUP MAPPING

BY USING TOPIC MODELING

Ruixia Zhang, Liping Zhang, Huan Wang and Zhuo Chen
Computer and information engineering college, Inner Mongolia normal university,

Hohhot, China

ABSTRACT.

Clone group mapping has a very important significance in the evolution of code clone. The topic modeling

techniques were applied into code clone firstly and a new clone group mapping method was proposed. The

method is very effective for not only Type-1 and Type-2 clone but also Type-3 clone .By making full use of

the source text and structure information, topic modeling techniques transform the mapping problem of

high-dimensional code space into a low-dimensional topic space, the goal of clone group mapping was

indirectly reached by mapping clone group topics. Experiments on four open source software show that the

recall and precision are up to 0.99, thus the method can effectively and accurately reach the goal of clone

group mapping.

KEYWORDS:

Code Clone ,Software Evolution, Topic, Clone Group Mapping

1. INTRODUCTION

A code clone is a code portion in source files that is identical or similar to another[1]. It is

suspected that many large systems contain approximately 9%-17% clone code, sometimes as high

as even 50%[2]. The activities of the programmers including copy, paste and modify result in lots

of code clone in the software systems.

In the past and in recent years, several researchers have indicated a number of factors that affect

source code maintainability. So Code clones have been considered as a bad software development

practice. For example, when a cloned code fragment needs to be changed, for example because of

a bug fix, it might be necessary to propagate such a change across all clones. Software

maintenance and evolution are crucial activities in the software development lifecycle, impacting

up to 80% of the overall cost and effort [3].Although there is a common understanding that

cloning is a bad practice, recent studies have shown that clones are not necessarily a bad thing.

For example, copying source code without defect can reduce the potential risk of writing new

code, save development time and cost. Kapser and Godfrey[4] said, in many cases cloning has

been used as a development practice, and developers are often able to handle “harmful”

situations.

To avoid problems clones can cause due to change mis-alignment and exploit the advantages of

clones, it is necessary to provide the developers with method able to support clone tracking.

Therefore， in order to meet the demands of clone evolution, an clone mapping method is put

forward.The topic modeling techniques is applied to code clone firstly and a new clone group

mapping method is proposed.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.2, March 2015

12

2. TERMS AND DEFINITIONS

In this section, we introduce definition of code clone and relevant terminology.

A code clone is a code fragment (CF) in source files that is identical or similar to another. A clone

fragment is a contiguous section of source code. As such, a clone fragment has a well-defined

start and end and is contained in exactly one file in exactly one version of the system. A clone

pair relates two fragments that are similar to each other and are contained in the same version of

the system.In contrast to a clone pair, a clone group is composed of two or more similar

fragments. Clone group mapping reflect how an clone group evolve from a previous version to

the current version, is the core technology in the evolution of code clone across versions.

According to the degree of similarity between clones, clone is divided into four different types:

Type-1Clone(CF and CF1)：Identical code fragments except for variations in white-spaces and

comments.

Type-2 Clone(CF and CF2) ：Structurally/syntactically identical fragments except for variations

in the names of identifiers, literals, types, layout and comments.

Type-3 Clone(CF and CF3) ：Code fragments that exhibit similarity as of Type-2 clones and also

allow further differences such as additions, deletions or modifications of statements.

Type-4 Clone(CF and CF4) ：Code fragments that exhibit identical functional behaviour are

implemented through very different syntactic structures.

Figure 1 shows the above four kinds of clones.Type-1 Clone is often called exact clone .Type-2

and type-3 clones are often collectively called near-miss clone.

Figure 1. Four kinds of clones

3. RELATED WORK

Software development and maintenance in practice follow a dynamic process. With the growth of

the program source, code clones also experience evolution from version to version. What change

the Clone group have happened from one version to next need to be made judgments by clone

group mapping.

To map clone group across consecutive versions of a program, mainly five different approaches

have been found in the literature.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.2, March 2015

13

Based on text[5]：：：：It separates clone detection from each version, and then similarity based

heuristic mapping of clones in pairs of subsequent versions. Text similarity are often computed by

the Longest Common Subsequence(LCS)or Edit Distance(Levenshtein Distance, LD) algorithm

that have quadratic runtime, which lead to inefficient clone mapping. The method is susceptible to

large change in clone.

Based on version management tools (CVS or SVN)[6]：：：：Clones detected from the first version

are mapped to consecutive versions based on change logs obtained from source code repositories.

It is faster than the above technique, but can miss the clones introduced after the first version.

Based on incremental clone detection algorithm[7]：：：： Clones are mapped during the

incremental clone detection that used source code changes between revisions. It can reduce the

redundant computation and save time .So it is faster than the above two techniques, but cannot

operate on the clone detection results obtained from traditional non-incremental tools.

Based on functions[8]: It separates clone detection from each version, functions are mapped

across subsequent versions, then clones are mapped based on the mapped functions. To some

extent, it improves the efficiency and accuracy of the mapping, but it is susceptible to similar

overloaded/overridden functions for its over-reliance on function information.

Based on CRD(Clone Region Descriptor)[9]：：：：Clone code is represented by CRD, then clones

are mapped based on CRD between versions. It is not easily influenced by position of the code

clone. Mutations or big difference between versions can reduce the mapping validity greatly.

4. APPROACH

In this section we present a new clone group mapping approach based on topic modeling for

tracking clone groups across different versions.

4.1 Overview of Topic Model

 Topic models are generative probabilistic models, originally used in the area of natural language

processing for representing text documents. LDA (Latent Dirichlet Allocation) has recently been

applied to a variety of domains, due to its attractive features. First, LDA enables a

low-dimensional representation of text, which (i) uncovers latent semantic relationships and (ii)

allows faster analysis on text [10]. Second, LDA is unsupervised, meaning no labeled training

data is required for it to automatically discover topics in a corpus. And finally, LDA has proven to

be fast and scalable to millions of documents or more [11]. For these reasons, in this paper we use

LDA as our topic model.

In the LDA model, LDA is statistical models that infer latent topics to describe a corpus of text

documents [12]. Topics are collections of words that co-occur frequently in the corpus. For

example, a topic discovered from a newspaper collection might contain the words {cash bank

money finance loan}, representing the “finance industry” concept; another might contain {fish

river stream water bank}, representing the “river” concept. So, documents can be represented by

the topics within them. Topic modeling techniques transform the text into topic space.

Recently, researchers found topics to be effective tools for structuring various software artifacts,

such as source code, requirements documents, and bug reports. Kuhn [13] made the first attempt

to apply topic modeling technique to source code, and tried to discover the functional topics. W.

Thomas[14]performed a detailed investigation of the usefulness of topic evolution models for

analyzing software evolution, they found that topic models were an effective technique for

automatically discovering and summarizing software change activities. Asuncion[15] used the

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.2, March 2015

14

topic modeling techniques to study software traceability. In addition, topic model was also used to

study class cohesion [16]and bug location[17].

4.2 Mapping Clone Group Based on Topic Modeling

4.2.1 Framework of The Algorithm.

The paper uses the LDA topic modeling technology to map clone group. It mainly works in the

following three steps: (1) extracting the topics from clone group, (2) calculating the similarity

between topics,(3) mapping clone group topics. Figure 2 shows the framework of the algorithm.

Let 	CG� = {cg	
�, cg�

�,⋯ cg
�}be the reported clone groups in V�, 	T� = {t	

�, t�
�,⋯ t

�}refers to the

clone group topics extracted from the clone group CG� where t�
� was extracted from cg�

�

,1 ≤ i ≤ n.

Figure 2. The frame of mapping algorithm

To track clone groups over two different versions ���	 and ��,we compare every clone group in

version ���	to every clone group in version ��. Topic modeling technology is used to extract the

topics from each clone group in the version �� and ���	respectively. At this point, since topic is

the only representation of corresponding clone group, the problem of mapping clone group

between two versions of a program is reduced to the mapping of clone group topics between two

versions. Then clone group topics are mapped by comparing similarity between topics in the

version ���	 and ��. If the topic ��
��	 of a clone group 	���

��	 in version ���	 matches to the

topic ��
� of a clone group 	���

� in the version ��, we know that the clone group 	cg�
��		in ���	 and

the clone group 	cg
�	in �� are the same. Due to the transitivity of the relation of equivalence， we

can then conclude that clone group 	cg�
��	 is related to clone group	cg

� .The algorithm is as

follows:

Clone Group Mapping algorithm

� 	∀		���
��	 ∈ 	#$��	,	#$��	 in ���	

� extract ��
��	 from 	���

��	

� 	∀		���
� ∈ 	#$�, #$� in ��

� extract ��
� from 	���

�

� caculate similarity between ��
� and ��

��	, and store similarity value in the array

unit sim [j]

� suppose sim[k]=max{sim[]}:

IF sim[k]≥δ，���
��		is mapped back to 	���

� ,namely ���
��	—﹥	���

�	；

 THEN ���
��	——﹥null.

� Return all mapping results

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.2, March 2015

15

4.2.2 Extract Clone Group Topics

Under the standard programming style, software is suitable for extracting the topics using the

LDA model. The paper uses MALLET topic modeling toolkit to extract the topics. MALLET is a

Java-based package for statistical natural language processing, document classification,

clustering, topic modeling, information extraction, and other machine learning applications to

text. It contains efficient, sampling-based implementations of LDA. Figure 3 shows the topics

extracted from source code of clone group by MALLET.

Preprocess the source code. Each topic is collections of words that co-occur frequently in the

clone group, and is the only representation of corresponding clone group. The topic contains a

large number of irrelevant information, such as stop words,comments, which play a small role in

characterization of clone group information. So, before extracting the topics, we remove

irrelevant information, mainly ：1）comments of the source code. 2）programming language

keywords, such as "for", "return", and "class", etc. 3) Programming related words, such as "main",

"arg", and "util", etc. 4）common English language stop words, such as "the", "it", and "on", etc.

Choose the number of topic.The proper number of topic is a key to influence the accuracy of

clone group mapping. For any given corpus, there is no provably optimal choice for the number of

topics. The choice is a trade-off between coarser topics and finer-grained topics. setting the

number of topics to extremely small values results in topics that contain multiple concepts, while

setting the number of topics to extremely large values results in topics that are too fine to be

meaningful and only reveal the idiosyncrasies of the clone group.

In the paper, through experimental analysis, it is best for setting the number of topics to one. In the

same clone group, clone code is a code portion that is identical or similar to another. The whole

clone group is multiple copies of the same clone whose syntactic or semantic function is same. In

other words, a clone group can be represented by a topic.

Figure 3.The topics extracted by MALLET

4.2.3 Mapping Clone Group Topics

A clone group has an arbitrary number of ancestors which are its occurrences in the previous

version of the system. Each clone group has zero or one descendant which is its occurrence in the

next version of the system. Clone group mapping is determined by the degree of similarity

between clone groups in the different versions.

The threshold of clone group mapping . Clone group mapping is determined indirectly by

similarity between clone group topics from different versions. If the similarity between the topic

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.2, March 2015

16

t
� and topic t�

��	is highest, and the similarity values is not less than certain threshold (δ).In that

way, we can conclude that the topic t�
��	 is mapped back to the topic t

�, namely the clone group

cg�
��	is mapped back to the clone group 	cg

� . In the paper, Similarity threshold δ is set to 0.8.

That's because the similarity value between t�
��	and t

� vary from 0.8 to 1 when cg�
��	 is mapped

back to the clone group 	cg
� , and the similarity value between t�

��	and t
� is less than 0.8

when	cg
�	is not origin of clone group cg�

��	. So, setting similarity threshold δis 0.8.

Map to origin clone group. The number of clone group is generally on the rise in the process

of software evolution. If the mapping is carried out from the version V�	to V��	, new clone groups

are failed to map. On the contrary, disappeared clone groups are failed to map. However, we are

more interested in clone code near to the current version in the study of clone evolution. That is to

say, compared with disappeared clone group, we are more interested in new clone group. So, the

mapping is carried out from the version V��	to V�.

5. CASE STUDY

5.1 Systems Under Study

Due to the difference in size of software system, number of clone group in each version ranging

from dozens to thousands ,in view of the limitations of manually inspection, so we perform case

study on the source code of four small and medium-sized, open source software systems which is

written in different programming languages. The detail of software is shown in Table 1. NiCad is

used to detect clone code. NiCad, a clone detector, can detect Type-1 、Type-2 and Type-3

clones written in multiple programming language（C、JAVA、C#）and have a high precision

rate and recall rate.

Table 1. The detail of software

software Bluefish MALLET ArgoUML PostgreSQL

Implementation language C JAVA JAVA C

Average size 23MB 31MB 35MB 92MB

Number of the selected version 2 3 3 4

Number of Clone group (on average) 20 145 299 506

5.2 Evaluation Measures

To evaluate the feasibility and validity of the approach, we use Precision and Recall as Evaluation

Measures to manually inspect the results of the approach based on topic modeling . Precision and

Recall are defined as follows:

Recall: Of all the actual clone group mappings, how many were discovered?

Recall =
the	number	of	correct	mapping

the	number	of	actual	clone	group	mappings

Precision: Of all the clone group mappings discovered, how many are correct?

Precision =
the	number	of	correct	mapping

the	number	of	correct	and	incorrect	mapping

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.2, March 2015

17

5.3 Results

Clone group mapping is carried on consecutive versions of other software, and manually inspect

the Precision and Recall of the mapping results. The results can be seen in Table 2 and Table 3.

The Precision and Recall of the approach are as high as 0.99, which reveal the validity and

feasibility of clone group mapping approach based on topic modeling. The runtime of clone group

mapping across versions is acceptable. But the results are enough to reveal the feasibility of the

approach. This method can effectively achieve the clone group mapping.

Unlike the mapping method based on text, the basic collection of the mapping is the clone group

topics, not intermediate representation of clone code(e.g., token and AST). Topic has a large

granularity and the higher level of abstraction. However, the difference of topics between

different clone groups in the same version is very large and the difference of topics between same

clone groups in the different version is very little, which make the clone group mapping method

based on topic modeling practicable and effective.

Table 2. The experimental results of the approach

Software and versions

Evaluation Measures

Bluefish PostgreSQL PostgreSQL PostgreSQL

2.2.4 2.2.3 9.1.5 9.1.4 9.1.4 9.1.3 9.1.3 9.1.2

Precision 1 0.996 0.996 0.994

Recall 0.95 1 1 1

Table 3. The experimental results of the approach

Software and versions

Evaluation Measures

ArgoUML ArgoUML MALLET MALLET

0.27.3 0.27.2 0.27.2 0.27.1 2.0.7 2.0.6 2.0.6 2.0.5

Precision 1 0.996 1 0.992

Recall 0.996 0.993 0.982 0.992

Take bluefish for example, mapping results of clone groups between bluefish 2.2.4 and bluefish

2.2.3 are shown in Figure 3.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.2, March 2015

18

Figure 3. Mapping results of clone groups between Bluefish 2.2.4 and 2.2.3

The second and third column of the figure show clone group number of the corresponding version

in Bluefish. There are 19(From 0 to 18) clone groups in Bluefish 2.2.4. There are 20(From 0 to 19)

clone groups in Bluefish 2.2.3.The arrows indicate the corresponding clone group is traced to its

origin clone group. For example, the 14th clone group of Bluefish 2.2.4 is mapped back to the

16th clone group of Bluefish 2.2.3.But the 14th clone group of Bluefish 2.2.4 is not traced to its

origin clone group, which indicate that it is a new clone group, probably the great changes have

taken place in its origin during the software evolution from Bluefish 2.2.3 to Bluefish 2.2.4, which

similarity value between them is less than the threshold δ. We note that 8th and 9th clone group

of Bluefish2.2.3 do not appear in the list, probably they are removed or take great change during

software evolution.

The first column of the figure show the largest similarity values of clone group topics between

Bluefish 2.2.4 and Bluefish 2.2.3. If the value is not less than δ(0.8), There is a mapping

relationship between them. It can be seen in the Figure 3 that most of the similarity value are as

high as 1, namely most of the clone groups do not change during software evolution. Few of the

similarity values are not 1, which indicate that clone codes have experienced some degree of

change, such as the clone group is deleted, a few of clone fragments are added or removed.

6. DISCUSSION AND THREATS TO VALIDITY

Limitations of clone detector. The clone detector provides the basis data for clone group

mapping, so clone group mapping approach directly is affected by clone detector. It is critical for

clone group mapping to choose an accurate clone detector.

Limitations of similarity threshold. In the paper, similarity threshold between clone group

topics across versions is determined based on the experience knowledge, and different software

use the same similarity threshold, which have an impact on the results. Firstly, similarity

threshold based on the experience knowledge can't reflect mapping efficiency of the algorithm.

Secondly, the same threshold is used to different software that they exist remarkable differences

in programming language, programming style and the degree of change between versions, which

will reduce the validity of the mapping algorithm.

The differences between versions. It is discovered by the experimental results that the

smaller differences between versions is, the higher accuracy the approach has. If clone group

have happened so significant changes during software evolution that similarity value between two

versions exceed the permitted threshold, which clone group that could have been traced to its

origin clone group is failure to mapping. That is to say, Mutation or big difference between

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.2, March 2015

19

versions can reduce the accuracy of the mapping. Therefore, It contributes to improvement of

accuracy of clone group mapping that using revision of software rather than release.

7. CONCLUSIONS

The activities of the programmers including copy, paste and modify result in lots of code clone in

the software systems. However, Clone group mapping has a very important significance in the

evolution of code clones. The clone group mapping approach based on topic modeling is

proposed in the paper. By using topic modeling techniques to transform the mapping problem of

high-dimensional code space into a low-dimensional topic space, the goal of clone group

mapping was indirectly reached by mapping clone group topics. Experiments on 12 versions of 4

open source software show that the recall and precision are up to 0.99, thus the approach can

effectively and accurately reach the goal of clone group mapping. The method is very effective

for not only exact clone but also near-miss clones.

REFERENCES

[1] Bettenburg N, Shang W, Ibrahim W, et al. An Empirical Study on Inconsistent Changes to Code

Clones at Release Level[C]//Proc. of the 2009 16th Working Conference on Reverse Engineering.

IEEE Press, pp. 85-94, 2009.

[2] Zibran M F, Roy C K. The Road to Software Clone Management: A Survey[R], Technical Report

2012-03, The University of Saskatchewan, Canada, 2012, pp. 1-66.

[3] G. Alkhatib. The maintenance problem of application software: an empirical analysis. Journal of

Software Maintenance, 4(2):83–104, 1992.

[4] C. Kapser and M. W. Godfrey. ’cloning considered harmful’ considered harmful. In Proceedings of

the 2006 Working Conference on Reverse Engineering, pages 19–28, Benevento, Italy, October 2006.

IEEE Computer Society.

[5] Bakota T, Ferenc R, Gyimothy T. Clone smells in Software evolution[C]//IEEE International

Conference on Software Maintenance. Washington DC: IEEE Computer Society, 2007:24-33.

[6] Barbour L, Khomh F, Zou Y. Late propagation in software clones[C]//Proceedings of the 27th IEEE

International Conference on Software Maintenance. Washington DC:IEEE Computer Society, 2011:

273-282.

[7] Gode N, Koschke R. Incremental Clone Detection[C]//Proceedings of the 2009 European Conference

on Software Maintenance and Reengineering. Washington DC:IEEE Computer Society, 2009:

219-228.

[8] Saha R K, Roy C K, Schneider K A. An automatic framework for extracting and classifying near-miss

clone genealogies[C]//Software Maintenance (ICSM), 2011 27th IEEE International Conference on.

IEEE, 2011: 293-302.

[9] Duala-Ekoko E, Robillard M P. Tracking Code Clones in Evolving Software[C]//Proceedings of the

29th international conference on Software Engineering. Washington DC:IEEE Computer Society,

2007:158-167.

[10] C.X. Zhai, Statistical language models for information retrieval, Synthesis Lectures on Human

Language Technologies 1 (1) (2008) 1–141.

[11] I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, M. Welling, Fast collapsed Gibbs sampling

for latent Dirichlet allocation, in: Proceeding of the 14th International Conference on Knowledge

Discovery and Data Mining, 2008, pp. 569–577.

[12] D.M. Blei, J.D. Lafferty, Topic models, in: Text Mining: Classification, Clustering, and Applications,

Chapman & Hall, London, UK, 2009, pp. 71–94.

[13] Kuhn A, Ducasse S, Gírba T. Semantic clustering: Identifying topics in source code. Information and

Software Technology, 2007, 49(3):230–243

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.2, March 2015

20

[14] Thomas S W, Adams B, Hassan A E, et al. Studying software evolution using topic models[J]. Science

of Computer Programming, 2012

[15] Asuncion H, Asuncion A, Taylor R. Software traceability with topic modeling.32nd ACM/IEEE

International Conference on Software Engineering (ICSE). 2010:95–104

[16] Liu Y, Poshyvanyk D, Ferenc R, et al. Modeling class cohesion as mixtures of latent

topics[C]//Software Maintenance, 2009. ICSM 2009. IEEE International Conference on. IEEE, 2009:

233-242

[17] Lukins S, Kraft N, Etzkorn L. Bug localization using latent Dirichlet allocation. Information and

Software Technology, 2010, 52(9):972–990.

AUTHORS

Ruixia Zhang, born in 1989, master,student at Inner Mongolia normal university.Her

current research interests include software englneering, code analysis.

Liping Zhang, born in 1974, master, professor at Inner Mongolia normal university.Her

current research interests include software englneering, code analysis.

Huan Wang, born in 1991, master,student at Inner Mongolia normal university.His

current research interests include software englneering, code analysis.

Zhuo Chen, born in 1989, master,student at Inner Mongolia normal university.His current

research interests include software englneering, code analysis.

